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Abstract

An Active Appearance Model (AAM) is a variable shape and apaece
model built from annotated training images. It has beerelgrgsed to syn-
thesize or fit face images. Person-independent face AANditis a chal-
lenging openissue. For standard AAMs, fitting a face imagardndividual
which is not in the training set is often limited in accuratygreby restricting
the range of application.

As a first contribution, we show that the limitation mainlyneces from the
inability of the AAM appearance counterpart to generalizeto accurately
generate previously unseen visual data. As a second cotibrib we pro-
pose an efficient person-independent face fitting framewaded on what
we call multi-level segmented AAMs. Each segment encoddsyaigally
meaningful part of the face, such as an eye. A coarse-to-fiirgyfstrategy
with a gradually increasing number of segments is used iardadensure a
large convergence basin.

Fitting accuracy is assessed by comparison with manualiladpstatis-
tics constructed from multiple data annotations. Expenitakresults sup-
port the claim that standard AAMs are well-adapted to perguecific fit-
ting while segmented AAMs outperform the classical AAMs iperson-
independent context in terms of accuracy, and ability tcegate new faces.

1 Introduction

The Active Appearance Model (AAM) paradigm was introduced 998 by Cootest
al. [3] and since then it has had a great success. An AAM learnshhpe and the
appearance of a labelled set of images showing some clasgent®. AAMs are widely
used for face fitting, seeg. [3, 8] and face synthesis, se@. [4]. Most of the applications
—in the medical, psychological and linguistic fields, cdigeistudies, expression transfer
on an avataretc. — require highly accurate fitting. In other words, the AAM a@reters
must be recovered such that the synthesized image closéthesathe input image.

Most of the previous work uses a single AAM modeling the faxa ahole. Accurate
fitting is achieved in a person-specific context. For insta8] uses AAMs for facial
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deformation analysis. The standard AAM usually fails toiaeé high accuracy for an

image of a previously unseen fages, for an individual not in the training set. Person-
independent face fitting is however a very important probdmse a training image set
might not be available for an individual whose face needset@dcurately tracked in a

video.

The closest work to ours is probably by Gragsal. [7]. They tackle the problem
of constructing and fitting person-independent AAMs. Thbygvg that this is a diffi-
cult problem, even for frontal pose and neutral expressiad,that the difficulties come
from the inability of standard AAMs to generate new facesolugon based on training,
iteratively refitting the data with the AAM and re-trainirig shown to improve the perfor-
mances compared to traditional single step AAM trainingstiracceet al. [5] recently
proposed a paradigm called Constrained Local Model (CLM%¥ $hown to be effective
at fitting a local face model based on measuring the imagenssparound vertices and
with a shape prior learnt from training images.

This paper tackles the important issue of person-indepetfiaee fitting with AAMs.
We bring several statements and technical contributions:

o First, §3, we propose a means to assess fitting accuracy: the SSEt{&aShape
Error). It is based on using several manual labellings oftibat images by differ-
ent users, from which gaussian statistics are computecafdr bel. The quality
of an AAM fit is assessed by using the Mahalanobis distande mvénual labelling
statistics. This is an essential tool for the subsequergraxgntal analysis.

e Second$4, we experimentally investigate the behavior of standa#dl& on un-
seen faces, and show that the lack of accuracy is mainly direetmability of the
appearance component to generate unseen faces. We statatiolard AAMs are
accurate in a person-specific context but not in a persoepeddent one.

e Third, §5, we show that segmented AAMs outperform standard oneipghson-
independent context and achieve very accurate fitting, @fstime order as the
accuracy reached with manual labelling statistics. SegaeAAMs consist of
several portions, each of which modeling a region of the fageh as the mouth.
Directly fitting each segment would reduce the convergeaseicompared to fit-
ting a standard AAM. As a remedy, we propose a coarse-to-fitiegfistrategy
which gradually splits a standard AAM into pre-defined segtaeThismulti-level
segmented AAM we propose thus is able to generate new faces and can be effec-
tively fit to images. Experimental results show that thispeutorms the refitting
solution of [7].

We give some background on AAMs below and our conclusiofi§in

2 Background on AAMs: Training and Fitting

An AAM combines two linear subspaces, one for the shape aedarthe appearance,
which are learnt from a previously labelled set of trainimgges [3].

Principal Component Analysis (PCA) is applied on shapeingi data to retrieve a
set of shape eigencomponestexpressing the shape model variation, and their asso-
ciated eigenvalues proportional to the variance of thenimgi data thes enclose. Four



extra components® are added to allow the 2D similarity transform, see [10]. Bet=
[S1,--+,S,--,S;,- -+, Sy be the shape subspace basis. An instance of shape is defed as
linear expressiorns = Bsps with ps the shape deformation parameters.

PCA is applied on the shape-corrected appearance dataitveet set of appearance
eigencomponents;, allowing variations on the model appearance, and theocist®d
eigenvalues proportional to the variance of the trainintadheA; enclose. Two extra
component#y for gain andA, for bias are added, see [1]. LB = [Aq,---,Aj, -+, A0, Al]
be the appearance subspace basis. An instance of appeiardefieed as a linear expres-
sion: A= Bapa With p5 the appearance variation parameters.

Fitting an AAM consists to find the shape and appearance paeamthat make it
match the input image as best as possible. This is done byiivie, nonlinear opti-
mization process. We use the inverse compositional opditioiz scheme presented by
Baker and Matthews in [10]. The Jacobian and Hessian mataicederived analytically.
Two versions of this algorithm were proposed and comparéd]irOur implementation
relies on the most accurate one calleddimaultaneous inverse compositional algorithm,
originally described in [1].

We adapt this algorithm to our multi-level segmented AAM.

3 Assessing Fitting Accuracy

Fitting accuracy on unseen face images is generally assbssed on a single manual
annotation of each image, considered as the absolute shBgrerrce. The assumption
behind this accuracy evaluation method is that the manbeal lig correct at the pixel
level.

This assumption is often violated in practice: a vertex oacefimage gets signif-
icantly different manual annotations, even from the sames.u#t is also incorrect to
consider that one manual annotation is better than thesthenight also happen that a
well performing automatic process is more accurate tharualdabellers.

To address this improper accuracy assessment problemigdvietral. [11] suggest to
annotate a face several times and build statistics for eadbx It is then possible to set
up a fitting error measure that takes the imprecision of miasnugotation into account.
The fitting accuracy score is given strong weight for thosgiees that manual labellers
have localised accurately, and light weight for badly Iz vertices.

We use the multiple label data available from [11] to defireegtound truth shape and
the fitting error function. A set afi = 40 images were labelleg = 10 times each (labels
describe then, = 68 vertices of the model mesh used in [10]). These frontet posutral
expression, homogeneous illumination, face images araagt from the AR database
[9]. Each image shows a different individual. A probabilitigtribution is computed for
each imagé and vertew, as the meag; , over itsn_ labelsx; ,; and a(2 x 2) covariance
matrix 2 y as:

n_ n_
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These define what we dub ‘manual labelling statistics’. Fégushows face images over-
laid with their manual labelling statistics, with each eartepresented by an ellipse show-
ing its mean position and uncertainty. This methodologyisantrast to [11] in which a



single covariance matrix is computed for each vertex ovdghaln; images. We believe
that keeping a single covariance matrix for each vertex ahé@mage makes sense since
the visibility conditions may substantially differ from eimage to the others for the same
vertex. We want to preserve this information in the statitic

Figure 1: Faces number 1, 3 and 6 from the 40 faces that weated 10 times. Co-
variance ellipses represent the distribution of the 10l&adund mean vertices.

We propose th&atistical Shape Error (SSE) for a shaps on an imageé that we
define by the average of the Mahalanobis distances:

nv
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wheres, is thev-th vertex of shaps. The lower the SSE, the better the fitting accuracy.
This error is strongly related to the negative log-likeblaf the parameters with respect
to gaussian noise contamined labels. It scores automatarfi can also be used to score
manual fitting accuracy. In particular, we compute the SStainbd by the 10 labellings
on each image. From the 10 error scores on each image we tetamaximum and
minimum scores, and compute the average score. This allews compare automatic
fitting accuracy to manual fitting accuracy §6.3, which gives a concrete idea of the
accuracy that is reached.

4 Issuesin Fitting AAMsto Unseen Faces

In the literature, AAMs are usually built by retaining 95 8% of the total shape and ap-
pearance variance contained in the training data withatifying this choice. Few works
study the influence of the quantity of variance on the fittiegfprmances. Gross al. [7]
recently investigated the effect of shape and appearamizea on the convergence of a
fitting algorithm for unseen faces. They estimate the gtiestof shape and appearance
variance that maximize the number of successful trials. él@r, they do not explain why
the convergence is limited for certain faces.

The experiment we report allows to highlight the fitting awaty behavior for a range
of shape and appearance variances. We identify the coridnirthit maximizes the over-
all fitting accuracy on all trials and explain why this acayrés limited and the fitting
behaviour for various shape and appearance variance cafitsia. The experimental
setup has similarities with the one in [7].



4.1 Fitting Seen Faces, i.e. Imagesin the Training Set

We use all the 40 images to train the AAM with differentama@wiftshape and appearance
variance. We fit it to the 40 face images on turn. Each fitting tasts a number of
iterations that allows to reach a clear final state, shoude ikonvergence or divergence.

Asin [7], we initialize the fitting process as close as pdsdibbthe optimal parameter-
ization: we project the test face shape into the shape sabspaetrieve the initial shape
parameters, and its appearance into the appearance seltgpatrieve the appearance
parameters. In this way, we ensure that if the model diveijésnot due to potential
local minima but to the model inability to fit the test imagegute 2 (a) shows the aver-
age SSE on all the 40 face images. The bottom curve shows ttel/88E in its initial
position, which is also the lowest error it can reach.
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Figure 2:Seen andunseen contexts analysis. The bottom curves represent the iS&&

of equation (1) averaged over all the 40 images. The top swskiew the average SSE

after the algorithm has ran. Various amounts of shape anebaippce variances are tested.
The black dot in (b) represents the point of best averagediticcuracy on unseen faces
that stands for 60% of the shape variance and 100% of the epppEavariance.

We observe that for full appearance (100% of the varianeémed)), the fit remains in
the best, initial position for any amount of shape variamtained. The characteristics of
the full appearance AAM is that, up to appearance samplitgjeats, the test image can
be completely reconstructed in appearance.

The second observation holds for any given fixed amount gbeslvariance: when
less than 100% of the appearance variance is retained,tthg éitcuracy decreases. The
less the appearance variance, the worse the accuracy.sBahin 100% of the training
data, the AAM appearance space cannot totally reproducéatieeappearance of the
input image although this face is in the training set. Thiag®nt intensity discrepancy
between the test image and the model causes the drop in thg &ttcuracy. This test
highlights the following property: the ability of the AAM g@garance component to fully
generate the face appearance of the test image is a necesaditjon to obtain the best
possible fitting accuracy. A natural question to answer istivr this also holds when the
test image is not in the training set.



4.2 Fitting Unseen Faces, i.e. Individuals Not in the Training Set

This test is different from the one 4.1 in that it is done in a leave-one-out manner: we
train the AAM on 39 images and use the 40-th image as a testerobgn unseen face.
The test is performed for all the 40 face pictures, and foiakde amounts of shape and
appearance variance.

Figure 2 (b) shows the average SSE over the 40 face images pieity similar to
figure 2 (a) but a main difference is however observed. Tiene icombination of shape
and appearance variances that makes the AAM remains intoitied, best position.
Indeed, there is no junction between the SSE curves for titialiand fit curves. In
contrast with the test on seen faces, even for full appearardvs, the fitting process
shifts the AAM away from the initial solution. The AAM neveemains on the best
possible accuracy position, which results in limited aecyrcapabilities.

4.3 Discussion

As an observation on the test for seen faceghi, we saw that when the model can fully
express the image in terms of appearance (the error in ittdretween the model and the
image are due to the model misplacement and/or non-optippeaance parameteriza-
tion). The fitting optimization process uses the error ieisity to iteratively update the
model to a position where this error is minimized, and ideatjuals zero. It is assumed
that the model parameterization that minimizes the erramtiensity correctly aligns the
model to the face image. In practice, this is what happensireemodel explicitly learnt
the image it fits (and when the global minimum is reached)s Ehplains the high fitting
accuracy obtained in this context.

When the model appearance cannot fully express the faceedeghimage, the error
in intensity due to this lack of expressivity is consideredaing due to the model mis-
placement. The optimization process tunes the model paeaste minimize the residual
error though it does not come from a misplacement. In thie,dhg minimum error usu-
ally does not correspond to the best placement of the modites. Indeed, the process
bends the model in order to spread out the remaining erratémsity as much as it can
to minimize the global error. This makes the model drift afrayn the sought after shape
used as its initial position,e. fitting accuracy is spoiled. The more deformable the model
the more the fitting process can bend it to further minimizerein intensity. For very
high deformability the model can even diverge. In the samgfaaa given deformability
(fixed amount of shape variance), the less the appeararie@e@sthe less the model can
express the test image data and the worse the fitting accuinettye case of fitting on seen
faces, this happens when appearance variance is not ftaipee (less than 100% of the
variance is retained). In the case of fitting on unseen faxe@gw face always presents
visual aspects that are unknown from the model appearamepartent and the model al-
ways drifts away from the best possible position even whereapance is fully retained.
As seen on the curves of figure 2 (b), the best overall accdoaditting on unseen faces
is obtained for full appearance and 60% shape variance ngake model rigid enough
not to bend too much, then minimizing the loss in fitting aecyr



5 Segmented AAMsand Unseen Individuals
51 Motivationsfor Using Segmented AAMs

The AAM appearance space is unable to completely genematgpiearance information.
In other words, an unseen face added to the training set vimind new visual informa-
tion. We saw that the limited ability to generalize the appaae component limits the
fitting performance in terms of accuracy. One obvious sofutd better generalize to any
new face appearance would be to train the AAM on thousandsiiing images. This
is difficult in practice for two reasons: first, this numbetti&ining data is hard to gather
up, and second, this implies to retain a very high number pkapmnce components to
explain as much of the variance as possible, which makesptimiaation process com-
putationally heavy and increases the possibility of ggtituck into local minima.

The solution we propose is to reduce the appearance spaeaslonality. This makes
more expressive the data coming from our reasonable sin@ngaset. To achieve a better
fitting accuracy we rely on local models defined over a smédlee area. This approach
is somehow similar to the concept sdgmented morphable models briefly presented by
Blanz and Vetter in [2].

5.2 Multi-Level Segmented AAM s and Coar se-to-Fine Fitting

The ability of local models to generalize their shape andeapgnce is better than for
larger models. This makes them potentially more accuratdésame amount of training
data. However, their reduced dimension penalizes theustoless to bad initialization:
local models must be well initialized. To ensure this, we aisleree stage coarse-to-fine
strategy, illustrated on figure 3, where a global AAM is usednitialize intermediary
AAMs, themselves used to initialize local AAMs.

Intermediary and local models represent a subgroup of thkagimodel vertices.
Models concerned with eyebrows also describe some exttae®ion lower eyebrows.
A layer of supporting pointsis added to local and intermediary models in order to define
visual gradients at 36Garound all vertices.

The model is automatically initialized. We use a face andogyder detector available
online! [6]. The rigid global model is transformed with a 2D simitgrand is placed on
the image such that its eye centers match the corresporgtintpge given by the detector.
From this initial position the fitting is launched until it weerges.

Global model position is used to initialize each intermegiamodel: we keep the
vertices the global model has in common with an intermediaoyglel, and we find the
intermediary model instance that best matches those gsytis follows.

Let Bg,cc be the shape generating matrix of one intermediary modelctfumns of
Baicc are thenc long deformation vectors plus the four similarity transform vectors.
Vector sqyrr represents the vertex coordinates of the global model tleainacommon
with the intermediary model. To this vector we add extra oabrdinates for intermedi-
ary model vertices that are not in common with global mosggl; thus becomesc long.
We sort the coordinates &y in a way such that they correspond to vertex coordinates
defined in the vectors. The instance of intermediary model that best matches its co
mon vertices to those of the global model is found by solviregfbllowing optimization

Lhttp://kolmogorov.sourceforge.net



Figure 3: lllustration of the models used to fit the face. Abglbmodel is initialized with
help of an eye center detector and is fitted on the image gwifigst fitting result (left
column). From this initialization a set of intermediary netslare launched to further
refine the fitting (center column). Eventually, the local ralsddedicated to each facial
feature are launched to fit these features more accuratght @olumn).

problem:

nc
. c 2
arg nngZlQ(c) (Scurr (€) — BgyeeP)* (2

whereBg,. is thec!" row of matrix Bgyec. Q is annc long vector of weights set to one
for the coordinates of vertices that are common between tiiets, and to zero for the
others. A closed form solution can be computed to find thevgdtp (details are omitted
due to lack of space):

p' = (KTK) KB cdiag(Q)seurr, ©)

whereK = Bl ..diag(Q)Bsucc anddiag(Q) is a diagonal matrix, null everywhere excepted
on diagonal where th® vector coefficients are represented. The repliof this mini-
mization can be used to instantiate the shape of the intéamyemiodel:sycc = Bsuccp'.
The process is applied to initialize all intermediary madbht are then fitted to the image.
Following the same strategy, we use (converged) intermgdiadel vertices to initialize
local models that are in turn fitted to the image. Once eachahiséhitialised in position,
its appearance component is initialised by projection efatea underlying on the image
onto the appearance subspace, in order to retrieve thal mpearance parameters.

5.3 Experimental Results

Fitting with intermediary and local models leads to impra¥iting accuracy. On figure
4 (a), boxes of whiskers compare the SSE on 40 trials obtasssbctively with global,
global refitted, intermediary, local models and mean masualr as well as maximum
manual error (seg3). The global refitted model is obtained by training the glahodel



onto refitted data: the used face data is learnt by an AAMnmitgi99% variance of shape
and appearance, and is fitted again on the same faces in ordaréase the vertices
correspondences among training data. Introduced in [ig ojfreration seems to improve
the fitting results on unseen faces with respect to the esbliained when training the
AAM on once-labelled data. Since we use multiply labellethdar training (the mean
of 10 labels to define each vertex), their semantical pasaiothe face is high and should
naturally improve the correspondence among data.

A leave-one-out procedure is used to train and fit the glajdabal-refitted, interme-
diary and local models. Models are built with the shape amkamnce variances that
maximize their overall accuracy on unseen faeeg 60% shape and 100% appearance
for the global model). All intermediary models are gather&tie same is done for the
local models. The SSE is computed using equation (1) onlyestices that are com-
mon between the models. We see the accuracy improvemenedlloy intermediary and
local models with respect to the global model, and we seetltigahccuracy is globally
comparable to manual label accuracy evaluated with thistitat The relative improve-
ment obtained from global to local model fitting is 36% on aggy. The SSE obtained
for refitted data is higher than for the global model traingthwnultiply labelled data.
We believe that the higher semantical meaning obtained lafibl statistics is mainly
responsible for the improvement. Indeed, these labels hiaeer semantical meaning
since human labellers attempted several times to accuissethem into a given position
on each face. The refitting process will displace once-labelertices to maximize their
cohesion, but it is improbable that these new positions emeastically the very desired
ones (although they might usually be improved). Multiplipédied data then constitute
a maximum bound to accuracy, which explains the improveditesbtained when we
train an AAM with these data.
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Figure 4: (a) Comparison between the 40 fitting scores obthinith a global model,
a refitted global model, intermediary models, local modats] manual labellings, both
maximum and average SSE. Local models often reach a SSE caloig#o manual la-
bellings. (b) Example of fitting results on face number 6. Tineles represent the ground
truth shape vertices (centers of the covariance ellipges)triangles the vertices of the
fitted global model (the SSE equals 2.46), and the starsgeptéhe vertices of the fitted
local models (the SSE equals 1.46).



6 Conclusion and Future Work

The AAM paradigm is often used without precisely understagdhe influence of the
guantity and nature of training data and of theretained quantity of shape and appearance
varianceon fitting performances. As a step towards such an undeiisgtids work stud-
ies fitting accuracy on unseen frontal and neutral face dataugh theStatistical Shape
Error we propose. We showed and explained the fitting accuracygliions in this case.
We propose a solution based on local models, namelytiig-level ssgmented AAM, that
overcomes this limitation and reaches very high accurangtmarked by manual fitting
accuracy with a large convergence basin. To summarizejatdmnd segmented AAMs
are respectively well-adapted to person-specific and pergtependent face fitting.

We wish to extend these results to varying pose and express®will train one set
of global, intermediary and local models for each possibksepand expression and set up
a strategy to select the set that best suits for fitting theeatiface image.
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