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Abstract

There is a prevalent myth in Computer Vision that the gradient weighted
algebraic distance, the so-called “Sampson Error,” is a first order approxima-
tion of the distance from a point to a curve or surface. In truth, however, it
is the exact geometric distance to the first order approximation of the curve.
The linguistic difference is subtle, but mathematically, the two statements
are at odds. In this paper, we derive the actual first order approximation of
the Mahalanobis distance to a curve, a special case of which is the geomet-
ric distance. Furthermore, we show that it too, like the Sampson error, is a
weighted algebraic distance. The first order distance introduces an increase
in computational effort (total “flops”), which is the inevitable cost of a better
approximation; however, since it too is an explicit expression, it has the same
computational complexity as the Sampson error. Numerical testing shows
that the first order distance performs an order of magnitude better than the
Sampson error in terms of relative error with respect to the geometric and
Mahalanobis distances. Our results suggest that the first order distance is
an exceptional candidate cost function for approximate maximum likelihood
fitting.

1 Introduction

Estimation of geometric objects from scattered data is a fundamental task in Computer
Vision. When errors in measured coordinates behave according to Gaussian normal dis-
tributions, the maximum likelihood criterion for the estimated parameters is the sum of
squared geometric distances from the points to the geometric object. More generally, if
the errors in the measured coordinates behave according to anisotropic Gaussian distri-
butions, the maximum likelihood criterion is the sum of squared Mahalanobis distances.
The maximum likelihood estimate, however, is often computationally expensive and im-
practical for many applications. Frequently, an approximate solution is the only practical
approach. Perhaps the most common of these approximations is the so-called Sampson
Error [5], which is a generalized form of that proposed by Sampson for conics [7]. A
literature review shows that the Sampson error is the basis of a popular myth, as it is
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often touted as a first order approximation to the geometric distance. The source of the
myth is perhaps the casual misplacement of the mathematical term “first order approxi-
mation.” Consider the problem of computing the distance from a point

�
p � q � to a general

planar polynomial f
�
x � y ��� 0. The first order approximation of the function f

�
x � y � about

the point
�
p � q � is found by expanding the function in a Taylor series, and truncating the

higher order terms, i.e.

f̃
�
x � y ��� f

�
p � q ��� fx

�
p � q � � x � p ��� fy

�
p � q � � y � q �	� 0 � (1)

where the subscripts denote the partial derivatives

fx
�
x � y ��
 ∂ f

�
x � y �

∂x
and fy

�
x � y ��
 ∂ f

�
x � y �

∂y � (2)

The approximate function, f̃
�
x � y � , is a line; however, it is not the tangent line, since

�
p � q �

is generally not on the curve. The normal distance from the point
�
p � q � to the line f̃

�
x � y �

is the Sampson error,

r2
S �

f
�
p � q � 2

fx
�
p � q � 2 � fy

�
p � q � 2 � (3)

Hence, by definition, the Sampson error is the distance to the first order approximation
of the function. At first glance, it may seem that the difference is purely linguistic, but
the mathematical difference is significant. In the present work, we derive the first order
approximation of the geometric distance to a curve. The derivation proceeds for the more
general Mahalanobis distance, since the geometric distance is merely a special case of
this.

Harker and O’Leary [4] demonstrated the derivation of a polynomial directly in the
Mahalanobis distance from a point to a curve. The roots of the polynomial are the extrema
of the distance function from a point to the curve, whereby the smallest positive root is
the minimum distance to the curve. This polynomial is an implicit function of the curve
parameters to be estimated, and the distance to be minimized. That is to say, there are
no intermediate variables such as the orthogonal contact points or a Lagrange multiplier,
which are typically referred to as “nuisance parameters.” The absence of intermediate
variables in the polynomial has opened the door for the present work: the first order
approximation, which was hitherto not possible with known methods. We first show an
alternative means of deriving the polynomial in the distance. We then make use of the
Taylor expansion to make an approximation to the distance, in contrast to the Sampson
error, which makes an approximation to the function. What is interesting about the first
order distance is that it too, like the Sampson error, is a weighted algebraic distance.
Hence, it has the same computational complexity as the Sampson error.

To test the new result, we compare both the first order distance and the Sampson
error to the geometric distance in terms of relative error; this gives a measure of how
well the two approximate the geometric distance. The relative error plots indicate that
when used for geometric fitting, the new approximation will typically perform an order
of magnitude better than the Sampson error as an approximation to the “exact” distance.
To confirm this, we test the algorithms numerically in the task of fitting ellipses by least-
squares geometric distance and Mahalanobis distance. The results show that the first
order distance is accurate to within 1% of the maximum likelihood solution, whereas the
Sampson error is accurate on the order of 10%.
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The first order distance is a fundamentally new approach to approximate maximum
likelihood fitting since its computational complexity is commensurate with the Sampson
error, yet it approximates the maximum likelihood solution to a fraction of a percent.

2 The Mahalanobis and Geometric Distances

An implicit polynomial in the Mahalanobis distance from a point to a curve was derived
by Harker and O’Leary [4] using the concept of discriminants. Here we present a new ap-
proach using the Macaulay resultant. Consider a point

�
p � q � with a measured covariance

matrix, � � �
σpp σpq

σpq σqq � � (4)

The covariance matrix defines a confidence envelope about the point, which satisfies,

g
�
x � y � � χ2 � 0 � (5)

where χ is the Mahalanobis distance. The value of χ2 essentially determines the “size”
of the confidence envelope, which is an ellipse. The function g

�
x � y � is defined as,

g
�
x � y � 
 λppx2 � 2λpqxy � λqqy2 � � � 2 pλpp � 2qλpq � x �

� � 2 pλpq � 2qλqq � y
� � � pλpp � qλpq � p � � � pλpq � qλqq � q (6)

where, �
λpp λpq

λpq λqq � � ��� 1

� (7)

We consider the general planar implicit function, f
�
x � y � � 0, of degree d. To solve for

the minimum Mahalanobis distance from the point
�
p � q � to the curve, we must consider

the following three conditions:

1. There is a “nearest point” on the curve, which amounts to the constraint f
�
x � y �	� 0.

2. At the nearest point the curve and confidence envelope are tangent, i.e.

gx
�
x � y � fy

�
x � y � � gy

�
x � y � fx

�
x � y ��� 0 � (8)

3. The only equation containing the quantity χ2 is Equation (5), hence we must in-
clude it to derive a polynomial in the Mahalanobis distance.

Correspondingly, we must solve the three simultaneous equations,

f
�
x � y � � 0 (9)

gx
�
x � y � fy

�
x � y � � gy

�
x � y � fx

�
x � y � � 0 (10)

g
�
x � y � � χ2 � 0 � (11)

Equations (9) and (10) are both planar curves of degree d. Their intersection points are the
points on the curve which satisfy the tangent condition. One possible approach would be
to solve for these contact points and substitute them into Equation (11) to yield the corre-
sponding Mahalanobis distances; however, this method is indirect, and does not facilitate
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a first order approximation. An alternative and more fruitful approach is to consider the
fact that Equations (9) and (10) define an affine variety. Specifically, they define the tan-
gent contact points

�
x � y � where the Mahalanobis distance function has extrema. Equation

(11), however, defines the Mahalanobis distance, χ , in terms of a general variable point�
x � y � . We know from algebraic geometry, though, that if all three equations are consistent

(i.e. they have a solution) then the multi-dimensional resultant eliminating the variables
x and y vanishes [2]. We denote the Macaulay resultant1 as the operator Res

� � � � � . The
Macaulay resultant [6] eliminating x and y from Equations (9), (10), and (11), is a poly-
nomial in χ2, i.e.

Res
���

f
�
x � y � � gx

�
x � y � fy

�
x � y � � gy

�
x � y � fx

�
x � y � � g � x � y � � χ2 � ��� x � y ��� � P

�
χ2 � � (12)

The condition for which the equations are consistent is that the polynomial must vanish,
i.e., we are interested in the roots, P

�
χ2 ��� 0. The polynomial P

�
χ2 � is of degree N � d2

in χ2, and hence has the form,

P
�
χ2 ���

N

∑
k 	 0

α2kχ2k � α2N χ2N � � � � � α2χ2 � α0 � 0 � (13)

Since the resultant has eliminated x and y, the coefficients of the polynomial P
�
χ 2 � depend

only on the curve coefficients, the point, and its covariance matrix. The roots of the
polynomial are the extrema of the Mahalanobis distance from the point to the curve.

3 First Order Mahalanobis Distance

The minimum Mahalanobis distance from a point to a curve is the smallest positive root
of the polynomial P

�
χ2 � . In this section, we consider a means of approximating this root.

The Newton-Raphson iteration [2] for polynomial root finding is a recurrence relation
giving an estimate χ2

k 
 1 based on the previous estimate χ2
k , i.e.

χ2
k 
 1 � χ2

k �
P
�
χ2

k �
dP � χ2 �

dχ2 


 χ2 	 χ2
k

� (14)

In estimation applications, points are typically on or near the curve in question, therefore,
zero may be considered a good initial estimate for the minimal distance. The first Newton-
Raphson step is then,

χ2
F � � P

�
0 �

dP � χ2 �
dχ2 


 χ 	 0

� (15)

Evaluating the expression, we have P
�
0 ��� α0 and dP � χ2 �

dχ2 


 χ 	 0
� α2, yielding,

χ2
F � � α0

α2
� (16)

1More formally, the Macaulay resultant, Res ��� f1 ��������� fn � � � x1 ��������� xn � 1 ��� , eliminates the set of � n � 1 � vari-
ables � x1 ��������� xn � 1 � , from the set of n functions � f1 ��������� fn � . This is accomplished by augmenting the set of
equations by monomials in � x1 ��������� xn � 1 � , taking the determinant of the coefficient matrix, and dividing out a
redundant factor. The resultant is analogous to the condition det � ����� 0 for the system of equations � x � 0 to
have a non-trivial solution.
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which is the first order approximation of the Mahalanobis distance to a curve. Of note, is
the fact that only the polynomial coefficients α0 and α2 are required. This is a significant
reduction in computational complexity over the full Mahalanobis distance. To solve the
full problem, a total of d2 � 1 coefficients must be computed, followed by computing all
d2 roots of the polynomial. For example, for a cubic curve d � 3, and the polynomial has
ten coefficients and nine roots.

4 First Order Geometric Distance for Conics

A general conic section is described by the implicit equation,

f
�
x � y ��� a1x2 � a2xy � a3y2 � a4x � a5y � a6 � 0 � (17)

For the geometric distance, the confidence envelope becomes a circle, and the Maha-
lanobis distance is simply the radius r,

g
�
x � y � � χ2 � �

x � p � 2 � �
y � q � 2 � r2 � 0 � (18)

The tangent condition becomes,
�
2x � 2 p � � a2x � 2a3y � a5 ���

�
2y � 2q � � 2a1x � a2y � a4 � � 0 � (19)

Eliminating x and y from Equations (17), (18), and (19) using the Macaulay resultant
yields a fourth order polynomial in r2,

α8r8 � α6r6 � α4r4 � α2r2 � α0 � 0 � (20)

The first order approximation of the geometric distance to a conic is therefore,

r2
F � � α0

α2 �
(21)

At this point we come to a note on implementation: in their general form, the coefficients
α0 and α2 can be rather large. If, however, we translate the conic such that the point

�
p � q �

is the origin, then the size of α0 and α2 and the number of operations to compute them
are significantly reduced. The first order distance then has the form,

r2
F � � wn

wd
a2

6 (22)

with,

wn � 8a4
2a3a6 � 16a3

2a6
2 � 8a3a6a5

2 � a5
4 � 16a2

2a6
2 � a4

4 � 2a4
2a5

2

� 32a1a3a6
2 � 8a1a5

2a6 � 16a2a6a4a5 � 8a1a6a4
2 � 16a1

2a6
2 (23)

and

wd � 32a1a2
2a6

3 � 32a3a2
2a6

3 � 32a1
2a3a6

3 � a4
6 � 32a1a3

2a6
3 � 10a1a6a4

4

� 8a1a5
4a6 � 8a1

2a6
2a5

2 � 2a1a4
2a5

2a6 � 18a2a5
3a4a6 � 18a2a6a4

3a5

� 40a1a3a6
2a5

2 � 2a3a4
2a5

2a6 � 32a1
2a6

2a4
2 � 8a4

4a3a6 � 20a2
2a5

2a6
2

� 10a3a6a5
4 � 20a2

2a4
2a6

2 � 32a3
2a6

2a5
2 � 8a3

2a6
2a4

2 � 24a1a2a6
2a4a5

� 24a3a2a6
2a4a5 � 40a1a4

2a3a6
2 � 32a1

3a6
3 � 32a3

3a6
3 � 3a4

2a5
4

� 3a4
4a5

2 � a5
6

� (24)
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For clarity, the weighting factors have been left as is, however, to minimize the com-
putational effort, they should be put into Horner form and coded such that the common
terms are computed only once. With the aforementioned simplifications, the first order
distance can be computed from the general coefficients and the point coordinates with 54
additions, 76 multiplications and 1 division (131 flops).

An interesting note, is that in the translated problem a6 is the algebraic distance from
the point to the conic, hence, the first order distance is nothing more that a weighted
algebraic distance. Also of note is that wn, wd, and a6 are invariant to Euclidean transfor-
mations of the data.

Figure 1 shows the polynomial in the geometric distance from a given point to a
given conic. For purpose of comparison, the right-hand plot shows a magnification of the
polynomial near the smallest root and the first order approximation to the polynomial at
r2 � 0. Both the minimum root and its first order approximation are identified.

0 5 10

r2

P(r2)

−0.1 0 0.1 0.2

r2

P(r2)

Figure 1: (LEFT) The polynomial ( � ) of geometric distances from a given point to a given
conic and its first order approximation at r2 � 0, the line ( � � ). (RIGHT) Magnification of
the polynomial near the smallest root. The smallest root and its first order approximation
are marked with the vertical lines ( ����� ).

5 Approximation Error

To demonstrate the proposed approximation, we define the relative error of the first order
distance, rF, with respect to the exact geometric distance, rG, and the same quantity for
the Sampson error, rS, i.e.

εF � 100 �
�
rF � rG

�

rG
% and εS � 100 �

�
rS � rG

�

rG
% � (25)

Figure 2 shows plots of the relative errors εF and εS as functions of the points in the plane
and specific conic sections.

For hypothetical scattered data near the curves, the first order distance is accurate
to 1% relative error, whereas the Sampson error is accurate to 10%. Note that the only
time the Sampson error performs well is for the asymptotes of the hyperbola, where the
function is almost linear.
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Figure 2: Relative error with respect to the actual geometric distance of (LEFT) the first
order distance εF, and (RIGHT) the Sampson error εS. Row-wise are a hyperbola, a
parabola and an ellipse. Colour coding of the relative error is by logarithmic scale: white
� �

0 � 1% � , light-grey � �
1 � 10% � , dark-grey � ���

10% � . Dashed lines ( � � ) are the
additional loci where the relative error is zero.
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6 Numerical Testing

To demonstrate the first order distance, we have used the common estimation task of
ellipse fitting, both by geometric distance as well as by Mahalanobis distance. For com-
parison purposes, we consider the following cost functions:

� GD/MD: The full maximum likelihood functional for geometric distance (GD) and
Mahalanobis distance (MD).

� FOGD/FOMD: The first order geometric distance (FOGD) and Mahalanobis dis-
tance (FOMD).

� SE/SEM: The Sampson error (SE) and the Sampson error for the Mahalanobis dis-
tance (SEM).

To minimize the cost functions, we used a simple Gauss-Newton minimization with the
Jacobians computed numerically. In this vein, all initial conditions, iteration parameters
and stopping conditions were identical for all cost functions. The data are standard “worst
case” data sets for testing non-linear fitting algorithms, which can be found in [1]. For
the Mahalanobis fitting we generated covariance matrices from a small number of points
from a random isotropic distribution, which mimics a real measurement.

Note that for the maximum likelihood cost functions (GD and MD), we have used
the full polynomials derived in Section 2 for the functional evaluations. Since they avoid
computing the nuisance parameters, our solution for MD is much simpler than any found
to date in the literature (cf. [5]).

0 5 10

0

2

4

6

8

−2 0 2 4 6 8

2

4

6

8

Figure 3: Ellipse fitting by geometric distance: Results for the cost functions GD ( � ),
FOGD ( � � ), SE ( � � ), to Data A (LEFT) and Data B (RIGHT).

Table 1: Non-Linear Ellipse Fitting: Geometric Distance
Data A Data B

Metric Complexity ∑ r2
G εrel. ∑ r2

G εrel.
GD Implicit 1.3735 0.00 % 1.4519 0.00 %
FOGD Explicit 1.3740 0.04 % 1.4548 0.20 %
SE Explicit 1.4840 8.05 % 1.6389 12.88 %
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Table 2: Non-Linear Ellipse Fitting: Mahalanobis Distance
Data A Data B

Metric Complexity ∑ χ2
M εrel. ∑ χ2

M εrel.
MD Implicit 2.1881 0.00 % 1.9675 0.00 %
FOMD Explicit 2.1925 0.20 % 1.9717 0.21 %
SEM Explicit 2.2512 2.88 % 2.0465 4.02 %

With respect to the maximum likelihood cost functions, the first order distance is ac-
curate up to three significant digits (i.e. when rounded to three digits, they are identical).
In fact, the relative error is much less than 1%, and almost negligible. The relative error
for the Sampson error, however, is on the order of 10% with respect to the maximum like-
lihood cost function. These results are in agreement with the relative error plots presented
in Section 5. That is to say, the first order distance remains a good approximation to the
exact distance even when the points are further from the curve. This however, cannot be
said for the Sampson error. In sum, the results show that the first order distance is more
robust as an approximate maximum likelihood estimator than the Sampson error.

7 Cubics

Figure 4 shows relative error plots for a cubic curve. This shows how the Sampson error
generally degrades with the higher curvature as compared to the conics. The performance
of the first order distance, however, remains more consistent in spite of the higher curve
degree.
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4
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Figure 4: Relative error with respect to the actual geometric distance to a cubic curve for
the (LEFT) the first order distance, and (RIGHT) the Sampson error. See Figure 2 for the
legend.

For higher order curves such as the cubics, a computationally more practical approach
to curve fitting would be to use re-weighted least squares, as per Sampson [7]. Since the
first order distance is also a weighted algebraic distance, this method would have the
advantage of simplicity. Although this method often works well, the disadvantage is that
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the re-weighted least squares problem does not minimize the desired cost function [3].
This is a topic of future research.

8 Conclusions

In this paper, we derived the first order approximation to the Mahalanobis distance from
a point to a curve. We showed that it is quite different to the Sampson error, and in so
doing, we hope to dispel a myth that is all too common to the literature. Through numer-
ical testing, we showed that the first order distance is commensurate with the Sampson
error in terms of computational complexity, yet approaches the exact distance in terms of
accuracy. The first order distance is therefore an excellent candidate cost function for ap-
proximate maximum likelihood fitting. The authors have used a similar approach to that
presented here to derive the first order geometric distance for surfaces in space, as well as
a slight variation to derive the first order distance for two-view geometries. The approach
hence applies to a vast array of approximate maximum likelihood estimation problems
commonly encountered in Computer Vision. Future research will involve making higher
order approximations to the polynomial roots, an analysis of convergence and stability of
the polynomial roots, as well as using the first order distance for re-weighted least-squares
estimation. A further application of the first order distance is in robust estimation, since it
provides a fast and accurate estimate of how well a data point fits an instance of a model.

References

[1] S.J. Ahn, W. Rauh, and H.-J. Warnecke. Least-squares orthogonal distances fitting of
circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognition, 34:2283–2303,
2001.

[2] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag, New
York, Second edition, 2005.

[3] W. Gander, G. Golub, and R. Strebel. Fitting of circles and ellipses least squares
solution. Technical Report doc/tech-reports/1994/217.ps, ETH Zurich, Department
Informatik, June 1994.

[4] M. Harker and P. O’Leary. Using discriminants to derive direct polynomials in the
Mahalanobis and Euclidean distances. Submitted to IEEE Trans. Pattern Analysis
and Machine Intelligence, 2006.

[5] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge, Second edition, 2003.

[6] M. Minimair. MR: Macaulay Resultant Package for Maple, http://minimair.org/mr,
2005.

[7] P.D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refine-
ment of the Bookstein algorithm. Computer Vision, Graphics, and Image Processing,
18:97–108, 1982.

10


