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Abstract

We describe a method for automatically recognizing animals in image se-
quences based on their distinctive locomotive movement patterns. The 2-D
motion field associated with the animal is represented using a ‘configuration
of motion parts’ model, the characteristics of which are learned from train-
ing data. We adopt an unsupervised approach to learning model parameters,
based on minimal a priori knowledge of the physical or locomotive char-
acteristics of the animals concerned. Results are presented demonstrating
excellent classification performance, with accuracy exceeding 98% on a test
set consisting of over 100 sequences of 7 different species.

1 Introduction

It has long been recognized that the visual motion patterns exhibited by a human or an
animal in a given mode of locomotion can be powerful discriminatory features for recog-
nition. A large body of work on human gait analysis has made convincing use of such
patterns [7, 15]. Less work has been done on animal locomotion, see e.g. [9, 6], although
the current interest in developing video archiving systems means that it would find consid-
erable application for wildlife film making. This is the intended application for the work
reported here. Motion information is important when dealing with wildlife sequences
since alternative features, such as appearance or shape, are often difficult to extract due to
natural camouflage, large variations in viewing conditions and the presence of significant
background clutter in many of the sequences.

Many approaches have been investigated to capture the distinctive characteristics of
human and animal movement. They fall broadly into two categories. First, those that use
high-level models, such as skeletons or silhouettes, to represent physical attributes, with
the variation amongst model parameters being used to characterize movement [2, 15, 7].
Secondly, those that use the spatio-temporal patterns of pixels or low level features, such
as optical flow or point trajectories, with the patterns characterized using techniques such
as spectral or principal component analysis [8, 1, 10]. The difference here is primarily one
of specificity versus generality. Based on physical make up, the model based approaches
are designed to capture the specific characteristics of the locomotion for a given subject.
This can give high discrimination performance, but at the expense of generality and a
reliance on good feature extraction, e.g. of limbs and joints. On the other hand, the
spatio-temporal techniques generalize well, but rely on global motion properties, such as
dominant periodicities, which are necessarily less discriminatory.



In this paper we describe a approach to representing and recognizing locomotive mo-
tion which seeks to address these limitations. It is based on a ‘configuration of motion
parts’ model, in which the parts represent component motion patterns exhibited during
locomotion. Importantly, the model characterizes the positional and cyclic correlations
amongst these parts, as well as their individual motion properties. This structural com-
ponent gives the potential for greater discrimination than previous spatio-temporal tech-
niques, whilst being sufficiently flexible to allow generalization across species. The key
point is that we hypothesize only the existence of such parts, not their precise configura-
tions and inter-relationships as done in previous model based schemes. Instead, we learn
the latter from training sequences within an unsupervised framework. The approach is
motivated by the recent work by Songet al on representing human motion using parts
[13] and by the work on parts based recognition of object categories in images, see e.g.
[3, 14, 11, 4], all of which have demonstrated the utility of modeling with parts. Here, we
extend the ideas to recognising animals through their characteristic locomotions.

The remainder of the paper is organised as follows. In the next section we outline
the basis of modelling with motion parts and then in Section 3 describe a classification
algorithm for recognizing species in a specific mode of locomotion using a configuration
of parts framework. Results of experiments on a test set of over 100 sequences containing
7 different species are then presented in Section 4, demonstrating that the method gives
excellent classification performance, achieving accuracy of over 98%.

2 Modeling with Motion Parts

Animals can be recognized from the patterns resulting from the component motions ex-
hibited during a mode of locomotion, such as walking or running. These include cyclic
movements of the legs, head and other body parts, as well as the more subtle rhythmic
movements of muscles. The patterns are distinctive and uniquely characterize the animal.
Because they result from the act of locomotion, they also have two important properties:
they are often periodic in nature, as in the cyclic action of the legs, and they are often
correlated - the bobbing up and down of a head being directly related to the cyclic leg
movement. It is this periodicity and correlation amongst the components, in addition to
their relative position, that we wish to harness in our recognition algorithm.

To do so, we model the 2-D motion field associated with an animal using ‘config-
urations of motion parts’. These correspond to constellations of regions which contain
cyclic and consistent motion over an extended sequence of frames. As an example, Fig.
1a shows a configuration that might be used to represent a running Hyena. As well as
the leg regions, the motion parts are centered on regions around the head and lower back,
both of which exhibit cyclic motion patterns which characterize the gait of the Hyena.
This can be seen from the vertical components of the average trajectory of points within
the regions also shown in Fig. 1a. Note in particular the degree of positive and negative
correlation between the trajectories.

Note that the motion parts need not necessarily correspond to individual physical parts
of the animal, such as a leg or the head. Unlike approaches based on skeleton models,
for example, we have deliberately adopted a weaker model based on distinctive regions
within the motion field. This gives greater flexibility in terms of representing motion
patterns (allowing the inclusion of muscle movements as well as body part motions, for
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Figure 1: (a) Example motion part configuration representing the motion patterns of a
running Hyena; (b) Main steps in deriving motion part configurations for recognition.

example) and hence greater generality across species. It also means that we are less
demanding on the robustness of the feature extraction. Thus in Fig. 1a, parts represent
the general motion in the vicinity of the legs, rather than the specific motion of individual
legs or leg joints, which are difficult to distinguish accurately due to motion blur and the
lack of contrast between the animal and the background.

Using a set of training sequences for a given species in a specific mode of locomotion,
e.g. running, walking, etc, our approach is to identify a configuration of motion parts
which characterises the data set. This is then used to recognize the same species in a
similar mode of locomotion in unseen data. Importantly, this is done without pre-defining
where the parts occur in the animal’s motion field, nor how they are inter-related; this is
determined from the training data automatically. Each part has an associated frequency
vector representing the fundamental periods of the horizontal and vertical cyclic motion
within the underlying region. Pairs of parts are then related by horizontal and vertical cor-
relation values. Note that ‘configuration’ refers here not only to the spatial arrangement
of parts, but also to their frequency values and the associated correlations.

3 Recognition by Motion Parts

To determine a representative configuration, we first extract a (possibly large) number of
potential motion parts and then seek a configuration based on a fixed number of parts
which occurs consistently across the training data (this mirrors the strategy used in [14, 4]
for parts-based object recognition). In practice, this amounts to determining the config-
uration which is closest to this ideal based on a distance metric between configurations.
The same metric is then used to classify unseen data based on its minimum distance from
each of the representative configurations. The approach is illustrated in Fig. 1b and the
main components are summarized below.

We first register frames according to the dominant foreground motion, which we as-
sume corresponds to the global motion of the animal. This normalizes the locomotive
motion patterns with respect to a common reference. Potential motion parts are then
identified by analysing the covariance map of registered pixels; motion part regions will
exhibit motions distinct from the dominant motion and hence give rise to high pixel co-
variances. Regions surrounding local maxima in the covariance map are thus denoted
as potential motion parts. The periodicities and correlations amongst the parts are then
estimated by analysing the average trajectories of tracked feature points within the under-
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Figure 2: Foreground registration: (a) Segmented feature points and bounding box; (b)
mean reference image ; (c) covariance image.

lying regions. Using the motion parts extracted from training sequences, we then derive
a representative configuration based on a fixed, small number of parts (typically 4 or 5).
This is achieved using an iterative comparison of potential configurations within the sets
of motion parts based on a distance metric. Unseen sequences are then classified based
on their distance from the representative configurations extracted for each category in the
training data. Details of each of these components are given in the following sections.

3.1 Foreground Registration

Our training sequences contain a single animal in a specific mode of locomotion, roughly
parallel to the image plane of a stationary or moving camera. For each sequence we
register the frames with respect to a reference frame according to the global motion of the
animal. Observing ‘frame differences’ following registration then enables us to identify
significant motion parts. We use the transformed Gaussian method [5] to perform the
registration. This models the frames as a series of transformations of a reference image
within a probabilistic framework, with the reference image and the transformations treated
as hidden variables. With the pixels in framet stacked into a vectorut , the method is based
on a generative model of the form

p(ut ,T,z) = P(T)N (ut ;Tz,Ψ)N (z; z̄,Φ) (1)

whereN (z; z̄,Φ) denotes the Gaussian density with meanz̄ and covarianceΦ, z is the
reference image (orlatent image[5]), andT is a matrix representing a 2-D transforma-
tion. A frame is therefore ‘generated’ by drawing a reference imagez from N (z; z̄,Φ),
applying a transformationT drawn with probabilityP(T) from a set of allowable trans-
formations and then adding noise according to the covarianceΨ. The model parameters
are the mean reference imagez̄, the covariancesΨ andΦ, and the transformation prob-
abilitiesP(T). These are estimated using the EM algorithm over all of the frames, with
the reference images and transformations treated as hidden variables. For our application,
the key parameter is the covariance matrixΦ, the diagonal elements of which indicate
agreement or otherwise with the ‘transformation of a reference image’ model. Thus, pix-
els with high covariance are likely to be within regions exhibiting motion patterns distinct
from the global motion and hence are either potential motion parts or background clutter.

We found it beneficial to first isolate the animal within a bounding box in each frame
prior to registration. As well as minimizing the number of pixels used in the EM al-
gorithm, this also minimizes the likely occurrence of background clutter which may be



confused as motion parts. To do this we adopt a feature tracking approach which iden-
tifies significant points on the animal and in the background, and then uses RANSAC
based segmentation to distinguish between them assuming a stationary background [6].
The bounding box isolating the animal is then set according to the distribution of fore-
ground points. As an example, Fig. 2a shows tracked feature points [12] and the bound-
ing box computed for a frame from a Hyena sequence. It turns out that we also need
the tracked points to estimate the trajectories associated with motion parts and thus this
pre-processing operation fits well within the algorithm framework.

We then apply the registration algorithm to the pixels within the bounding box. Com-
putationally, it is unrealistic to register every frame, and so we typically use 1 frame in
every 5. As in [5], we limit the transformations to horizontal and vertical integer trans-
lations. The mean reference image and associated covariance obtained for the Hyena
sequence are shown in Fig. 2b-c, where the values in the covariance image are the di-
agonal elements ofΦ. In this and the other experiments, the EM algorithm converged
within around 15 iterations. Note the blurred areas in the mean reference image around
the leg, head and lower back resulting from the locomotive motion in those regions, i.e.
corresponding to potential motion parts. There are also corresponding local maxima in
the covariance image and it is these that we use to identify the location of the parts.

3.2 Motion Part Extraction

To extract potential motion parts, we therefore identify local maxima in the covariance
image. This gives the relative spatial positions of the parts. We then estimate the funda-
mental frequency of the underlying motion region based on the trajectories of the tracked
feature points and compute correlations of the trajectories between pairs of parts. The
local maxima are extracted using a window size set according to the size of the bounding
box. The spatial covariance about each maxima then defines the motion part region, i.e.
we model the region using an ellipse. Thus, ifφ(x) is the covariance at pixelx, thenp
is the location of a potential motion part ifφ(p) > φ(x), ∀x ∈ Γ(p), whereΓ(p) denotes
pixels within the window surroundingp. The spatial covariance is then given by

R(p) = ∑
x∈Γ(p)

φ(x)(x−p)(x−p)T (2)

which defines the region associated with the part. As an example, the top 10 ranked parts
extracted for the Hyena sequence are shown in Fig. 3a, where the ellipses indicate one
standard deviation along each of the principle axes. Note that the regions are centred on
the high value clusters in the covariance image and hence around areas of high motion
activity with respect to the global motion of the animal.

For each motion part region we then estimate horizontal and vertical trajectories across
the sequence based on the feature point tracks within the vicinity of the local maximum.
We use a weighted average of the tracks, where the weights are given by a Gaussian about
the local maximum as defined by the spatial covarianceR(p). The vertical trajectories
computed for parts 2, 3 and 5 and the horizontal trajectory for part 8 are shown in Fig. 3b.
The periodicity of the underlying regions is clearly evident, as is the positive and negative
correlation between the parts. From these trajectories we can estimate the periodicity of
the patterns by extracting the fundamental frequencies using spectral analysis. Finally, we
determine the relationship amongst the motion parts by computing pairwise correlation
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Figure 3: Top 10 ranked motion parts for Hyena sequence: (a) part regions on covariance
image; (b) average trajectories for parts 2, 3, 5 and 8; (c) grids of horizontal (top) and
vertical correlation coefficients for all pairs of parts (white≡ positive, black≡ negative).

coefficients for the horizontal and vertical trajectories. For example, ifhk(t) denotes the
horizontal trajectory for partk, then we compute the normalized horizontal correlation
coefficient between partsk andl as

ρ
h
kl =

1
EkEl

∑
t
(hk(t)− h̄k)(hl (t)− h̄l ) (3)

whereEk = ∑t(hk(t)− h̄k))2 andh̄k is the mean value ofhk(t). The horizontal and verti-
cal correlation coefficients amongst the 10 parts extracted from the Hyena sequence are
shown as grids in Fig. 3c. These show clear positive correlations between parts 1, 5 and
10 on the head and their negative correlations with those parts on the legs and lower back.

3.3 Representative Configurations

Having determined potential motion parts for each of the training sequences, the next step
is to derive a representative configuration for each species. Ideally, this is a configuration
which occurs consistently in each set of motion parts. In practice, we seek a configura-
tion which is closest to this with respect to a distance metric. However, computing this
turns out to be not straightforward. The key point is that we do not have correspondence
between the parts detected in different sequences and thus we are forced to test a poten-
tially large number of permutations in order to find a consistent configuration. To make
this tractable, we adopt a similar strategy to that used in [14, 4] and fix the number of
parts allowed in the configuration. Limiting the number of parts and using some obvious
exclusion rules, then allows a naive exhaustive search amongst the possible permutations.
As the results show, this does not affect performance significantly since the number of
distinctive motion patterns exhibited by an animal is typically small.

The approach we take is best described by first considering a single pair of training se-
quences. Using the topN ranked parts from each sequence and configurations consisting
of K parts, we find the configuration pair(Ĉ,Ĉ′) such that

(Ĉ,Ĉ′) = argmin
(Cr ,C′

s)∈Λ
D(Cr ,C

′
s) (4)

whereD() denotes the distance metric,Cr andC′
s are the configurations in the two se-

quences, andΛ is the set of all possible correspondences between all theK component



configurations amongst theN motion parts from each sequence. In other words,(Ĉ,Ĉ′)
are the closest pair of configurations from the two sets of motion parts. A representative
configuration is then obtained by taking the average of these - giving the configuration
which is closest to at least one configuration from each set of parts. Note that taking the
average is possible since the correspondences between the parts inĈ andĈ′ are known.
Assuming corresponding parts are numbered the same, we use the following forD():

D(C,C′) = wp

K

∑
k=1

||pk−p′k||2 +wf

K

∑
k=1

||fk− f′k||2 +wρ

K−1

∑
k=1

K

∑
l=k+1

||ρkl −ρ
′
kl ||2 (5)

wherepk and fk denote the relative position and frequency vectors for partk andρkl =
(ρh

kl ,ρ
v
kl) is a vector containing the horizontal and vertical correlations between partsk

and l as defined in (3). The weightswp, wf andwρ normalise the relative contributions
of the three terms based on the range of values observed in the training data. We also
normalize the position vectors according to the size of the bounding box to give a degree
of scale invariance and use the global motion to correct for asymmetries in position caused
by animals moving in opposite directions.

Extending the above to more than two sequences is problematic due to the number of
permutations. To address this, we adopt an iterative approach which works as follows.
We assume that we have a set of motion parts for each training sequence. Denoting the
current estimate of the representative configuration byC̄i , we find the configuration in
each set which is closest tōCi according to the distance metric in (5). The average of
these then forms the updated estimateC̄i+1. Note that we can form this average since the
distances are all computed with respect to the same configuration and hence we know the
correspondences between all the parts. The process continues until convergence or after
a given number of steps. To initialise the process we used a configuration derived from
the covariance images for each of the training sequences, based on a clustering of the top
ranked motion parts and a weak requirement for sufficient spatial separation of the parts.
In the experiments the process typically converged after 4 or 5 iterations.

Having determined the representative configurations, one for each species, we can
use these to classify unseen data. For a new sequence, we detect potential motion parts
and then determine the configurations within those parts which are closest to each of the
representative configurations based on the distance metric in (5). Classification of the
sequence is then determined by the smallest distance.

4 Experiments

We used a data set of 140 sequences of approximately 8-10 seconds each, comprising in
equal parts individual examples of seven different species in a specific mode of locomo-
tion: Camels (c), Elephants (e), Hyenas (h), Lions (l), Cheetahs (ch), Giraffes (g), and
Kangaroos (k). The Hyenas and Kangaroos are all running or hopping, whilst the other
animals are all walking. Some sequences were taken using a stationary camera and others
with the camera tracking the animal. The majority of animals are well camouflaged and
there is a large variation in viewing conditions (see example frames in Fig. 4). There is
also considerable clutter, particularly around the animals’ legs. Recognition based purely
on appearance or shape is therefore likely to be problematic.



Figure 4: Frames from 10 of 140 sequences in the data set.

We trained on 5 sequences per species to learn the representative configurations, and
used the remaining 15 in each case for classification. Fig. 5 shows the representative con-
figurations obtained for Hyenas, Camels, Cheetahs and Lions using 10 potential motion
parts and 5-part configurations. For example, in Fig. 5a, the leftmost images show the
top ten ranked motion parts extracted from two of the Hyena training sequences, and the
rightmost images show the representative configuration in terms of its horizontal (top) and
vertical components. The same are shown for the other species in Fig. 5b-d. The images
illustrating the representative configurations can be interpreted as follows: the ellipses
show the covariance on mean part position, the thickness of the connecting lines show
the strength of the pairwise correlation between motion parts (positive correlations white,
negative correlations black), and the shade of the circle at the centre of each ellipse indi-
cates the periodicity of the trajectories (the darker the circle, the higher the frequency),
while the size of the circle indicates the frequency covariance. Note in particular the
strong negative and positive correlations between the head and leg motions, and the un-
certainty in spatial position of the parts. There are also significant differences between
the animals: the part frequencies detected for the Hyenas are very similar, whilst for the
Camels and Lions there is noticeable variation (the low part of the neck on the Camel, for
instance, has a high relative frequency in both directions); and the pairwise correlations
within the configurations are clearly different.

Classification experiments based on the representative configurations were performed
using a total of 105 test sequences. Of these, 103 were correctly classified in terms of
species, giving an accuracy of over 98%. Two sequences were misclassified: a lion was
classified as a cheetah and vice versa, although the distance measures were close. This is
perhaps not so surprising given the obvious similarities between the species. In this case
we may need to employ additional features, based on appearance or shape, for example, in
order to sort out the ambiguity. The confusion matrix illustrating the classification perfor-
mance is shown on the right in Table 1. Also shown are the confusion matrices resulting
when only one of the terms in the distance metric is used, i.e. position, frequency or cor-
relation. The main point to note is that performance is well below that achieved using the
combined metric; there is considerable mis-classification across the majority of species.
Note in particular that if only relative spatial position of parts is used, then there is con-
siderable error in recognition. Only by incorporating frequency and correlation of motion
can the species be successfully distinguished. The one exception is the Giraffe, which can
be completely distinguished by position alone, and quite accurately by frequency alone.
This is, however, to be expected given its very distinctive shape and gait.
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Figure 5: Top 10 ranked motion parts for two training sequences and the corresponding
representative configuration (horizontal components top and vertical components bottom)
for (a) Hyenas; (b) Camels; (c) Cheetahs and (d) Lions.

5 Conclusions

A method for representing and recognizing animal locomotion has been presented. The
results demonstrate that the method is able to successfully distinguish sequences contain-
ing the same animal in a similar mode of locomotion with very high accuracy. There
are several key contributions in the work. The ‘configuration of motion parts’ model
gives flexibility to account for variation within species, whilst at the same time allowing
generalization across different species. This extends the ideas used by Songet al for rep-
resenting human motion [13] and further demonstrates the effectiveness of a parts based
approach for recognition. In particular, the use of the correlation measure amongst the
locomotive parts proved to be a significant distinguishing feature when combined with
positional and frequency information. There are, however, many areas for further work.
This includes dealing with missing or occluded parts, and the associated uncertainties in
part detection. We are investigating whether this can be achieved using a probabilistic
framework similar to that used in [14, 4, 13] for object recognition. We are also looking
at the recognition of different forms of locomotion within the same species and to extend
the technique to deal with examples containing multiple animals and animals viewed from
different viewpoints.



Position
c e h l ch g k

c 7 0 0 2 6 0 0
e 1 3 0 5 6 0 0
h 0 0 11 0 0 3 1
l 1 0 0 6 8 0 0

ch 4 0 0 3 8 0 0
g 0 0 0 0 0 15 0
k 0 0 6 0 0 1 8

Frequency
c e h l ch g k

c 7 2 0 0 0 6 0
e 3 10 0 0 0 2 0
h 0 0 9 0 0 0 6
l 0 0 0 7 5 1 2

ch 1 0 0 4 9 0 1
g 1 1 0 0 0 13 0
k 0 0 9 0 0 0 6

Correlation
c e h l ch g k

c 8 2 2 0 2 1 0
e 1 9 0 1 1 2 1
h 0 2 10 2 0 1 0
l 1 3 0 8 3 0 0

ch 1 1 1 1 8 1 2
g 2 1 0 1 0 10 1
k 0 4 1 0 0 0 10

Combined
c e h l ch g k

c 15 0 0 0 0 0 0
e 0 15 0 0 0 0 0
h 0 0 15 0 0 0 0
l 0 0 0 14 1 0 0

ch 0 0 0 1 14 0 0
g 0 0 0 0 0 15 0
k 0 0 0 0 0 0 15

Table 1: Confusion matrices illustrating classification performance using single and all
terms in the distance metric.
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