
Regression-Based Human Motion Capture

From Voxel Data

Y. Sun2 M. Bray1 A. Thayananthan3 B. Yuan2 P.H.S. Torr1

1Oxford Brookes Univeristy, Department of Computing, Oxford, OX33 1HX, UK

2Beijing Jiaotong University, Institute of Information Science, Beijing, 100044, PRC

3University of Cambridge, Department of Engineering, Cambridge, CB2 1PZ, UK

Abstract

A regression based method is proposed to recover human body pose from 3D

voxel data. In order to do this we need to convert the voxel data into a feature

vector. This is done using a Bayesian approach based on Mixture of Prob-

abilistic PCA that transforms a collection of 3D shape context descriptors,

extracted from the voxels, to a compact feature vector. For the regression,

the newly-proposed Multi-Variate Relevance Vector Machine is explored to

learn a single mapping from this feature vector to a low-dimensional repre-

sentation of full body pose. We demonstrate the effectiveness and robustness

of our method with experiments on both synthetic data and real sequences.

1 Introduction

Human motion capture (MOCAP) is of interest to the academic and industrial commu-

nities due to its various applications ranging from film and game production to medical

analysis. Marker based motion capture has been performed with good results using spe-

cial equipment such as strobing cameras, reflective markers and user intervention. For the

last 10 years research has focused on markerless MOCAP to obviate such constraints.

The arsenal of methods that have been proposed for this purpose can be divided into two

categories: model-based and non-model based approaches.

The model-based (or generative) approaches [10, 12, 19, 17] are usually expressed

within the analysis-by-synthesis paradigm. An explicit model is usually designed which

is similar to the target (observation) and an error measure between these two is defined

and then minimized at each frame. Model-based methods are well-known to be accurate

but computationally expensive. They require a good initialization (mostly manual) and

few of them can recover from tracking failures (e.g. caused by local minima). The non-

model based approaches can be further classified into parametric and non-parametric sub-

categories, or more intuitively, regression-based and examplar-based. While examplar-

based methods [9, 15] store a set of training examples with corresponding known poses

and search for the ones similar given a new input, regression-based methods [1, 2, 22, 13,

4, 8, 14, 18, 3, 7] learn a compact mapping from observable image quantities to human

pose space.

Previous regression-based methods mainly work on monocular images. Agarwal et

al. [1] recover the body pose by nonlinear regression using image feature extracted from

monocular silhouette, which is encoded by a histogram of 2D shape context vectors. They
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compare regularized least squares and RVM regressors over both linear and kernel bases.

It turns out that the combination of RVM and kernel bases provides the best performance.

A learned autoregressive dynamical model is further incorporated into kernel function to

smooth temporal jitter [2]. Tian et al. [22] estimate upper body pose from a single im-

age by optimizing an objective function derived from Gaussian Process Latent Variable

Model. Rosales et al. [13] map image feature to 2D joint locations using multi-layer

perceptron (MLP). Other methods [4, 8] are also designed for use with a single camera.

Pose recovery in monocular images suffer greatly from substantial loss in depth infor-

mation and the resulting ambiguities. As individual projected image may correspond to

numerous body poses, the estimated result may average or zig-zag among many possi-

ble solutions [1]. Although some researchers learn mixture of regressors to alleviate this

problem [14, 18, 3], there should be no doubt that the most effective way is to use more

views. Indeed for a commercial system motion capture system it might be argued that the

research should really be focused on optimal multi-camera methods.

How should we deal with multiple camera inputs optimally? One may simply concate-

nate the image features from all views into one big feature vector to perform regression,

a possible extension to Agarwal’s framework. Grauman et al. [7] use Mixture of Proba-

bilistic PCA (MPPCA) to model the manifold of big feature vector, which is formed by

concatenating silhouette points from multiple views and 3D structure parameters. New

multi-view contours are projected into probabilistic linear subspaces to reconstruct un-

known structure parameters. However, a common inconvenience of the above solutions is

that the regressor or manifold must be re-learned each time the camera setup is changed,

which is highly time consuming.

If geometrical calibration as well as multiple views are available, we can obtain voxel

data using shape from silhouettes [5]. Such 3D representation of human body combines

the information from each view in an unbiased way, and is basically independent of cam-

era setup given enough viewpoints. Therefore, to avoid relearning the regressor often, we

propose an approach in this paper to estimate the pose from voxel data. Our method be-

longs to regression-based sub-category and then differs from other model-based methods

which fit a body model to the voxel data (e.g. [10, 12]).

Given voxel data reconstructed from multiple views, the pipeline of our method is

shown in Figure 1, in which main contributions to the literature are as follows:

• It is the first method that learns human body pose from voxel data.

• 3D Shape Context (3DSC) is improved to better describe voxel data.

• 3DSC vectors extracted from the voxel data are transformed in a Bayesian way into

a compact feature vector, which acts as input to our regressor.

• The newly-proposed Multi-Variate Relevance Vector Machine (MVRVM) is ex-

plored to learn a single mapping from feature space to a low-dimensional manifold

of full body pose space.

This paper is laid out as follows: How to parameterize pose space is explained in Sec-

tion 2. Then, Section 3 describes MVRVM, a Bayesian non-linear regression algorithm.

Improved 3DSC is presented in Section 4. A Bayesian approach based on MPPCA is

introduced in Section 5 to construct the histogram of 3DSC vectors. Section 6 reports
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Figure 1: The pipeline of our regression-based MOCAP method from voxel data. Voxel

data are described as a collection of 3DSC vectors and then transformed to a feature vec-

tor. During the training stage, a regressor which maps the feature vector to groundtruth

pose is learned. Given a testing input, its pose is estimated by feeding the regressor with

the feature vector. Here pose is actually a low-dimensional representation of full body

pose as explained in Section 2.

quantitative comparison with a relevant reference [1] on synthetic data, along with qual-

itative results on real sequence to show the robustness of our method, followed by the

conclusion in Section 7.

2 Pose Space Parameterization

We represent the human body by an implicit kinematic model where a possible combi-

nation of joint angles corresponds to a particular body pose. The number of degrees of

freedom of our full body model is m′ = 42 including 3 joint angles for each of the 14

major body joints (torso centre, neck, and two shoulders, elbows, wrists, hips, knees, an-

kles), which correspond to the marker-based MOCAP data that we use as ground truth.

Thus, the pose is parameterized as a high dimensional state vector y′ ∈ Rm′ , a redundant

representation. We seek a mapping from y′ to y in a low-dimensional manifold of full

body pose space, and PCA is a convenient choice. It projects data onto an orthogonal M

dimensional linear subspace, and reconstructs y′ faster and more simply than non-linear

methods. M is automatically set by constraining the reconstruction error caused by di-

mensionality reduction to an allowable level, less than 10% for instance.

M = argmin
1<M<m′

(
∑M

i=1 λi

∑m′
i=1 λi

> 90%) (1)

where λi are the eigenvalues of the covariance matrix sorted in decreasing order.

3 Pose Regression Using Multi-Variate RVM

Given a set of training examples V = {v(n)}N
n=1 consisting of pairs v(n) = {(y(n),x(n))} of

state vectors and feature vectors (~x is described in Section 5), we want to learn a mapping

from feature space to state space RM using a Gaussian regression model:

y = Wφ(x) + ξ , (2)

where ξ is gaussian noise vector with 0 mean and diagonal covariance matrix. φ(x) is the

vector of data-centric basis functions of the form

φ(x) = [1,G(x,x(1)),G(x,x(2)), ...,G(x,x(N))]T (3)
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where G can be any kernel function. In this work, we found that the use of Gaussian

kernels provides robust results. During the learning stage, the weight matrix W is learned

using an extension [21] of the RVM regression algorithm [23]. The attraction of the

RVM comes from its good generalization performance, while achieving sparsity in the

regressor. In our case this means that W have many zero columns, hence only a fraction

of the total number of training examples with non-zero weights need to be stored.

Tipping’s formulation in [23] only allows regression from multivariate input to a uni-

variate output variable. One solution is to use a single RVM for each output dimension. It

has the drawback that one needs to keep separate sets of selected examples for each RVM.

The RVM framework has been recently extended to multivariate outputs [21], making it

a general multivariate regression tool. In our case, this formulation allows us to choose

the same subset of training examples for all output dimensions.

4 Voxel Data Description

Voxel data can be acquired using silhouettes from multiple cameras [5]. Although silhou-

ette extraction is not within the scope of discussion in this work, satisfying results can

be acquired by chroma-keying or simple background subtraction in controlled environ-

ments, or using more advanced techniques such as adaptive background model [20] or

graph cut [16] in cluttered scenes.

Considering both accuracy and complexity of voxel data, the voxel size is set accord-

ing to an empirical formula lres = hsub
60

, where the height of the subject hsub can be easily

measured after processing the first frame using a moderate resolution (e.g. lres = 0.05m).

This parameter is made adaptive in order to acquire voxel data of basically the same scale

for subjects of different sizes and avoid shape distortion.

For regression, we need a more compact representation of shape rather than the raw

voxel data. In this section, we consider the conversion of 3D objects to canonical descrip-

tors. We require the descriptor to be distinctive and noise-insensitive as well as translation

and scaling invariant. As argued in [6], many global descriptors have difficulties identi-

Figure 2: Left: An example of voxel data (about 4000 voxels); Middle: Surface voxels

(about 2000) capture accurately the 3D shape; Right: For efficiency we only calculate

3DSC vectors at basis voxels (about 200) obtained by down-sampling surface voxels.

Basis voxel is the center of spherical support volume of 3DSC.
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Figure 3: Support volume of 3DSC. The local coordinate frame is aligned to world co-

ordinate frame. Left: A toy example with 2 radial divisions, 4 elevation divisions and 8

azimuth divisions. 2 bins out of 64 are highlighted. Right: Cross section along X-Y, X-Z

or Y-Z plane of the 3DSC in this work.

fying subtle shape variations, and purely local descriptors such as surface normal are

unstable when dealing with noisy data. We improve the 3D Shape Context (3DSC), a re-

gional descriptor that lies midway between the two, to describe the property of the subject

in local support volume.

3DSC was first introduced by Kortgen et al. [11]. At a point pi, they calculate 3DSC

vector as the distribution of relative positions of the remaining points in a spherical sup-

port volume, where pi is the center of sphere. The sphere is split into combined shell-

sector bins, and the distribution is essentially a histogram constructed by counting the

number of points falling inside each bin. Frome et al. [6] add one more division in the

azimuth dimension. In both work, 3DSC are rotation invariant which is not desirable in

our case as we want to differentiate similar poses with different global orientation of the

body, and noise-sensitive hard voting was adopted.

For efficiency, we only calculate 3DSC vectors at basis voxels, which are obtained by

down-sampling surface voxels (i.e. voxels with at least one empty 6-neighborhood). See

Figure 2. Similar to [6], our 3DSC has also radial, elevation and azimuth divisions (c.f.

Figure 3). If Rmax and Rmin are the maximum and minimum radius of support volume,

where Rmax = hsub
3

is chosen by cross-validation (see section 6) and Rmin is set to 2∗ lres,

Nr is the number of radial divisions, then the logarithmically spaced radial boundaries are:

Ri = exp{ln(Rmin)+
i

Nr

ln(
Rmax

Rmin

)} (4)

Ne elevation divisions and Na azimuth divisions are evenly spaced along 180◦ and 360◦

ranges respectively. There are Nr ∗Ne ∗Na bins in total, and we experimentally choose

4×5×10 = 200 bins in this work. As Rmax and Rmin are adaptive to subjects of different

sizes, our 3DSC is scaling invariant and intrinsically translation invariant. Besides this, it

has 3 new features:

• Instead of aligning the local coordinate frame of 3DSC to surface normal, we align

it to the world coordinate frame. It can be noticed that this alignment makes our

3DSC rotation-dependent, because the identification of rotation around each axis is

desirable.
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• To deal with noise, soft voting substitutes hard voting when the histogram is con-

structed. If a voxel lies in the vicinity of any boundary, it gives divided vote to the

bins on both sides. Further, all votes are weighted by wi = 1/ 3
√

Vi where Vi is the

volume of a particular bin.

• A lookup table technique is applied for speedup. As all voxels are arranged on

regular grids, they can be indexed by offset vectors (δx,δy,δz) with respect to a basis

voxel. A lookup table relates an offset vector to the bin where its corresponding

voxel should fall in. Then, all 3DSC vectors can be quickly collected by “voxel –

offset vector – bin” indexing.

5 Feature Transformation

The collection of several hundred descriptors are not suitable for MVRVM regression.

This is because the number of 3DSC vectors can slightly vary from frame to frame which

prevents us from concatenating all 3DSC vectors. Therefore, a feature transformation

step is required to convert all 3DSC vectors extracted from current voxel data to a feature

vector in a high-dimensional space.

In [1], K-means clustering is applied to all 2DSC vectors from the training set, and

each 2DSC vector votes for some near clusters. Hence, a collection of 2DSC vectors is

transformed to a histogram, or feature vector. This method is simple but not elegant es-

pecially when dealing with high dimensional spaces, because it lacks of a clear definition

on how much a descriptor contributes to each cluster. In contrast, we apply Mixture of

Probabilistic PCA (MPPCA) introduced by Tipping [24] to model the density functions

of descriptors and measure the contribution of 3DSC vectors to each component of the

feature vector in a Bayesian manner.

Conventional PCA finds a low-dimensional linear projection that best represents the

data in a least-squares sense. Without an associated probability model, it can not be used

for Bayesian inference. In contrast, probabilistic PCA (PPCA) [24] determines the prin-

cipal sub-space of the data via maximum-likelihood estimation of the parameters in a

Gaussian latent variable model. Both PCA and PPCA only define a single global projec-

tion of the data. For complex data sets, different clusters may need different projection

directions, so a mixture of local models is desirable. It is usually assumed that data t is

generated from a mixture of component density functions, in which each component i

corresponds to a cluster. As PPCA is defined as a probabilistic model, it can be easily ex-

tended to MPPCA, which is proved to outperform standard Gaussian Mixture Model [24].

The probability density of MPPCA with K components observing data t (3DSC vector in

our case) is p(t) = ∑K
i=1 πi p(t | i), where p(t | i) denotes PPCA density function for com-

ponent i, which is a particular Gaussian distribution, and πi is the mixing proportion.

Accumulating all 3DSC vectors from the training set, the parameters of each PPCA and

mixing proportions can be learned by maximizing the log-likelihood of the complete-data

using EM algorithm.

After learning the MPPCA model, a compact feature vector ~x can be calculated con-

veniently to represent any 3D shape. We evaluate xi to represent the averaged contribution

of component i for generating a collection of 3DSC vectors extracted from current voxel
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Figure 4: Cross-validation experiments showing how the radius of support volume of

3DSC, number of 3DSC divisions and dimension of feature vector (number of components

in MPPCA) influence the performance of our algorithm. 525 frames in the training set

and 492 frames in the validation set are used. The optimal parameters chosen in this work

are Rmax = hsub
3

, Nr = 4, Ne = 5, Na = 10 and K = 200.

data via Bayesian inference.

xi =
1

Nsc

Nsc

∑
n=1

p(i | tn) =
1

Nsc

Nsc

∑
n=1

p(tn | i)πi

∑K
j=1 p(tn | j)π j

. (5)

Where xi is the i−th component of the feature vector which will be used as the input

to regressor. Nsc is the number of 3DSC vectors collected from current voxel data. In

this way, we are able to transform a collection of descriptors to compact feature vector

effectively in a Bayesian framework.

6 Experimental Results and Analysis

To generate silhouette sequences (and voxel data consequently) for training and testing,

we project an articulated body model represented by ellipsoids and spheres onto 6 cir-

cularly distributed viewpoints at each frame while performing motions. These motions

are MOCAP data freely available from www.ict.usc.edu/graphics/animWeb/humanoid and

www.bvhfiles.com. We report mean (over m′ = 42 angles) RMS (over time) absolute dif-

ference errors between the true and estimated joint angle vectors1, in degrees to evaluate

the accuracy of our approach:

D(y′, ŷ′) =
1

m′

m′

∑
i=1

min(|y′i − ŷ′i|, |360−|y′i − ŷ′i||) (6)

Figure 4 shows how some free parameters influence the pose estimation, including ra-

dius of support volume of 3DSC, number of divisions in 3DSC and dimension of feature

vector (number of clusters or components in MPPCA). If the 3DSC has a too small sup-

port volume, it is not able to encode local shape sufficiently for discriminating different

body segments. Moreover, histograms with tiny bins are liable to shape distortion. As the

radius of support region increases, the algorithm slows down as it needs to count more

votes in each bin. It can be seen from Figure 4 (left) that the optimal choice for the radius

lies between 0.5-0.6(m), which is about 1/3 of the height of the articulated body model.

1The fact that Euler angles can wrap around 360◦ is considered. This equation is equivalent to that in [1].
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Once Rmax = hsub
3

is fixed, the optimal number of radial divisions Nr = 4 can be easily

determined from Figure 4 (middle). However, it is not clear how the numbers of eleva-

tion and azimuth divisions affect our regressor. As more divisions leads to more storage

and computation, we choose Ne = 5 and Na = 10 to balance accuracy and efficiency. In

Figure 4 (right) while the dimension of feature vector keep increasing, the RMS error

curve flattens out around optimal parameter K = 200. In other words, we can not expect

substantial gains using more components in MPPCA only a much slower system.

Table 1 shows comparative results on the same MOCAP data between our method

and the relevant reference [1]. Noticeably, they used a more detailed human body model

including extra 12 subtle degrees of freedom, which vary minimally and tend to decrease

their averaged error. Even so, we achieve 0.8◦ improvement on full body pose estima-

tion. The improvement seems minor, but corresponds to substantial visual difference (See

supplementary material), as the error is averaged over dozens of angles and hundreds of

frames. We also implemented K-means in our system, listed in the third row of Table 1,

to demonstrate the advantage of Bayesian feature transformation.

full body body heading angle left shoulder right hip

Our approach 5.2 8.8 6.3 3.2

[1] 6.0 17 7.5 4.2

Our approach (K-means) 5.4 12.0 6.5 3.8

Table 1: RMS error over 418 frames of test MOCAP data (spiral walking). All results in

second row can be found in [1]. The first and third row show comparative results between

Bayesian and non-Bayesian feature transformation in our system.

Our method can also be used to train a regressor for multiple motion types simultane-

ously. Table 2 summarizes the test results for 5 typical motions: regular walking, drunken

walking, spiral walking, jogging and jumping, among which some complicated motions

like drunken walking and jumping are rarely tested in the literature. Our 8-dimensional

MVRVM regressor selects 418 (about 24%) relevance vectors out of 1744 training ex-

amples. Good performance on test set with 1411 frames can also be seen from Figure 5.

We carried out real-data experiment on 4-camera calibrated and segmented sequences

from www.cs.brown.edu/people/ls/Software. As the subject in these sequences actually

perform regular walking and spiral walking, the above regressor which is trained with

MOCAP data from different people and different camera setup is applied here. Figure 6

illustrates the promising results of our method on real data.

7 Conclusions

This paper proposed a regression-based method for pose estimation from voxel data. On
the one hand, as voxel data are basically viewpoint independent given enough cameras, we

motion walking

type regular drunken spiral jogging jump

RMS error 2.5 5.0 5.3 5.6 4.9

Table 2: The performance of regressor which is trained for 5 motion types simultaneously.

8-d MVRVM regressor selects 418 out of 1744 training examples.
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Figure 5: A few results (voxel data and estimated pose) from the test set of 5 typical

motion types. (a)-(b) regular walking. (c)-(d) spiral walking. (e)-(f) jogging. (g)-(i)

drunken walking. (j)-(l) jumping.

Figure 6: Experiment on 4-camera calibrated real sequences. The left and right half

show results from the 2nd and 4th viewpoints respectively. The regressor corresponding to

Figure 5 is applied here to demonstrate the robustness of our method to different subjects

and camera setup.

do not need to re-learn the regressor each time the camera setup is changed. On the other
hand, neither dynamic model nor explicit kinematic model are necessary in our method,
so it can be used to initialize or reboot a model-based motion capture system automat-
ically rather than manually as usual. Experiments on synthetic data and real sequences
show the effectiveness and robustness of our method, even on complicated motions.
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