Discriminative Training of Hyper-feature
Models for Object Identification *

Vidit Jaint, Andras Ferenczand Erik Learned-Milley
1 University of Massachusetts Amherst, Amherst MA USA
2 MobilEye Vision Technologies, Hartford CT USA
1 {vidit, elm}@cs.umass.edu, 2 ferencz@cs.berekeley.edu
http://vis-www.cs.umass.edu/projects/hyperfeatures/

Abstract

Object identification is the task of identifying specific etfs belonging
to the same class such as cars. We often need to recogniz¢eghtbht we
have only seen a few times. In fact, we often observe only @ample of a
particular object before we need to recognize it again. Theiare interested
in building a system which can learn to extract distinctivarkers from a
single example and which can then be used to identify thecbbjeanother
image as “same” or “different”.

Previous work by Ferencz et al. introduced the notion of mfpatures,
which are properties of an image patch that can be used toastithe util-
ity of the patch in subsequent matching tasks. In this work,slvow that
hyper-feature based models can be more efficiently estimetieg discrim-
inative training techniques. In particular, we describeea myper-feature
model based upon logistic regression that shows improvddnpgance over
previously published techniques. Our approach signifigamtitperforms
Bayesian face recognition that is considered as a standarchimark for
face recognition.

1 Introduction

Distinguishing among similar objects within a class is meffective if we use expertise
about the class. To build the best possible classifiers, waldhuse features that are
repeatable and salient. In object identification, the feestshould be object specific and
be able to discriminate between a particular object andairabjects of the same class.
For example, door handles, headlights and roof tops mighdistnctive markers for
identifying cars. The complexity of determining these dethfeatures is increased by the
general variability of different images of the same car.sTiithin-instance” variability
is due to viewing angles, lighting and other factors.

An additional constraint for the object identification taskhat we often need to rec-
ognize an object that we have seen only a few times. For hunaasiagle example is
usually sufficient for finding distinctive features of an et given its class. For example,
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if we are looking at a human face, we often notice the shapbehbse and lips, the
color of the eyes, the hairdo, etc. We expect some of theserésato provide interest-
ing patches which might be useful for distingushing a paléicface. The set of useful
patches can be different for different faces, e.g., a chaft @or John Travolta and a mole
near the lips for Cindy Crawford. Also, we expect to see tHieatures at certain approx-
imate locations within the face. We might have accumuldiesiinowledge from various
human faces that we have seen before. This knowledge carcbdeshas a function of
features (position, appearance, etc.) of image patchedébarmines whether that patch
would be useful or not for identifying a particular objedtid these features (representa-
tion of knowledge) that tell us about the likely utility of amage patch that Ferencz et al.
call hyper-feature$5].

Ferencz et al. [5] demonstrated the efficacy of the hypaufeanodels for object
identification. Their system was shown to outperform alleotbxisting algorithms that
they compared their results with, on this class of probleR®wever, they optimize the
decision criterion indirectly by modeling the conditiomtigtributions independently and
not optimizing the log-likelihood ratio that is used for niradk a decision about match or
mismatch. We propose a discriminative approach that opéigiihe ratio of the posterior
probabilities directly. Our experiments show marked inm@roents in accuracy over the
existing generative models, for both the case in which eimirages are used for classifi-
cation and also for the case when only a subset of the moshiative image patches are
used for classification.

Most of the patch based identification methods [15, 9] moHeldistributions of
appearances of different patches. This provides a gewerfatimework for the image
patches. Our approach is different from these techniquegeaare modeling the patch
differences conditioned on the patch appearances. Thusppuoach is directly optimiz-
ing the criterion for identification. Moghaddam et al. [12pdeled the interpersonal and
intrapersonal variations as fixed multivariate normalriistions. Our system improves
on this approach by adapting these distributions accordimgdividual faces. Cox et al.
[3] addressed this by using a different parameter valuegftividual clusters of faces.
For a new face image, the parameter values of the nearesgrchre chosen. This cor-
responds to piecewise constant parameter values as adiomdtthe features, which is
generalized by our system by providing a smooth interpmfativer the entire feature
space.

Huang and Russell [6] did a Bayesian analysis of object ifleation in the context
of traffic surveillance. Their system required multiple gpea of a vehicle to build an ap-
pearance probability model for subsequent observatioasnéntioned above, in a more
general setting, we observe only a single image to build aeifad future inferences.
Learning from one example has also been explored in differ@mexts [11, 9]. In most
of these approaches, off-line training involves paramestimation for a fixed model.
Our system, however, learns how to identify an arbitrary hanof good features for
the given category and thus use different set of patchesafth ebject in the category.
For face identification, the best performing PCA and LDA aidnons with face specific
preprocessing match a face as a single object [2]. To olht@imeiquired level of accu-
racies, a large number of principal components are usuedjyired to approximate the
underlying distribution of the face appearances. The higatures based approach was
shown to outperform these systems in [5]. Our model showsthduimprovement in
performance.



Section 2 summarizes the hyper-feature model and diffe@mponents of our sys-
tem. In Section 3, we describe the criteria for selectingva ffatches from the image
for comparison to make the system real-time. Section 4 desva detailed discussion of
advantages of discriminative learning of hyper-featurelais.

2 The hyper-feature model

Here, we provide an outline of the hyper-feature model odfly proposed in [5]. We
begin by describing the basic components of the systenayielil by the generative model
used for the identification task. We then present a new discative model that addresses
the problem in a more direct way. In our discussion, we wikkreo the query image as
the left (probe) imagd,, and the reference image in the database as the right (galler
image,IR.

We are using patch based features to represent an image. avdeeaach candi-
date patch of the left (probe) imagé, as a vectoerL, of the directional derivatives in
eight fixed directions. The choice of representation is, dwaw, not critical in the current
approach. Note that we sample patches at different scatbgasitions.

The images are assumed to be roughly registered. For evedjdede patchRjL), we
find the most similar patcH:{?) in a small neighborhood around the expected location in
the right (gallery) imagelR. We used;(= 1—xcorr(F|-,F)) as the distance measure
between two image patches, whew®rr gives the normalized cross-correlation between
the two image patches. We will refer to such a matched leftrayid patch pait(FjL, FJ-R)
together with the derived distandgas abi-patch F.

Hyper-features represent the characteristic propertiesage patches that determine
if a patch will be useful for identifying a particular objette choose a set of base hyper-
features as simple properties of the patch such as its tocatithe image, mean intensity
and edge energy. To increase the flexibility in the model, mduce the monomials
(of degree 1, 2 and 3) of these base hyper-features into toé gessible hyper-features.
This gives a large number of hyper-features which might veetated. Using least angle
regression (LARS) [4], we select a few(20) of these hyper-features as useful hyper-
features. This reduces the complexity of our model and avpadsible over-fitting.

We decide ifi- andIR are same using the rule

P(C=1/I-IR)

pC=oL,im b (1)

which is the optimal maximum a posteriori (MAP) classificaticriterion. Since we are
treating each image as a setmfatches, the likelihoods and posteriors will be approx-
imated using the bi-patchés, ..., F, asP(C|I,IR) ~ P(C|Fy, ..., Fm) andP(I%, IR|C) ~
P(F4,...,Fm|C), whereC is the match-mismatch variable.

2.1 The generative model

In the generative approach to this problem described inipuswvork, separate distribu-
tions are estimated from training data for pairs of carshaich and for pairs that do not
match. These distributions are optimized separately ahdlater combined to produce
decisions. We now describe the details of the generativeeod



Using Bayes' rule, equation 1 can also be written as

PILIRC=1)P(C=1) PN IRC=1)
FILIRC=0PC=0) _~ ~ P(LIRC=0)

> A, (2)

whereA = %. Thus, by varying the values of this parametdpr making a decision,
we are essentially changing the ratio of priors. This fomtioh is used as the decision
criterion for the generative model. Furthermore, we willase a naive Bayes model in
which the bi-patches are independent of each other wheritommet on C:

P(ILIRC=1) _ P(F,..FnC=1) [T P(FIC=1) 3)
PILIRC=0) ~ P(F,...FlC=0) |IP(F|C=0)

Let h; be the random variable representing the hyper-featurdsedgft patch in the bi-
patchFj. Then we have

P(Fj|C) = P(dj, hj|C) = P(d;|C,hj)P(h;|C) O P(dj|C,hj) (4)

where Equation 4 is obtained by assuming the independeneedeh andC, which
holds almost exactly in practice.
Ferencz et al. [5] use gamma distributions to model tiEsC, h) i.e.,

P(d|C = 0;h) ~T(ao(h),60(h)) and P(d|C=1;h) ~T(ai(h),61(h)). (5)

Here, a gamma distribution is parametrized loy @) andh are the hyper-features of
the given patch. These parameterg,a1, 8y, 61, are modeled using a generalized linear
model [10] fit over the training values as a function of sedddtyper-feature$,

2.2 A discriminative model

In the above-mentioned generative model, we are mod&d¢C = 0,h) andP(d|C =
1,h) independent of each other. Thus we are using an indireangattion for the deci-
sion criterion (Equation 2). In this section, we use the MéRimal criterion (Equation 1)
as the decision rule. We describe a discriminative modetkwhstimate$(C|d,h) and

thus directly optimizes the decision ru% > 1.

Logistic regression is a special generalized linear madgi&lsle for modeling binary
responses. It allows one to predict a discrete outcome freet af variables that may
be continuous, discrete, dichotomous, or a mix of any ofd¢hés our modelC is the
binary response which depends(@hh). Thus, we build the following parametric model
(sigmoid function): L
14+ e XB’ ©

whereX is the vector representation @, h), also called thg@redictor matrix andf is a
vector of coefficients that we learn through logistic regies

P(C|d,h)
log (1 —P(C|d,h)

P(C|d,h) =

>:X,8+£. @)

Heree¢ is the error term having a binomial distribution. Note that append a constant
term to X to include an offset in the linear fit.



However, the estimate of the posterior probability that weamed by using the pre-
dictor matrix,X = (d,h), does not give us much flexibility to modB(C|d,h). We are
interested in obtaining good estimatedd€|d, hy) when we observe a left patch having
the hyper-feature valudg. We want this curve to have sufficient flexibility to model the
underlying variability. Any logistic curve can be specifiegexactly two parameters, viz.
location where the function takes value = 0.5 (sayand its slope at that point (sas).
Ideally, we would like both of these parameters to be depetatehy. Let us splitB into
three parts corresponding to the offset and distadcand hyper-features, as o, By
andf, respectively. ThusX = Bo+ dBy+ hofh. It can be easily shown that

alz—BO—;:OBh,GZZ%d~ ®)

Clearly, a, does not depend dm whenX = (d,h). Hence, our estimates were not very
good with this model.

In the generative model discussed in the previous sectienyware making the pa-
rameters of the gamma distributions as linear combinatidrtee hyper-features. We
can obtain a similar flexibility by making bott; anda, as linear combinations of the
hyper-features. This can be attained by constructing théigtor matrix ax = (d, h,dh).

In Figure 1, we show the estimates for the posterior protiglobtained from actual
training samples (dots at the top and bottom) by logisticasgjon with the predictor
matrix containing[1y y? y®], wherey is the y-position of the center of the patch in the
image.

3 Patch selection

Since the patches can occur anywhere in the scale-spacé {li¢ amage, the set of
possible patches is very large. To make this algorithm fba$or real-time applications,
we should be able to evaluate an image match quickly by usihgafew patches that
were rated as most informative in a given image without §atrg much accuracy. In
other words, we want to choose the patches which contain tfst imformation about the
match-mismatch variabf@. Let us define saliency of a patch as the amount of information
gained if the patch were to be matched.

Itis important to note that our algorithm selects thesehmgdefore seeing a potential
match. Thus it selects these patches based only on theiaapmme and position in a
single image (the leftimage in this case). We do this by eatfimy the mutual information
betweerC andd as a function oh.

Intuitively, if P(d|C = 0,h) andP(d|C = 1,h) are similar distributions, we do not
expect much useful information from a valuebfFormally, this can be measured as the
mutual information between the patch dissimiladtgnd the match-mismatch varial@e
given the hyper-feature value,i.e.,|(d;C|h) as:

1(d;C[h) = H(d|h) —H(d|C,h), (9)

whereH (-) is Shannon entropy arfé(d|h) can be estimated by adding the estimates for
P(d|C = 0,h) andP(d|C = 1,h).
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Figure 1:Logistic regression based upon a single hyper-featureythesition The small
points in the lower plane and the upper plane represent ting @fatraining images for
matched and mismatched cars respectively. Each point teedlas a function of its
match/mismatch labe(), the distancel between the patches, and a hyper-feaptee
y-position of the left patch of the patch pair. Notice thag thoints for matching cars
(lower plane) which are in the bottom half of the original mea have theid values
clustered around zero. This is becadsalues tend to be low for patches near the bottom
of the image when the cars match. On the other hand, for the gaage position, the
points representing mismatched cars have a more unifortmibdison of d values. The
goal of logistic regression is to approximate the originatiadpoints as well as possible
while constraining each “slice” of the surface parallehted axis to be a logistic function.
Furthermore, the parameters of the logistics at varjocsordinates should be a smooth
polynomial function ofy. It is easy to see that the logistic surface “dips” to repnégiee
low d values of the matching cars for patches in a particulange.

Note that in a discriminative model, we do not have the esémafP(d|C,h) but
have the estimates &(C|d, h). We can still estimate the mutual informatioig;C|h). *
However, it is not clear which approach should be adoptethpatch selection as nei-
ther of them is actually optimizing the mutual informatiatimation. In our experiments,
we use equation 9 for patch selection.

Using the estimates of mutual information, we can sort thagenpatches in non-
increasing order and choose the topatches. Here, we are assuming that the patches

1

I(d;Clh) = Z/P(d|h)P(C|d,h) Iog% dd, (10)
d

whereP(d|h) is estimated using histogram based approaches or kerngtylestimation.



40% 60% 80%
Bayesian ML | 74.6+7.83 60.5:8.38 54.8+2.091
Bayesian MAP| 74.8£9.09 59.%8.59 54.3+£6.15
Generative | 81.2+6.35 63.4:6.71 54.44+6.37
Discriminative | 93.0+6.29 78.9+£8.15 60.1+ 6.97

Table 1: Precision values at 40%, 60% and 80% recall for 1deimss-validation on the
faces data set containing 500 pairs each of “same” and tdiff& faces.

are independent, which is a serious limitation. Howevena been shown by Ferencz
et al. [5] that modeling pairwise relationships betweercpas does not improve the re-
sults drastically. Thus, for our comparisons, ignoringghé&wise dependencies between
patches does not affect our conclusion.

4 Results and discussion

For the face recognition task, Ferencz et al. [5] has oubperéd the standard techniques
like PCA+ MahCosineandFilter + NormCor. PCA+ MahCosinds the best curve pro-
duced by [2]. Through personal communications, Ferenct. easserted that their ap-
proach also beats local feature based techniques like SJFWhich is not designed for
problems like object identification within a class, by a widargin. A more sophisti-
cated technique for face identification is Baysian face gadmn [12], which was the
top performer in the FERET face recognition competitiorathrgy the above techniques
described in [2]. Thus we chose to directly compare our teghenwith Ferencz et al. [5]
and Bayesian face recognition [12]. Although we have ndigpered an exhaustive com-
parison with all the published face identification algamit the advantage of our method
is clear from the wide margin with which we beat both of thesading techniques. Also
note that due to the patch selection component, we are ahlehteve acceptable perfor-
mance using a small number of patches which makes it fedsibleal-time applications.

As discussed in Section 3, there is no clear choice for a psgtéction approach.
In our experiments, we separated the two stages, patchratiffe modeling and patch
selection, so that we can draw informative conclusions.

We compared the discriminative and generative approachestieling patch differ-
ences on a subset of the “Faces in the news” data set [1]. Taese are automatically
extracted from news articles and aligned to a frontal pos$és iE a difficult data set be-
cause of the large variations in lighting, background,gbekpression and other factors.
The generative model was shown by Ferencz et al. [5] to parbatter than the PCA and
LDA based algorithms with face specific preprocessing us§idy)’s evaluation system
[2]. Figure 2 shows a big improvement of our own discrimivatinodel over the previ-
ous model. In Figure 2, we show that our approach beats argitite of the art approach,
Bayesian face recognition [12], as well. Table 1 shows thregarison of precision val-
ues at different recall values for 10-fold cross validatiorthe faces data set. The gain is
significant for a range of recall values (though not for ahd the boost in performance
is clearly evident. Some pairs of face images that were ctiyrielentified as “same” are
shown in Figure 2.
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Figure 2: Results on face data sefl_eft] These are some pairs of face images that are
correctly marked as “same”. There is a large variation mnilination, expression and
background. The variation in pose has been countered hyiadjghe face images to make

it approximately frontal[Right] Both discriminative (blue) and generative (red) models
are trained for 500 pairs each of “same” and “different” fac&he test set contains 500
pairs of “same” and “different” faces of people which are imathe train set. The patches
are selected using the approach discussed in Section 3hrthmtmodels. The boost in
performance is large over a wide range of recall values. Maeour results outperform
Bayesian face recognition [12] that was the best performdfERET data set.

To demonstrate that our approach performs well on diffesbject categories, we also
ran some experiments on the car data set used by Ferencigimtheir experiments. In
Figure 3, we show a comparison between the discriminatidela@ generative approach
on the car data sét.

To directly compare the two patch difference modeling apphes, we compared the
discriminative and generative models using the same patebtgon criterion (Section 3).
As shown in Figure 3, the discriminative method is uniforrobtter than the generative
model.

Note that even with the selection of a few (20) patches, weatmhserve a signif-
icant drop in performance because the top patches contaimsahll the discriminative
information. Another important observation is that eveoutph the patches are selected
through an approach that uses the estimations of quarttiséare optimized in a gener-
ative fashion, the discriminative model beats the generatiodel in making the decision
for match or mismatch. This is due to the fact that patch siele@and match evaluation
are decoupled from each other. Figure 4 show some idenitficegsults obtained by our
system on the car data set.

As is evident in our experiments, the discriminative modgperforms the generative
model for this task. This supports our hypothesis about tivartages of doing a direct
optimization of posterior probabilities.

Recently in computer vision and machine learning, theretwesn a great deal of
analysis and discussion about the relative strengths amadnesses of generative and

2These results are not directly comparable to the publiskedlts in [5] as the training and testing set are
different in the two cases.
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Figure 3:Comparing performance of discriminative (blue) with gextee (red) model on

car data set Both models are trained for 178 different vehicles, eaatirfzpone “same”

and five “different” training instances. The trained modails then tested on 170 other
vehicles. The test set has the same ratio of “same” to “@ifférpairs of car images.
[Left] Using all the patchesThe blue curve clearly shows a better performance than the
red curve. The red curves overtakes the blue curve for a smedi/al, but the overall area
under the P-R curve is more for the blue curfRight] With patch selectianwe use the
same patch selection method for the two models. The disgative model is uniformly
better than the generative model.

discriminative models (see, for example, [14, 13]). Ulusoyl Bishop [14] enumerate
some of these strengths and weaknesses, and among oty ¢bimclude that “Other

things being equal, it would be expected that discrimirativethods would have better
predictive performance since they are trained to predecttass label rather than the joint
distribution of input vectors and targets.”

It is interesting to note that Ng and Jordan [13] concludé tiale discriminative
models may converge to better solutions for large enough skiis, they suggest that
generative models may perform better in some cases wherselatare small. This con-
clusion, however, is based upon an analysis of trainingidiscative classifiers with 0-1
loss, rather than with something like true logistic regi@ssin which a data point has a
value that depends upon how far it is from the decision boondtais not clear what the
conclusion should be for a discriminative model like our amfrich uses classical logistic
regression, but it was our hypothesis that it would prodwetéeb results, which in fact it
has.
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