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Abstract

Characteristics of the 2D contour shape deformation in human motion con-
tain rich information and can be useful for human identification, gender classi-
fication, 3D pose reconstruction and so on. In this paper we introduce a new
approach for contour tracking for human motion using an explicit modeling of
the motion manifold and learning a decomposable generative model. We use
nonlinear dimensionality reduction to embed the motion manifold in a low di-
mensional configuration space utilizing the constraints imposed by the human
motion. Given such embedding, we learn an explicit representation of the mani-
fold, which reduces the problem to a one-dimensional tracking problem and also
facilitates linear dynamics on the manifold. We also utilize a generative model
through learning a nonlinear mapping between the embedding space and the vi-
sual input space, which facilitates capturing global deformation characteristics.
The contour tracking problem is formulated as states estimation in the decom-
posed generative model parameter within a Bayesian tracking framework. The
result is a robust, adaptive gait tracking with shape style estimation.

1 Introduction
Vision-based human motion tracking and analysis systems have promising potentials for
many applications such as visual surveillance in public area, activity recognition, and sport
analysis. Human motion involves not only geometric transformations but also deformations
in shape and appearance. Characteristics of the shape deformation in a person motion contain
rich information such as body configuration, person identity, gender information, and even
emotional states of the person. Human identification [4] and gender classification [5] are ex-
amples of the applications. There have been a lot of work on contour tracking such as active
shape models (ASM) [3], active contours [10], and exemplar-based tracking [14]. It is still
hard to get robust contour tracking and in the same time be able to adapt to different people
being tracked with automatic initialization.

Modeling dynamics of shape and appearance is essential for tracking human motion. The
observed human shape and appearance in video sequences goes through complicated global
nonlinear deformation between frames. If we consider the global shape, there are two fac-
tors affecting the shape of the body contour through the motion: global dynamics factor and
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person shape style factor, The dynamic factor is constrained because of dynamics of the mo-
tion and the physical characteristics of human body configuration [12, 1]. The person shape
style is time-invariant factor characterizing distinguishable features in each person shape de-
pending on body built(big, small, short, tall, etc.). These two factors can summarize rich
characteristics of human motion and identity.

Our objective is to achieve trackers that can track global deformation in contours and can
adapt to different people shapes automatically . There are several challenges to achieve this
goal. First, modeling the human body shape space is hard, considering both the dynamics and
the shape style. Such shapes lie on a nonlinear manifold. Also, in some cases there are topo-
logical changes in contour shapes through motion which makes establishing correspondences
between contour points unfeasible. Second, how to simplify the dynamics of the global defor-
mation. Can we learn a dynamic model for body configuration that is low in dimensionality
and exhibits linear dynamics? For certain classes of motion like gait, facial expression and
gestures, the deformation might lie on a low dimensional manifold if we consider a single
person. Our previous work [7] introduced a framework to separate the motion from the style
in a generative fashion where the motion is represented in a low dimensional representation.

In this paper we utilize a similar generative model within a Bayesian tracking formula-
tion that is able to track contours in cluttered environment where the tracking is performed
in three conceptually independent spaces: body configuration space, shape style space and
geometric transformation space. Therefore, object state combines heterogeneous representa-
tions. The challenge will be how to represent and handle multiple spaces without falling into
exponential increase of the state space dimensionality. Also, how to do tracking in a shape
space which can be high dimensional? We present a new approach for tracking nonlinear
global deformation in human motion based on Bayesian tracking with emphasis on the the
gait motion.

Our contributions are as follows: First, by applying explicit nonlinear manifold learning
and its parametric representation, we can find compact, low dimensional representation of
body configuration which reduces the complexity of the dynamics of the motion into a linear
system for tracking gait. Second, by utilizing conceptually independent decomposed state
representation, we can achieve approximation of state posterior estimation in a marginalized
way. Third, the adaptive tracking of person shape allows not only tracking of any new person
contour but also shows potential for identification of the person during tracking. As a result,
we achieve robust, adaptive gait tracking with style estimation from cluttered environment.

The paper organization is as follows. Section 2 summarizes the framework. Section 3 de-
scribes the state representation and learning. Section 4 describes the the tracking framework.
Section 5 shows some experimental results.

2 Framework
We can think of the shape of a dynamic object as instances driven from a generative model.
Let zt ∈ Rd be the shape of the object at time instance t represented as a point in a d-
dimensional space. This instance of the shape is driven from a model in the form

zt = Tαt γ(bt ;st), (1)

where the γ(·) is a nonlinear mapping function that maps from a representation of the body
configuration bt into the observation space given a mapping parameter st that characterizes
the person shape in a way independent from the configuration and specific for the person
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Figure 1: Graphic model for decomposed generative model

being tracked. Tαt represents a geometric transformation on the shape instance. Given this
generative model, we can fully describe observation instance zt by state parameters αt ,bt , and
st . Figure 1 shows a graphical model illustrating the relation between these variables where
yt is a contour instance generated from model given body configuration bt and shape style st
and transformed in the image space through Tαt to form the observed contour. The mapping
γ(bt ;st) is a nonlinear mapping from the body configuration state bt as

yt = A × st ×ψ(bt), (2)

where ψ(bt) is a kernel induced space, A is a third order tensor, sk is a shape style vector
and × is appropriate tensor product as defined in [11].

The tracking problem is then an inference problem where at time t we need to infer the
body configuration representation bt and the person specific parameter st and the geometric
transformation Tαt given the observation zt . The Bayesian tracking framework enables a
recursive update of the posterior P(Xt |Zt) over the object state Xt given all observation Zt =
Z1,Z2, ..,Zt up to time t:

P(Xt |Zt) ∝ P(Zt |Xt)
∫

Xt−1

P(Xt |Xt−1)P(Xt−1|Zt−1) (3)

In our generative model, the state Xt is [αt ,bt ,st ], which uniquely describes the state of the
tracking object. Observation Zt is the captured image instance at time t.

The state Xt is decomposed into three sub-states αt ,bt ,st . These three random variables
are conceptually independent since we can combine any body configuration with any per-
son shape style with any geometrical transformation to synthesize a new contour. However,
they are dependent given the observation Zt . It is hard to estimate joint posterior distribution
P(αt ,bt ,st |Zt) for its high dimensionality. The objective of the density estimation is to es-
timate states αt ,bt ,st for a given observation. The decomposable feature of our generative
model enables us to estimate each state by a marginal density distribution P(αt |Zt), P(bt |Zt),
and P(st |Zt). We approximate marginal density estimation of one state variable along rep-
resentative values of the other state variables. For example, in order to estimate marginal
density of P(bt |Zt), we estimate P(bt |α∗t ,s∗t ,Zt), where α∗t ,s∗t are representative values such
as maximum posteriori estimates.



(a) individual manifolds
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Figure 2: Individual manifolds and their unified manifold

3 Learning Generative Model
Our objective is to establish generative models for the shape in the form of equation 2 where
the intrinsic body configuration is decoupled from the shape style. Such model was intro-
duced in [7] and applied to gait data and facial expression data. Given training sequences
of different people performing the same motion (gait in our case), Locally Linear Embed-
ding (LLE) [13] is applied to find low dimensional representation of body configuration for
each person manifold. As a result of nonlinear dimensionality reduction, an embedding of the
gait manifold can be obtained in a low dimensional Euclidean space where three is the least
dimensional space where the two halves of the walking cycles can be discriminated. Fig-
ure 2-a shows low dimensional representation of side-view walking sequences for different
people. Generally, the walking cycle evolves along a closed curve in the embedded space, i.e.,
only one degree of freedom controls the walking cycle which corresponds to the constrained
body pose as a function of the time. Such manifold can be used as intrinsic representation
of the body configuration. The use of LLE to obtain intrinsic configuration for tracking was
previously reported in [15].
Modeling body configuration space: Body configuration manifold is parameterized using
a spline fitted to the embedded manifold representation. First, cycles are detected given an
origin point on the manifold by computing geodesics along the manifold. Second, a mean-
manifold for each person is obtained by averaging difference cycles. Obviously, each person
will have a different manifold based on his spatio-temporal characteristics. Third, non-rigid
transformation using an approach similar to [2] is performed to find a unified manifold rep-
resentation as in Fig. 2-b . Correspondences between different subjects are accomplished by
selecting a certain body pose as the origin point in different manifolds and equal sampling
in the parameterized representation. Finally, we parameterized the unified mean manifold by
spline fitting.

The unified mean-manifold can be parameterized by a one-dimensional parameter βt ∈ R
and a spline fitting function f : R→ R3 that satisfies bt = f (βt) is used to map from the
parameter space into the three dimensional embedding space. Fig. 2-c shows three sequences
generated using the same equidistant body configuration parameter [β1,β2, · · · ,β16] along the
unified mean manifold with different style. As a result of one dimensional representation of
each cycle in unified manifold, aligned body pose can be generated in different shape style.
Modeling style shape space: Shape style space is parameterized by a linear combination of
basis of the style space. First, RBF nonlinear mappings [7] are learned between the embedded
body configuration bt on the unified manifold and corresponding shape observations yk

t for
each person k. The mapping has the form yk

t = γk(bt) = Ck ·ψ(bt), where Ck is the mapping
coefficients which depend on particular person shape and ψ(·) is a nonlinear mapping with N



RBF kernel functions to model the manifold in the embedding space. Given learned nonlinear
mapping coefficients C1,C2, · · · ,CK , for training people 1, · · · ,K, the shape style parameters
are decomposed by fitting an asymmetric bilinear to the coefficient space. As a result, we can
generate contour instance yk

t for particular person k at any body configuration bt as

yk
t = A × sk×ψ(bt), (4)

where A is a third order tensor, sk is a shape style vector for person k.
Ultimately the style parameter s should be independent of the configuration and therefore

should be time invariant and can be estimated at initialization. However, we don’t know the
person style initially and , therefore, the style needs to fit to the correct person style gradually
during the tracking. So, we formulated style as time variant factor that should stabilize after
some frames from initialization. The dimension of the style vector depends on the number of
people used for training and can be high dimensional.

We represent new style as a linear combination of style classes learned from the training
data. The tracking of the high dimensional style vector st itself will be hard as it can fit local
minima easily. A new style vector s is represented by linear weighting of each of the style
classes sk, k = 1, · · · ,K using linear weight λ k:

s =
K

∑
k=1

λ ksk,
K

∑
k=1

λ k = 1, (5)

where K is the number of style classes used to represent new styles.
Modeling geometric transformation space: Geometric transformation in human motion
has constraints. We parameterize the geometric transformation by scaling Sx,Sy and transla-
tion Tx,Ty. New representation of any contour point can be found using homogeneous trans-
formation α with paramters [Tx,Ty,Sx,Sy] as global transformation parameters. The overall
generative model can be expressed as

zt = Tαt

(
A ×

[
K

∑
k=1

λ k
t sk

]
×ψ( f (βt))

)
. (6)

Tracking problem using this generative model is the estimation of parameter αt , βt , and λt at
each new frame given the observation zt .

4 Bayesian Tracking

4.1 Marginalized Density Representation
Since it is hard to estimate joint distribution of high dimensional data, we represent each of
the sub-state densities by marginalized ones. We approximate the marginal density of each
sub-state using maximum a posteriori (MAP) of the other sub-states, i.e.,

P(αt |Zt) ∝ P(αt |bt
∗,st

∗,Zt), P(bt |Zt) ∝ P(bt |αt
∗,st

∗,Zt), P(st |Zt) ∝ P(st |αt
∗,bt

∗,Zt), (7)

where αt
∗, bt

∗, and st
∗ are maximum a posteriori estimate of each approximated marginal

density. Maximum a posteriori of the joint density X∗t = [α∗t ,b∗t ,s∗t ] = argmaxXt P(Xt |Zt) will
maximize the posterior marginal densities α∗t = argmaxαt P(αt |Zt), b∗t = argmaxbt P(bt |Zt),
and s∗t = argmaxst P(st |Zt) because of our decomposable generative model.



Dynamic Models Predicted States
P(αt |αt−1) = N(Hαt−1,σα

2) α̂(i)
t ∝ P(αt |αt−1)

P(bt |bt−1) ∝ P(βt |βt−1) = N(βt + ṽ,σb
2) β̂t

( j)
∝ P(βt |βt−1)

P(st |st−1) ∝ P(λt |λt−1) = N(st−1,σs
2
t ) λ̂ (k)

t ∝ P(λt |λt−1) ∝ P(st |st−1)

Table 1: Dynamic models and predicted density of states

4.2 Dynamic Model
The dynamic model P(Xt |Xt−1) = P(αt ,bt ,st |αt−1,bt−1,st−1) predicts the state Xt at time t
given the previous state Xt−1. In our generative model, the states are decomposed into three
different factors. In the Bayesian network shown in Fig. 1, the transitions of each of the sub-
states are independent. Therefore, we can describe whole state dynamic model by dynamic
models of individual sub-states as

P(αt ,bt ,st |αt−1,bt−1,st−1) = P(αt |αt−1)P(bt |bt−1)P(st |st−1). (8)

In case of body configuration, the manifold spline parameter βt will change in a constant
speed if the subject walks in a constant speed (because it corresponds to constant frame rate
used in the learning). However, the resulting manifold point representing body configuration
bt = f (βt) will move along the manifold in different step sizes. Therefore, we use βt to model
the dynamics since it results in a one dimensional linear dynamic system. In general, the
walking speed can change gradually. So, the body configuration in each new state will move
from the current state with a filtered speed that is adaptively estimated during the tracking.

Dynamic model of style is approximated by a random walk as the style may change
smoothly around specific person style. The global transformation αt captures global contour
motion in the image space. The left column in table 1 shows the dynamic models, where
ṽ is filtered estimated body configuration manifold velocity, and H is a transition matrix of
the geometric transformation state which is learned from the training data. A new sub-state
densities can be predicted using each sub-state dynamic models as in table 1 right column .

4.3 Tracking Algorithm using Particle Filter
We represent state densities using particle filters since such densities can be non-Gaussian
and the observation is nonlinear. In particle filter, the density of posterior P(Xt |Zt) is approx-
imated by a set of N weighted samples {X (i)

t ,π(i)
t }, where π(i)

t is the weight for particle X (i)
t .

Using the generative model in Eq. 6, the tracking problem is to estimate αt , λt , and βt for
given observation Zt . The marginalized posterior densities for αt , βt , and λt are approximated
by particles.

{α(i)
t ,α π(i)

t }Nα
i=1,{β ( j)

t ,bπ( j)
t }Nb

j=1,{λ (k)
t , sπ(k)

t }Ns
k=1, (9)

where Nα ,Nb, and Ns are the numbers of particles used for each of the sub-states. Density
representation P(β |Zt) is interchangeable with P(bt |Zt) as it has one to one correspondence
between β ( j)

t and b( j)
t . The same holds between λt and st for the style state.

We estimate states by sequential update of the marginalized sub-densities utilizing the
predicted densities of the other sub-states. These densities are updated with current obser-
vation Zt by updating weighting values of each sub-state particles approximation using the



observation. We estimate global transformation αt using predicted density s̀t , b̀t . Then body
configuration bt is estimated using estimate global transformation αt , and predicted density
s̀t . Finally style st is estimated with given estimated αt , and bt . The following table summa-
rizes the state estimation procedure using time t−1 estimation.

1. Importance-sampling with resampling:
t−1 state density estimation: {α(i)

t−1,
α π(i)

t−1}Nα
i=1, {β ( j)

t−1,
bπ( j)

t−1}Nb
j=1, {λ (k)

t−1,
sπ(k)

t−1}Ns
k=1.

Resampling: {ὰ(i)
t−1,1/Nα}, {β̀ ( j)

t−1,1/Nb}, and {λ̀ (k)
t−1,1/Ns}.

2. Predictive update of state densities:
α(i)

t = Hὰ(i)
t−1 + N(0,σ2

α )

β ( j)
t = β̀ ( j)

t−1 + ṽt + N(0,σb
2), b( j)

t = f (β ( j)
t )

λ (k)
t = λ̀ (k)

t−1 + N(0,σs
2
t−1), λ (k)

t = λ (k)
t

∑Ns
i=1 λ (k)

i t

, s(k)
t = ∑Ns

i=1 λ (k)
i tsi

3. Sequential update of state weights using current observation: Global transformation αt with
b̂t , ŝt :

P(α(i)
t |b̂∗t , ŝ∗t ,Zt) ∝ P(Zt |α(i)

t , b̂∗t , ŝ∗t )P(α(i)
t )

α π(i)
t = P(Zt |α(i)

t , b̂∗t , ŝ∗t ), α π(i)
t =

α π(i)
t

∑Nα
j=1

α π( j)
t

Body pose bt with αt , ŝt :
α∗t = α(i∗)

t , where i∗ = argmaxi
α π(i)

t

P(b( j)
t |α∗t , ŝ∗t ,Zt) ∝ P(Zt |α∗t ,b( j)

t , ŝ∗t )P(b( j)
t ) bπ( j)

t = P(Zt |α∗t ,b( j)
t , ŝ∗t ), bπ( j)

t =
bπ( j)

t

∑
Nb
i=1

bπ(i)
t

Style st with αt , bt :
b∗t = b( j∗)

t , where j∗ = argmax j
bπ( j)

t

P(s(k)
t |α∗t ,b∗t ,Zt) ∝ P(Zt |α∗t ,b∗t ,s(k)

t )P(s(k)
t )

sπ(k)
t = P(Zt |α∗t ,b∗t ,s(k)

t ), sπ(k)
t =

sπ(k)
t

∑Ns
i=1

sπ(i)
t

4.4 Observation Model
In our multi-state representation, we update weights α π(i)

t , bπ( j)
t , and sπ(k)

t by marginal-
ized likelihood P(Zt |α(i)

t ,bt ,s∗t ), P(Zt |α∗t ,b( j)
t ,s∗t ), and P(Zt |α∗t ,b∗t ,s(k)

t ) given observation
Zt . Each sub state captures different characteristics in the dynamic motion and affects dif-
ferent variations in the observation. For example, body poses are changed according to body
configuration state. Different body configurations show significant changes in edge direction
in the legs. However, in case of style, the variation is subtle and changes along the global
contours.

Observation model measures state Xt by updating the weights π(i)
t in the particle filter by

measuring the observation likelihood P(Zt |X (i)
t ). We can estimate the likelihood by

P(Zt |Xt) = P(Zt |αt ,bt ,st) ∝ exp
(
−d(Zt ,zt)

σ2
t

)
= exp

(
−d(Zt ,Tαt A × st ×ψ(bt))

σ2
t

)
, (10)

where d(·) is distance measure, zt is the contour from the generative model using αt ,bt ,st . It
is very important to use proper distance measurement d(·) in order to get accurate update of
weights and density for new observation. We use three distance measures: Chamfer distance,
weighted Chamfer distance, and oriented Chamfer distance.
Representation: We represent shape contour by an implicit function similar to [6] where the
contour is the zero level of such function. From each new frame Zt , we extracted edge using
Canny edge detector algorithm.



Weighted Chamfer Distance for Geometric Transformation Estimation: For geometric
transformation estimation, the predicted body configuration, and style estimate from the pre-
vious frame are used. Therefore, we need to find similarity measurement which is robust
to the deviation of body pose and style estimation and sensitive to global transformation.
Typically the shape or the silhouette of upper body part in walking sequence are relatively
invariant to the body pose and style. By giving different weight to different contour points in
Chamfer matching, we can emphasize upper body part and de-emphasize lower body part in
the distance measurement. Weighted chamfer distance can be computed as

Dw(T,F,W ) =
1
N

N

∑
i

min
fi∈F

ρ(ti, fi)wi, (11)

where ti is i’th feature location, fi template feature and wi i’th feature weight. Practically,
weighted chamfer distance achieved more robust estimation of the geometric transformation.
Oriented Chamfer Distance for Body Pose: Different body poses can be characterized by
the orientation of legs. Therefore, oriented edge based similarity measurement is useful in
case of the body configuration estimation. Oriented chamfer distance matching was used
in [8]. We use a linear filter [9] to detect oriented edge efficiently after edge detection. After
applying the linear filter to the contour and the observation, we applied chamfer matching for
each oriented distance transform and oriented contour template. The final result is the sum of
each of the oriented chamfer distance. For style estimation, simple Chamfer distance is used.

5 Experimental Result
We used CMU Mobo data set for learning the generative model, the dynamics, and for test-
ing the tracker. Six subjects are used in learning the model. The tracking performance is
evaluated for people used in training and for unknown people, which were not used in the
learning. We initialize the tracker by giving a rough estimate of initial global transformation
parameter. The body configuration is initialized by random particles along the manifold. In
case of style, as we don’t know the subject style from the initial frame, we initialize style by
mean style, which means equal weights are applied for every style class.
Tracking for trained subjects :

For the training subjects, the tracker shows very good tracking results. It shows accurate
tracking of body configuration parameter βt and correct estimation of shape style st . Fig. 3
(a) shows several frames during tracking known subject. The left column shows tracking
contours. The middle column shows the posterior body configuration density. The right
column is the estimated style weights in each frame. Fig. 3 (b) shows tracking results for
style weights. The figure shows that the style estimate converges to the subject’s correct
style and it becomes the major weighting factor after about 10 frames. The style weighting
shows accurate identification of the subject as a result of tracking and it has many potential for
human identification and others. Fig. 3 (c) shows estimated body configuration β value. Even
though the two strides making each gait cycle are very similar and hard to differentiate in
visual space, the body configuration parameter accurately find out the correct configuration.
The figure shows that the body configuration correctly exhibits linear dynamics. As we have
one to one mapping between body configuration on the manifold and 3D body pose, we can
directly recover 3D body configuration using the estimated β or using manifold points bt
similar to [6].
Tracking for unknown subjects: Tracking for new subjects can be hard as we used small
number of people for learning style in the generative model. It takes more frames to converge
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Figure 3: Tracking for known person

(a) tracking of unknown subject
4th frame:

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Body Configuration: β
t

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Shape style 

16th frame:

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Body Configuration: β
t

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Shape style 

64th frame:

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Body Configuration: β
t

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Shape style 
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(c) body configuration βt
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Figure 4: Tracking for unknown person

to accurate contour fitting as shown in Fig. 4 (b). However, after some frames it accurately fit
to the subject contour even though we did not do any local deformation to fit the model to the
subject. There is no one dominant style class weight during the tracking and sometimes the
highest weight are switched depend on the observation. In case of the body configuration βt ,
you can see sometimes it jumps about half cycle due to the similarity in the observation since
the style is not accurate enough. Still, the result shows accurate estimation of body pose.

We also, applied tracking in normal walking situation using M. Black straight walking
person image sequence even though we learned the generative model from treadmill walking
data. Fig. 5 shows contour tracking results for 40 frames. Fig. 5 (c) shows estimated body
configuration parameters. It confused in some intervals at the beginning but it recovers within
the cycle.

6 Conclusion
We presented new framework for human motion tracking using a decomposable generative
model. As a result of our tracking, we not only find accurate contour from cluttered envi-
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Figure 5: Tracking straight walking

ronment without background learning or appearance model, but also get parameters for body
configuration and shape style.

In current work, we assumed fixed view in learning the generative model and tracking
human motion. We plan to extend the model to view variant situations. We used marginal-
ized density approximation instead of full joint distribution of the state. Sampling based on
Markov Chain Monte Carlo (MCMC) can be used for more accurate estimation of the mar-
ginal density. In our current system, we tried to overcome the problem in marginalization by
finding robust distance measure in the observation and sequential estimation using predicted
density.
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