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Abstract

An Active Appearance Model (AAM) is a variable shape and appearance
model built from annotated training images. It has been largely used to syn-
thesize or fit face images. Person-independent face AAM fitting is a chal-
lenging open issue. For standard AAMs, fitting a face image for an individual
which is not in the training set is often limited in accuracy,thereby restricting
the range of application.

As a first contribution, we show that the limitation mainly comes from the
inability of the AAM appearance counterpart to generalize,i.e. to accurately
generate previously unseen visual data. As a second contribution, we pro-
pose an efficient person-independent face fitting frameworkbased on what
we call multi-level segmented AAMs. Each segment encodes a physically
meaningful part of the face, such as an eye. A coarse-to-fine fitting strategy
with a gradually increasing number of segments is used in order to ensure a
large convergence basin.

Fitting accuracy is assessed by comparison with manual labelling statis-
tics constructed from multiple data annotations. Experimental results sup-
port the claim that standard AAMs are well-adapted to person-specific fit-
ting while segmented AAMs outperform the classical AAMs in aperson-
independent context in terms of accuracy, and ability to generate new faces.

1 Introduction

The Active Appearance Model (AAM) paradigm was introduced in 1998 by Cooteset
al. [3] and since then it has had a great success. An AAM learns theshape and the
appearance of a labelled set of images showing some class of objects. AAMs are widely
used for face fitting, seee.g. [3, 8] and face synthesis, seee.g. [4]. Most of the applications
– in the medical, psychological and linguistic fields, cognitive studies, expression transfer
on an avatar,etc. – require highly accurate fitting. In other words, the AAM parameters
must be recovered such that the synthesized image closely matches the input image.

Most of the previous work uses a single AAM modeling the face as a whole. Accurate
fitting is achieved in a person-specific context. For instance, [8] uses AAMs for facial
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deformation analysis. The standard AAM usually fails to achieve high accuracy for an
image of a previously unseen face,i.e. for an individual not in the training set. Person-
independent face fitting is however a very important problemsince a training image set
might not be available for an individual whose face needs to be accurately tracked in a
video.

The closest work to ours is probably by Grosset al. [7]. They tackle the problem
of constructing and fitting person-independent AAMs. They show that this is a diffi-
cult problem, even for frontal pose and neutral expression,and that the difficulties come
from the inability of standard AAMs to generate new faces. A solution based on training,
iteratively refitting the data with the AAM and re-training,is shown to improve the perfor-
mances compared to traditional single step AAM training. Cristinacceet al. [5] recently
proposed a paradigm called Constrained Local Model (CLM). It is shown to be effective
at fitting a local face model based on measuring the image response around vertices and
with a shape prior learnt from training images.

This paper tackles the important issue of person-independent face fitting with AAMs.
We bring several statements and technical contributions:

• First,§3, we propose a means to assess fitting accuracy: the SSE (Statistical Shape
Error). It is based on using several manual labellings of theinput images by differ-
ent users, from which gaussian statistics are computed for each label. The quality
of an AAM fit is assessed by using the Mahalanobis distance with manual labelling
statistics. This is an essential tool for the subsequent experimental analysis.

• Second,§4, we experimentally investigate the behavior of standard AAMs on un-
seen faces, and show that the lack of accuracy is mainly due tothe inability of the
appearance component to generate unseen faces. We state that standard AAMs are
accurate in a person-specific context but not in a person-independent one.

• Third, §5, we show that segmented AAMs outperform standard ones in the person-
independent context and achieve very accurate fitting, of the same order as the
accuracy reached with manual labelling statistics. Segmented AAMs consist of
several portions, each of which modeling a region of the facesuch as the mouth.
Directly fitting each segment would reduce the convergence basin compared to fit-
ting a standard AAM. As a remedy, we propose a coarse-to-fine fitting strategy
which gradually splits a standard AAM into pre-defined segments. Thismulti-level
segmented AAM we propose thus is able to generate new faces and can be effec-
tively fit to images. Experimental results show that this outperforms the refitting
solution of [7].

We give some background on AAMs below and our conclusions in§6.

2 Background on AAMs: Training and Fitting

An AAM combines two linear subspaces, one for the shape and one for the appearance,
which are learnt from a previously labelled set of training images [3].

Principal Component Analysis (PCA) is applied on shape training data to retrieve a
set of shape eigencomponentssi expressing the shape model variation, and their asso-
ciated eigenvalues proportional to the variance of the training data thesi enclose. Four



extra componentss∗i are added to allow the 2D similarity transform, see [10]. LetBs =
[s1, · · · ,si, · · · ,s∗1, · · · ,s

∗
4] be the shape subspace basis. An instance of shape is defined asa

linear expression:s = Bs ps with ps the shape deformation parameters.
PCA is applied on the shape-corrected appearance data to retrieve a set of appearance

eigencomponentsAi, allowing variations on the model appearance, and their associated
eigenvalues proportional to the variance of the training data theAi enclose. Two extra
componentsA0 for gain andAI for bias are added, see [1]. LetBa = [A1, · · · ,Ai, · · · ,A0,AI ]
be the appearance subspace basis. An instance of appearanceis defined as a linear expres-
sion: A = Ba pa with pa the appearance variation parameters.

Fitting an AAM consists to find the shape and appearance parameters that make it
match the input image as best as possible. This is done by an iterative, nonlinear opti-
mization process. We use the inverse compositional optimization scheme presented by
Baker and Matthews in [10]. The Jacobian and Hessian matrices are derived analytically.
Two versions of this algorithm were proposed and compared in[7]. Our implementation
relies on the most accurate one called thesimultaneous inverse compositional algorithm,
originally described in [1].

We adapt this algorithm to our multi-level segmented AAM.

3 Assessing Fitting Accuracy

Fitting accuracy on unseen face images is generally assessed based on a single manual
annotation of each image, considered as the absolute shape reference. The assumption
behind this accuracy evaluation method is that the manual label is correct at the pixel
level.

This assumption is often violated in practice: a vertex on a face image gets signif-
icantly different manual annotations, even from the same user. It is also incorrect to
consider that one manual annotation is better than the others. It might also happen that a
well performing automatic process is more accurate than manual labellers.

To address this improper accuracy assessment problem, Mercier et al. [11] suggest to
annotate a face several times and build statistics for each vertex. It is then possible to set
up a fitting error measure that takes the imprecision of manual annotation into account.
The fitting accuracy score is given strong weight for those vertices that manual labellers
have localised accurately, and light weight for badly localised vertices.

We use the multiple label data available from [11] to define the ground truth shape and
the fitting error function. A set ofnI = 40 images were labellednL = 10 times each (labels
describe thenV = 68 vertices of the model mesh used in [10]). These frontal pose, neutral
expression, homogeneous illumination, face images are extracted from the AR database
[9]. Each image shows a different individual. A probabilitydistribution is computed for
each imagei and vertexv, as the meanµi,v over itsnL labelsxi,v,l and a(2×2) covariance
matrix Σi,v as:

µi,v =
1
nL

nL

∑
l=1

xi,v,l and Σi,v =
1

nL −1

nL

∑
l=1

(xi,v,l − µi,v)
T (xi,v,l − µi,v).

These define what we dub ‘manual labelling statistics’. Figure 1 shows face images over-
laid with their manual labelling statistics, with each vertex represented by an ellipse show-
ing its mean position and uncertainty. This methodology is in contrast to [11] in which a



single covariance matrix is computed for each vertex over all the nI images. We believe
that keeping a single covariance matrix for each vertex in each image makes sense since
the visibility conditions may substantially differ from one image to the others for the same
vertex. We want to preserve this information in the statitics.

Figure 1: Faces number 1, 3 and 6 from the 40 faces that were annotated 10 times. Co-
variance ellipses represent the distribution of the 10 labels around mean vertices.

We propose theStatistical Shape Error (SSE) for a shapes on an imagei that we
define by the average of the Mahalanobis distances:

SSEi(s) =
1

nV

nV

∑
v=1

√

(sv − µi,v)T Σ−1
i,v (sv − µi,v), (1)

wheresv is thev-th vertex of shapes. The lower the SSE, the better the fitting accuracy.
This error is strongly related to the negative log-likelihood of the parameters with respect
to gaussian noise contamined labels. It scores automatic fits and can also be used to score
manual fitting accuracy. In particular, we compute the SSE obtained by the 10 labellings
on each image. From the 10 error scores on each image we retainthe maximum and
minimum scores, and compute the average score. This allows us to compare automatic
fitting accuracy to manual fitting accuracy in§5.3, which gives a concrete idea of the
accuracy that is reached.

4 Issues in Fitting AAMs to Unseen Faces

In the literature, AAMs are usually built by retaining 95 to 98% of the total shape and ap-
pearance variance contained in the training data without justifying this choice. Few works
study the influence of the quantity of variance on the fitting performances. Grosset al. [7]
recently investigated the effect of shape and appearance variance on the convergence of a
fitting algorithm for unseen faces. They estimate the quantities of shape and appearance
variance that maximize the number of successful trials. However, they do not explain why
the convergence is limited for certain faces.

The experiment we report allows to highlight the fitting accuracy behavior for a range
of shape and appearance variances. We identify the combination that maximizes the over-
all fitting accuracy on all trials and explain why this accuracy is limited and the fitting
behaviour for various shape and appearance variance combinations. The experimental
setup has similarities with the one in [7].



4.1 Fitting Seen Faces, i.e. Images in the Training Set

We use all the 40 images to train the AAM with different amounts of shape and appearance
variance. We fit it to the 40 face images on turn. Each fitting trial lasts a number of
iterations that allows to reach a clear final state, should itbe convergence or divergence.

As in [7], we initialize the fitting process as close as possible to the optimal parameter-
ization: we project the test face shape into the shape subspace to retrieve the initial shape
parameters, and its appearance into the appearance subspace to retrieve the appearance
parameters. In this way, we ensure that if the model diverges, it is not due to potential
local minima but to the model inability to fit the test image. Figure 2 (a) shows the aver-
age SSE on all the 40 face images. The bottom curve shows the model SSE in its initial
position, which is also the lowest error it can reach.
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(a) Accuracy forseen faces (b) Accuracy forunseen faces
(images in the training set) (individuals not in the training set)

Figure 2:Seen andunseen contexts analysis. The bottom curves represent the initialSSE
of equation (1) averaged over all the 40 images. The top curves show the average SSE
after the algorithm has ran. Various amounts of shape and appearance variances are tested.
The black dot in (b) represents the point of best average fitting accuracy on unseen faces
that stands for 60% of the shape variance and 100% of the appearance variance.

We observe that for full appearance (100% of the variance retained), the fit remains in
the best, initial position for any amount of shape variance retained. The characteristics of
the full appearance AAM is that, up to appearance sampling artefacts, the test image can
be completely reconstructed in appearance.

The second observation holds for any given fixed amount of shape variance: when
less than 100% of the appearance variance is retained, the fitting accuracy decreases. The
less the appearance variance, the worse the accuracy. For less than 100% of the training
data, the AAM appearance space cannot totally reproduce theface appearance of the
input image although this face is in the training set. This reluctant intensity discrepancy
between the test image and the model causes the drop in the fitting accuracy. This test
highlights the following property: the ability of the AAM appearance component to fully
generate the face appearance of the test image is a necessarycondition to obtain the best
possible fitting accuracy. A natural question to answer is whether this also holds when the
test image is not in the training set.



4.2 Fitting Unseen Faces, i.e. Individuals Not in the Training Set

This test is different from the one in§4.1 in that it is done in a leave-one-out manner: we
train the AAM on 39 images and use the 40-th image as a test image of an unseen face.
The test is performed for all the 40 face pictures, and for variable amounts of shape and
appearance variance.

Figure 2 (b) shows the average SSE over the 40 face images. It is pretty similar to
figure 2 (a) but a main difference is however observed. There is no combination of shape
and appearance variances that makes the AAM remains into theinitial, best position.
Indeed, there is no junction between the SSE curves for the initial and fit curves. In
contrast with the test on seen faces, even for full appearance AAMs, the fitting process
shifts the AAM away from the initial solution. The AAM never remains on the best
possible accuracy position, which results in limited accuracy capabilities.

4.3 Discussion

As an observation on the test for seen faces in§4.1, we saw that when the model can fully
express the image in terms of appearance (the error in intensity between the model and the
image are due to the model misplacement and/or non-optimal appearance parameteriza-
tion). The fitting optimization process uses the error in intensity to iteratively update the
model to a position where this error is minimized, and ideally equals zero. It is assumed
that the model parameterization that minimizes the error inintensity correctly aligns the
model to the face image. In practice, this is what happens when the model explicitly learnt
the image it fits (and when the global minimum is reached). This explains the high fitting
accuracy obtained in this context.

When the model appearance cannot fully express the face on the test image, the error
in intensity due to this lack of expressivity is considered as being due to the model mis-
placement. The optimization process tunes the model parameters to minimize the residual
error though it does not come from a misplacement. In this case, the minimum error usu-
ally does not correspond to the best placement of the model vertices. Indeed, the process
bends the model in order to spread out the remaining error in intensity as much as it can
to minimize the global error. This makes the model drift awayfrom the sought after shape
used as its initial position,i.e. fitting accuracy is spoiled. The more deformable the model
the more the fitting process can bend it to further minimize error in intensity. For very
high deformability the model can even diverge. In the same way for a given deformability
(fixed amount of shape variance), the less the appearance variance, the less the model can
express the test image data and the worse the fitting accuracy. In the case of fitting on seen
faces, this happens when appearance variance is not fully retained (less than 100% of the
variance is retained). In the case of fitting on unseen faces,a new face always presents
visual aspects that are unknown from the model appearance component and the model al-
ways drifts away from the best possible position even when appearance is fully retained.
As seen on the curves of figure 2 (b), the best overall accuracyfor fitting on unseen faces
is obtained for full appearance and 60% shape variance, making the model rigid enough
not to bend too much, then minimizing the loss in fitting accuracy.



5 Segmented AAMs and Unseen Individuals

5.1 Motivations for Using Segmented AAMs

The AAM appearance space is unable to completely generate the appearance information.
In other words, an unseen face added to the training set wouldbring new visual informa-
tion. We saw that the limited ability to generalize the appearance component limits the
fitting performance in terms of accuracy. One obvious solution to better generalize to any
new face appearance would be to train the AAM on thousands of training images. This
is difficult in practice for two reasons: first, this number oftraining data is hard to gather
up, and second, this implies to retain a very high number of appearance components to
explain as much of the variance as possible, which makes the optimization process com-
putationally heavy and increases the possibility of getting stuck into local minima.

The solution we propose is to reduce the appearance space dimensionality. This makes
more expressive the data coming from our reasonable size training set. To achieve a better
fitting accuracy we rely on local models defined over a smallerface area. This approach
is somehow similar to the concept ofsegmented morphable models briefly presented by
Blanz and Vetter in [2].

5.2 Multi-Level Segmented AAMs and Coarse-to-Fine Fitting

The ability of local models to generalize their shape and appearance is better than for
larger models. This makes them potentially more accurate for the same amount of training
data. However, their reduced dimension penalizes their robustness to bad initialization:
local models must be well initialized. To ensure this, we usea three stage coarse-to-fine
strategy, illustrated on figure 3, where a global AAM is used to initialize intermediary
AAMs, themselves used to initialize local AAMs.

Intermediary and local models represent a subgroup of the global model vertices.
Models concerned with eyebrows also describe some extra vertices on lower eyebrows.
A layer of supporting points is added to local and intermediary models in order to define
visual gradients at 360◦ around all vertices.

The model is automatically initialized. We use a face and eyecenter detector available
online1 [6]. The rigid global model is transformed with a 2D similarity and is placed on
the image such that its eye centers match the corresponding estimate given by the detector.
From this initial position the fitting is launched until it converges.

Global model position is used to initialize each intermediary model: we keep the
vertices the global model has in common with an intermediarymodel, and we find the
intermediary model instance that best matches those vertices, as follows.

Let Bsucc be the shape generating matrix of one intermediary model: the columns of
Bsucc are thenC long deformation vectorssi plus the four similarity transform vectors.
Vector scurr represents the vertex coordinates of the global model that are in common
with the intermediary model. To this vector we add extra nullcoordinates for intermedi-
ary model vertices that are not in common with global model.scurr thus becomesnC long.
We sort the coordinates inscurr in a way such that they correspond to vertex coordinates
defined in the vectorssi. The instance of intermediary model that best matches its com-
mon vertices to those of the global model is found by solving the following optimization

1http://kolmogorov.sourceforge.net



Figure 3: Illustration of the models used to fit the face. A global model is initialized with
help of an eye center detector and is fitted on the image givinga first fitting result (left
column). From this initialization a set of intermediary models are launched to further
refine the fitting (center column). Eventually, the local models dedicated to each facial
feature are launched to fit these features more accurately (right column).

problem:

argmin
p

nC

∑
c=1

Q(c)(scurr(c)−Bc
succp)2

, (2)

whereBc
succ is thecth row of matrix Bsucc. Q is annC long vector of weights set to one

for the coordinates of vertices that are common between the models, and to zero for the
others. A closed form solution can be computed to find the optimal p† (details are omitted
due to lack of space):

p† = (KT K)−1KT BT
succdiag(Q)scurr, (3)

whereK = BT
succdiag(Q)Bsucc anddiag(Q) is a diagonal matrix, null everywhere excepted

on diagonal where theQ vector coefficients are represented. The resultp† of this mini-
mization can be used to instantiate the shape of the intermediary model:ssucc = Bsucc p†.
The process is applied to initialize all intermediary models that are then fitted to the image.
Following the same strategy, we use (converged) intermediary model vertices to initialize
local models that are in turn fitted to the image. Once each model is initialised in position,
its appearance component is initialised by projection of the area underlying on the image
onto the appearance subspace, in order to retrieve the initial appearance parameters.

5.3 Experimental Results

Fitting with intermediary and local models leads to improved fitting accuracy. On figure
4 (a), boxes of whiskers compare the SSE on 40 trials obtainedrespectively with global,
global refitted, intermediary, local models and mean manualerror as well as maximum
manual error (see§3). The global refitted model is obtained by training the global model



onto refitted data: the used face data is learnt by an AAM retaining 99% variance of shape
and appearance, and is fitted again on the same faces in order to increase the vertices
correspondences among training data. Introduced in [7], this operation seems to improve
the fitting results on unseen faces with respect to the results obtained when training the
AAM on once-labelled data. Since we use multiply labelled data for training (the mean
of 10 labels to define each vertex), their semantical position on the face is high and should
naturally improve the correspondence among data.

A leave-one-out procedure is used to train and fit the global,global-refitted, interme-
diary and local models. Models are built with the shape and appearance variances that
maximize their overall accuracy on unseen faces (e.g. 60% shape and 100% appearance
for the global model). All intermediary models are gathered. The same is done for the
local models. The SSE is computed using equation (1) only on vertices that are com-
mon between the models. We see the accuracy improvement allowed by intermediary and
local models with respect to the global model, and we see thatthe accuracy is globally
comparable to manual label accuracy evaluated with the statistics. The relative improve-
ment obtained from global to local model fitting is 36% on average. The SSE obtained
for refitted data is higher than for the global model trained with multiply labelled data.
We believe that the higher semantical meaning obtained withlabel statistics is mainly
responsible for the improvement. Indeed, these labels havehigher semantical meaning
since human labellers attempted several times to accurately set them into a given position
on each face. The refitting process will displace once-labelled vertices to maximize their
cohesion, but it is improbable that these new positions are semantically the very desired
ones (although they might usually be improved). Multiply labelled data then constitute
a maximum bound to accuracy, which explains the improved results obtained when we
train an AAM with these data.
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(a) Comparison results (b) Example of fitting results

Figure 4: (a) Comparison between the 40 fitting scores obtained with a global model,
a refitted global model, intermediary models, local models,and manual labellings, both
maximum and average SSE. Local models often reach a SSE comparable to manual la-
bellings. (b) Example of fitting results on face number 6. Thecircles represent the ground
truth shape vertices (centers of the covariance ellipses),the triangles the vertices of the
fitted global model (the SSE equals 2.46), and the stars represent the vertices of the fitted
local models (the SSE equals 1.46).



6 Conclusion and Future Work

The AAM paradigm is often used without precisely understanding the influence of the
quantity and nature of training data and of theretained quantity of shape and appearance
variance on fitting performances. As a step towards such an understanding this work stud-
ies fitting accuracy on unseen frontal and neutral face data through theStatistical Shape
Error we propose. We showed and explained the fitting accuracy limitations in this case.
We propose a solution based on local models, namely themulti-level segmented AAM, that
overcomes this limitation and reaches very high accuracy benchmarked by manual fitting
accuracy with a large convergence basin. To summarize, standard and segmented AAMs
are respectively well-adapted to person-specific and person independent face fitting.

We wish to extend these results to varying pose and expression: we will train one set
of global, intermediary and local models for each possible pose and expression and set up
a strategy to select the set that best suits for fitting the current face image.
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