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Abstract

Stable interest point detection is relevant for many computer vision applica-
tions. However, most detectors are sensitive to illumination changes, as their
response varies with image contrast. In the best case, detection stability is
increased using a simple image formation model assuming that illumination
effects cause slowly varying changes in the image. This does not accurately
model shadows and shading (interaction between illumination and scene ge-
ometry). Therefore, a new detection method is presented here, which is based
on the very popular Harris detector and on the m space [5]. It yields a de-
tection which is invariant to shadows, shading and illumination colour for
matte surfaces. A preprocessing scheme is proposed to reduce the sensitivity
to colour artifacts caused by demosaicing. The new detector is evaluated on
real images acquired under different illuminations by comparison with other
interest point detectors. The detection stability is well enhanced, especially
for scenes with complex geometry.

1 Introduction
Interest point detection is relevant for many computer vision applications, such as e.g. reg-
istration, image retrieval, object recognition and localisation. Stable detection is a prereq-
uisite for reliable applications: Ideally the same interest points should be detected under
all imaging conditions. Many detectors were designed for grey–value images, based on
various principles like local extrema [9, 17], curvature maxima along contours [15], anal-
ysis of the local grey–value distribution [16], maxima of the local autocorrelation function
[7]. However, the detector responses are all sensitive to image contrast. Therefore detec-
tion is sensitive to illumination changes, which frequently occur when images taken at
distant time instants are handled. One exception is the detector based on phase congru-
ency by Kovesi [8]. Yet its prohibitively high computing time limits its usability.

To handle this sensitivity to illumination changes, most applications detect as many
interest points as possible using a low detection threshold, and subsequently characterise
and match their neighbourhood with illumination invariant descriptors and robust match-
ing algorithms (see e.g. [9, 13, 17]). Increasing the stability of interest point detection
under lighting changes would reduce the number of outliers and decrease matching com-
plexity. Surprisingly, little has been done to reach this goal despite the numerous illumi-
nation invariant descriptors like [5, 9, 11, 13, 17, 18]. Therefore, in previous work [2, 4],
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we enhanced the stability of the Harris detector [7] at a moderate complexity increase
by compensating the local lighting conditions. A simple image formation model is used:
photometric changes caused by illumination are modelled by local affine transformations
of the grey–values (local multiplicative transformations in [4]). In [2], detectors based
on local derivative normalisation, on local cornerness function normalisation and on local
thresholding are compared. In [4] a fast homomorphic detector is presented. The Har-
ris detector is chosen as basis because of its wide use and of its stability under varying
camera position [15]. The homomorphic algorithm in [4] could be easily adapted to any
detector based on high–pass filtering, e.g. [9, 12]. Detection stability increases, especially
when complex lighting changes occur due for example to light source movements [2, 4].
Yet, the used image formation model is inaccurate near depth or surface normal discon-
tinuities (e.g. near 3D corners), near sharp shadow patterns, near specularities and near
colour edges, limiting the achievable stability [2, 4].

Only few interest point detectors exist for colour images, as texture information is
almost fully contained in pixel intensity: Even if colour descriptors are used, interest
point detection can be applied to intensity images, as in [17]. However, colour infor-
mation could help to reduce the sensitivity to illumination, as image formation can be
more accurately modelled, e.g. with the dichromatic reflection model. In [11], bicolour
neighbourhoods are detected by estimating the local colour distribution. As no geometry
information and a randomised grid are used for detection, the neighbourhoods have no
specific location in the image, restricting their use to recognition tasks. In [13], the Harris
detector is extended for colour images using the Di Zenzo colour gradient. This colour
Harris detector is as sensitive to illumination changes as the original Harris detector. In
[18] robust methods are introduced to compute shadow–shading invariant derivatives and
shadow–shading–specular invariant derivatives. The invariant derivatives are shown to
enhance the stability of the colour Harris detector on synthetic images. Yet the used as-
sumption of white illumination reduces the applicability because there exists no reliable
method to correct automatically illumination colour on real images [1].

Therefore, the colour Harris detector is enhanced in this paper using the m space [5],
which yields invariants to illumination colour, shadows and shading for matte surfaces.
Section 2 gives a short overview over colour invariants and explains our choice for the
m space. The new detector and an implementation robust to noise and demosaicing arti-
facts are described in section 3. Finally, an experimental evaluation on real images and a
conclusion are given in sections 4 and 5.

2 Colour Invariants
Shadows, shading, illumination colour and specularities can be modelled with the dichro-
matic reflection model (see e.g. [5, 11, 18]). Assuming narrow–band colour filters, the
measured colour values CR,CG and CB at a pixel (x,y) can be expressed as:

Ci = mb(l,s)LiSi +ms(l,s,v)Li, for i = R,G and B. (1)

The first term models body (or Lambertian) reflection. The second term models surface
(or specular) reflection. mb and ms express the geometric dependencies of these terms as
a function of the light direction l, of the surface normal s and of the viewing direction
v. Si is the ith sensor response to surface reflectance under white illumination. Li is the
illumination factor for channel i.



If mb,ms and Li are assumed to vary slowly in space, photometric changes caused
by illumination can be modelled by local affine transformations for each colour channel
independently. It generalises the model for grey–value images used in [2, 4, 9]. Illu-
mination invariant features can be obtained e.g. by a local normalisation of the channels
as in [13, 17]. However, effects due to sharp shadow patterns, specularities and shading
near discontinuities of the scene geometry are not modelled accurately, as in the case of
grey–value images. Only illumination colour changes are more accurately modelled.

For matte surfaces, ms is assumed to be zero. The influence of shading (modelled by
mb) and of shadows (modelled by Li → αLi) becomes a multiplicative factor common to
all channels Ci. Therefore, shadow and shading invariants can be obtained by building
ratios between channels, like the normalised colour values (e.g. r = CR/(CR +CG +CB))
in [5, 11] or the robust invariant in [18] which is less noise sensitive. The last factor in-
fluencing Lambertian reflection is the illuminant colour (LR,LG,LB). The latter can be
compensated using white balancing. However, the existing automatic white balancing
methods are not reliable on real images [1]. Manual white balancing is not always practi-
cable. Furthermore, it cannot deal with scenes lighted by several light sources, for which
(LR,LG,LB) may change for different scene points. An alternative consists in building
invariants to illumination colour, assuming that (LR,LG,LB) varies slowly in space. This
assumption holds for most scene points, except at the boundary between surfaces lighted
by different illuminants and near sharp coloured shadows. To achieve invariance, colour
ratios for two neighbouring pixels (x1,y1) and (x2,y2) are used in [5, 11]:

m1 =
CR(x1,y1)
CG(x1,y1)

CG(x2,y2)
CR(x2,y2)

=
LRSR(x1,y1)
LGSG(x1,y1)

LGSG(x2,y2)
LRSR(x2,y2)

=
SR(x1,y1)
SG(x1,y1)

SG(x2,y2)
SR(x2,y2)

. (2)

m1 only depends on the surface reflectances SR and SG at pixels (x1,y1) and (x2,y2). m2
and m3 are defined similarly for CR/CB and CB/CG ratios. m1, m2 and m3 form the m
space [5], which yields invariants to shadows, shading and illumination colour for matte
surfaces. The components are best calculated in the logarithmic domain, as ratios are
transformed to differences. The transformation from RGB space is then given by:

lnm1 = (lnCR(x1,y1)− lnCR(x2,y2))− (lnCG(x1,y1)− lnCG(x2,y2)). (3)

lnm2 and lnm3 are obtained similarly. By construction, the m space components are only
different from zero at boundaries between areas with different colours.

Under the assumption of white illumination, hue H [5] and the robust shadow–shading–
specular invariant derivatives in [18] provide illumination invariance for any type of sur-
faces. However, these invariants cannot be used in practice due to the unreliability of
automatic white balancing methods [1].

3 Illumination Invariant Colour Interest Point Detection

3.1 Detection Algorithm
The proposed interest point detector is based on the colour Harris detector [13] and on
the m space [5], which yields invariance to shadows, shading and illumination colour for
matte surfaces. The principles of the colour Harris detector [13] are summarised shortly



here. The texture around pixel (x,y) is represented by the matrix M:

M = G(σ)⊗ ∑
i=R,G,B

[
Ci

x
2 Ci

x Ci
y

Ci
x Ci

y Ci
y

2

]
, (4)

where G(σ) is a Gaussian with standard deviation σ (in this paper σ = 3.0) and ⊗ is the
convolution operator. Ci

x and Ci
y are the derivatives of the image channel Ci in x and y

directions. They are estimated by convolution with the derivatives of a Gaussian (here
with σderiv = 1.2). The interest points are the local maxima of the cornerness function CF
with a cornerness value above the user–defined detection threshold T (T > 0):

CF = Det(M)−α Tr2(M), here with α = 0.06 [7, 13]. (5)

According to eqs. (2) and (3), the derivatives of lnCR− lnCG, lnCR− lnCB and lnCB−
lnCG enable the computation of an illumination invariant texture matrix M for matte
surfaces (see eq. (6) for more details). This results in stable interest point detection under
illumination changes for matte scenes.

Colour invariants are noise sensitive especially in dark image areas, due to the use of
ratios or of the logarithmic transformation. In addition, pixels with values equal to zero
cannot be handled. Like in [4], ln(1 +Ci) is used instead of lnCi: It is only a minor
approximation for most pixel values and reduces noise sensitivity in dark areas. Some
noise reducing preprocessing can also be applied, as discussed in section 3.2. The high
correlation between colour channels can be used to reduce computing time and noise
influence: Only the two least noisy components1 of the m space lnCR− lnCG and lnCB−
lnCG are taken into account to compute M. In experimental evaluations, this 2–channel
detector achieved similar or higher stability than the 3–channel detector, independently of
the colours present in the scene. In summary, the m space Harris detector is:

1. Apply preprocessing to reduce noise (see section 3.2).

2. Perform the logarithmic transformation using li = ln(1+Ci) for i = R,G and B.

3. Convolve (lR− lG) and (lB− lG) with the derivatives of a Gaussian.

4. Compute the illumination invariant texture matrix:

M = G(σ)⊗ ∑
i=R,B

[
(li− lG)x

2 (li− lG)x (li− lG)y

(li− lG)x (li− lG)y (li− lG)y
2

]
. (6)

5. Compute the cornerness function CF according to eq. (5).

6. Detect all local maxima of CF with a cornerness value above the user–defined
threshold T (T > 0).

A major difference to the original Harris detector is the nature and the number of
detected interest points. The new detector relies on chrominance. Interest points are only
detected near boundaries between areas having different colours, as shown in figure 4.
This new illumination invariant detection framework can also be adapted to edge detectors
or other interest point detectors based on high–pass filtering (e.g. [9, 12]).

1In current cameras, the green and the blue channels have typically the highest and the lowest noise.
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Figure 1: Enlarged detail of a colour image: (a) image reconstructed with ACPI demo-
saicing [6], (b) image reconstructed with WACPI demosaicing [10], (c) ACPI image after
colour Nagao filter, (d) WACPI image after colour Nagao filter.

Figure 2: The nine windows used for the (simplified) colour Nagao filter are shown in
grey. The currently processed pixel is marked with a cross.

3.2 Image Acquisition and Preprocessing
Some preprocessing is required to decrease noise sensitivity in dark areas caused by the
logarithmic transformation (step 1 in section 3.1). The preprocessing used in [4] to handle
this problem for grey–value images can be extended to colour images: For each channel,
values Ci(x,y) (i = R,G,B) smaller than the experimentally chosen threshold c are re-
placed by the mean value in their 3×3 neighbourhood. The threshold c must be adapted
to the sensor noise. For our experimental setting, c = 3 performs well.

The use of colour images brings an additionnal noise source: Most digital colour
cameras have a single CCD or CMOS sensor and measure only one colour (e.g. R, G or
B) per pixel by means of a colour filter array (CFA). Therefore, an interpolation of the
colour information, named demosaicing, is necessary to obtain a three channel image.
Demosaicing introduces artifacts, such as wrong colours, which appear especially near
edges as shown in figure 1 (a). The image was reconstructed with the Adaptive Colour
Plane Interpolation (ACPI) [6], a fast state–of–the art demosaicing algorithm. Colour
invariants are sensitive to wrong colour artifacts. The artifacts decrease detection stability
as they vary with the imaging conditions. Several state–of–the–art and recently developed
demosaicing methods are compared in [3] to find the method best suited for computer
vision tasks. The Weighted Adaptive Colour Plane Interpolation (WACPI) [10] achieves
the highest reconstruction quality near colour edges [3], so it is applied here. As shown
in figure 1 (b), WACPI demosaicing yields better reconstruction quality.

Unlike marginal preprocessing (where colour channels are filtered independently from
each other as in the method above), vector preprocessing (where pixels are considered
as (CR,CG,CB) vectors) can reduce wrong colour artifacts and noise. The Nagao filter
[14] achieves a good correction of colour artifacts. In comparison to [14], the shape of
the nine windows is simplified for faster processing (see figure 2). The total variance
σ2 = σ2

R +σ2
G +σ2

B is estimated for all windows. The (CR,CG,CB) value of the processed
pixel is set to the mean value (µR,µG,µB) of the smallest variance window. The results
are shown in figures 1 (c) and (d). As the mean of the nine most similar pixels is built,
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Figure 3: Influence of a simulated intensity change and demosaicing artifacts on the cor-
nerness function CF of the m space Harris detector (For visualisation, ln |CF | is displayed
scaled between 0 and 255): (a) original image, (b) image after intensity change, (c) ln |CF |
for marginal preprocessing, (d) ln |CF | for Nagao filter, (e) ln |CF | for marginal prepro-
cessing and demosaicing artifacts, (f) ln |CF | for Nagao filter and demosaicing artifacts.

colour artifacts, which are most of the time isolated colour outliers, almost disappear and
edges are sharpened. On the other hand, high frequency details which are difficult to
interpolate correctly are filtered out, resulting in inaccurate texture.

The influence of demosaicing artifacts on the m space Harris detector is illustrated in
figure 3. An intensity change is simulated on an image by: Ci(x,y) 7→ f (x,y)Ci(x,y) for
i = R,G and B, where f (x,y) is a single channel image with values between 0 and 1. Such
a transformation could be caused by shadows or shading (see eq. (1)). The original and the
modified images are shown in figures 3 (a) and (b). If the cornerness function is computed
on the modified three channel image, the intensity change can be compensated as in theory
(see eq. (2)): No significant filter response occurs near the introduced pure intensity edges
for both preprocessing types (see figures 3 (c) and (d)). However, if the modified image is
sampled with a CFA and demosaiced before detection, the detector response is influenced
by the intensity edges when marginal preprocessing is applied (see figure 3 (e)). This is
caused by the inevitable demosaicing inaccuracies. This influence is reduced if the colour
Nagao filter is applied as preprocessing (see figure 3 (f)). Alternatively, demosaicing
quality can be improved if possible. The main drawback of the Nagao preprocessing is
a loss of texture information. Therefore, the experimental evaluation of section 4 will be
performed for both preprocessing types.

4 Experimental Evaluation
The m space Harris detector (MSHD) with both preprocessing types (MSHD+marginal
and MSHD+Nagao) is evaluated by comparing it to the colour Harris detector (CHD)
[13], to the homomorphic Harris detector for grey–value images (HHD+GV) [4] and to
the Harris detector based on robust shadow–shading invariants (RIHD)2 [18]. For this,
images are acquired with the Basler A302fc single–chip colour CCD camera and with
WACPI demosaicing [10]. For several scenes, image series are obtained by varying the
type (natural light, neon lamps or tungsten halogen lamps), number, position and direction
of the light source(s). For the m space detector (MSHD+marginal and MSHD+Nagao),
the detection threshold T is set to 10−5. To improve the CHD stability under lighting
changes, the N interest points with the highest cornerness values are detected (N = 200).

2The author would like to thank J. van de Weijer for his help for the implementation of the RIHD method



Figure 4: Detection example on images showing a scene under two different illuminants
(left: sunlight, right: tungsten halogen lamp). Circles indicate interest points. Top: colour
Harris detector [13]. Bottom: m space Harris detector with Nagao preprocessing.

The HHD+GV allows to evaluate stability increase due to the use of colour images, as it
achieves a stability enhancement similar to the algorithms in [2] with a lower computing
time. T is set to 10−4 for HHD+GV. To obtain grey–value images, the luminance com-
ponent of the YUV colour space is computed: Y = 0.3CR + 0.59CG + 0.11CB. For the
RIHD, T is set to 2.5 ·10−7 and the white patch algorithm is applied to correct illumina-
tion colour, as it yields good results on real images [1].

To estimate stability, one image is chosen as reference in the series. The interest points
detected in the other images are compared to the interest points of the reference image (the
reference interest points). An interest point is considered redetected if it is in the 3× 3
neighbourhood of a reference interest point. For each image, the detection stability can
be characterised e.g. by the repeatability rate [15]. The use of the following two rates is
preferred here as it is more descriptive: Redetection and false positive rates. The rede-
tection rate is the number of redetected points divided by the number of reference points.
Repeatability and redetection rates are equal when the same number of interest points is
detected in all images. However, this is not the case when a detection threshold is ap-
plied. The false positive rate is the number of detected points without correspondance to
any reference interest point divided by the number of detected points. Saturated areas re-
duce detection stability, as image information gets lost. To compensate this effect, which
does not depend on the detector but on the image data, interest points near saturated areas



10 20 30 40
0

0.2

0.4

0.6

0.8

1

image number

re
de

te
ct

io
n 

ra
te

neonsun sun +
neon

tungsten lamps

10 20 30 40
0

0.2

0.4

0.6

0.8

1

image number

fa
ls

e 
po

si
tiv

e 
ra

te

CHD
HHD+GV
RIHD
MSHD
+marginal
MSHD
+Nagao

sun neon sun +
neon

tungsten lamps

Figure 5: Detection stability for a complex scene with varying type, number, position and
orientation of the light sources. Redetection and false positive rates are indicated with
straight and dashed lines, respectively. Images 1 and 25 are shown in figure 4.

in either image are not taken into account for rate estimation.
A detection example on two images used in the evaluation is shown in figure 4 for

the MSHD+Nagao and for the CHD. With the m space Harris detector, interests points
are detected near edges between areas of different colours. Therefore, less interest points
are obtained. Stability is however increased as shown in figure 5, because shading and
shadow influences are reduced. So, the m space Harris detector is suitable for applications
requiring few but stable interest points, such as hypothesis generation for registration, ob-
ject recognition or localisation. As threshold T is low, the noise sensitivity of the m space
Harris detector, which cannot be entirely suppressed by preprocessing, is visible in figure
4: False positives appear in dark areas and in high frequency areas (where demosaicing
accuracy is low). They disappear for higher T . Therefore, noise level depends on image
content. Image acquisition should achieve a compromise between the size of saturated
areas and the size of dark areas. As far as complexity is concerned, the MSHD+marginal
and the MSHD+Nagao require approximately 8% and 61% more computing time than the
CHD. For comparison, the RIHD needs 101% more computing time than the CHD. The
HHD+GV is the fastest method: It requires 32% less computing time than the CHD.

The detection stability for a scene with complex 3D geometry is presented in figure
5. The CHD achieves by far the worst stability, as it only compensates lighting changes
causing the same variation for all channels and all pixels. The MSHD+Nagao yields the
best stability. In comparison, the MSHD+marginal achieves similar redetection rates but
it is more sensitive to noise (the false positive rate is higher). The RIHD yields slightly
better stability than the HHD+GV. For all detectors, worse results occur for tungsten
lamps as they produce a less diffuse illumination and darker, hence noisier, green values.

The results for two scenes with simple 3D geometry are given in figure 6. As above,
the CHD is the least stable detector. The stability discrepancy between the m space Harris
detector and the HHD+GV decreases, as shading has less influence on image data. The
performance of the MSHD+marginal is also improved, as the images contain less high
frequency areas, hence less demosaicing artifacts. For the series on the left, two illumi-
nant types are used simultaneously. As a consequence, white balancing does not work
accurately, especially for images 4, 9 and 12 (see figure 6). This reduces the stability of
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Figure 6: Detection stability for two simple scenes under varying number, position and
orientation of the light sources (right: neon and tungsten lamps, left: tungsten lamps).

the RIHD which relies on white balancing. The HHD+GV and the CHD cannot compen-
sate illuminant colour changes, hence the m space Harris detector (MSHD+marginal and
MSHD+Nagao) achieves the best stability. The series on the right shows a specular object
and allows to evaluate the sensitivity of the m space Harris detector to specularities. Here,
the HHD+GV and the RIHD perform best. The RIHD is more sensitive to noise in dark
image areas than the m space Harris detector, as shown by the numerous false positives
for images 4, 16 and 20.

5 Conclusion
A new interest point detector for colour images, the m space Harris detector, is proposed to
enhance detection stability under illumination changes. It is based on the Harris detector
and on the m space, which yields invariants to shadows, shading and illumination colour
for matte surfaces. As the algorithm relies on chrominance information, interest points
are detected only near edges between areas of different colours. The m space Harris de-
tector delivers fewer but more stable interest points than the usual detectors. However, the
algorithm is sensitive to wrong colour artifacts occuring in images acquired with single–
chip colour cameras. Therefore, high quality demosaicing methods should be preferred
in applications, for example WACPI [10]. The images can also be preprocessed with the
colour Nagao filter to reduce colour artifacts. The m space Harris detector was evaluated
on real images showing scenes under varying illumination. For this, it was compared to
the colour Harris detector [13], to the homomorphic Harris detector for grey–value im-
ages [4] and to the Harris detector based on robust shadow–shading invariants [18]. The
m space Harris detector yields the highest stability, especially when the scene geometry is
complex. A drawback is its sensitivity to specularities. To improve the results, automatic
methods could be used to adapt the detection threshold to the demosaicing noise level,
which depends on image data. Future work also includes a compensation or at least a



detection of specularities. Finally, the stability under simultaneous illumination change
and camera movement will be analysed.
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