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Abstract

Autonomous model building is a crucial trend in model based methods like
AAMs. This paper introduces an approach that deals with non-linearities by
detecting distinct sub-parts in the data. Sub-models each representing an in-
dividual sub-part are derived from a minimum description length criterion.
Thereby the resulting clique of models is more compact and obtains a bet-
ter generalization behavior than a single model. The proposed AAM clique
generation deals with non-linearities in the data in a generic information the-
oretic manner reducing the necessity of user interaction during training.

1 Introduction

Active Appearance Models (AAMd)) utilize principal component analysis for the gen-
eration of a linear model of shape and texture variation enabling an AAM search to detect
objects even under difficult image conditions. They have proven to be very successful in
interpreting complex image data. Due to noise, overlapping structures of varying shape,
and the need to consistently identify instances of anatomical structures in a large number
of images of potentially different patients, the use of a priori knowledge is particularly
useful in medical imaging [2]. Furthermore it can be used to adopt a notion of healthy
versus pathologically altered shapes [8].

Since non-linearities violate the linearity assumption of PCA utilized in AAM build-
ing, they degrade the compactness and thus the efficiency of the resulting models. Among
other reasons non-linearities can occur due to movement of distinct anatomical structures.
Various approaches to deal with specific non-linearities have been proposed. In [12, 13]
they were dealt with by polynomial regression or multi-layer perceptrons. However the

*This research has been supported by the Austrian Science Fund (FWF) under the grant P17083-N04
(AAMIR). Part of this work has been carried out within the K-plus Competence center ADVANCED COM-
PUTER VISION funded under the K plus program.

BMVC 2005 doi:10.5244/C.19.87



a. b. c. d. e. f.

Figure 1. a.-d.: Aligned set of rotating rectangles, each with changing aspect ratio, and
first 3 modes of variation. e.-f.: first modes for the separate rectangles (the small lines
indicate the modes of variations for each landmark point).

order of polynomials or the architecture of the network had to be chosen application spe-
cific. In [3] mixture models were used resulting in more reliable models but becoming
un-feasible for large training set sizes. In [8] snakes were used to deal with pathological
local non-linearities during the search procedure. In Fig. 1 a simple example of non-linear
shape variation is depicted. Two rectangles rotate against each other while independently
changing aspect ratio. In Fig. 1a-d the aligned shape set and the first 3 modes of variation
resulting from the entire shape are shown. The modes are visualized by the mean shape
and lines indicating the deformation caused by the modes of shape variation. Note that
aspect ratio and rotation changes interact with each other and deteriorate the compactness
of the model considerably. In Fig. le-f the two rectangles are modelled separately and
the change of aspect ratio is plausibly represented in the first modes. A correct determi-
nation of distinct entities in the data seems to be a worthwhile alternative to modelling
the non-linear variations and is a crucial step to build compact and efficient models. In
this paper theninimum description length (MDlprinciples capability to perform an au-
tomatic identification of distinct entities will be explored.

The MDL principle has been used successfully as a model selection criterion in dif-
ferent applications. It allows for the comparison of likelihoods of different models that
describe given data. In [9] an MDL based technique was used for image segmentation. In
[5] MDL was used to establish landmark correspondences on a set of shapes defined by
continuous contours before active shape model training was performed in order to obtain
a model not compromised by artefacts of mere landmark placement. In [17] group-wise
non-rigid registration was performed with help of MDL. A method proposed in [11] uses
MDL to select hypotheses for robust appearance based object recognition. In [10] multi-
ple eigenspaces were build in order to account for groups of different objects present in
a training set, thereby improving recognition results, using better and more specialized
models.

The contribution of this paper is an algorithm that splits AAMs in order to model
given training data with a set of sub-models (we call thisreetel cliqug instead of
a single model. A general criterion function based on the MDL principle is proposed
making the approach applicable to other models as well. The AAM clique generation
procedure utilizes this criterion for the splitting of AAMs with respect to the eigenspace
model representing the landmarks. Finally building a multiple AAM clique taking texture
into account and allowing for efficient search is explained. The work is an extension



of optimal sub-shape model generation [7] where connected shape data is split without
dealing with texture or disconnected sub-models.

The paper is structured as follows: In Sec. 2 a criterion function for multiple model
selection is introduced, which in Sec. 3.1 is used to determine an optimal sub division of
given data. In Sec. 3.2 the composition of the corresponding AAM clique is described.
After experimental results are presented in Sec. 4, in Sec. 5 a final discussion is given.

2 A criterion for multiple model selection

After proposing an MDL formulation for multiple models a criterion function that allows
for the splitting of eigenspace shape models will be formulated.

Minimum description length In order to find an optimal model cliqgue describing the
data set the minimum description length principle is used [14, 15]. It states that maximiz-
ing the likelihood of a model# given certain dat® is equivalent to minimizing the cost

of communicating the model itself and the data encoded with help of the model i.e.

L(D,.#) = L(.4)+L(D|.). (1)

To model the AAM shape data PCA is applied to the coordinate vectors defining the
positions of the landmarks. The MDL criterion will be used to judge the encoding of
the shape data with cliques of sub AAMs, and ultimately aims at obtaining an optimal
sub-division of the data based on the spatial variation.

Multiple models A set of modelq.#1,...,.#,} each representing a part of the dBta
with every part of the data covered by at least one model will be call@d@el clique

M = (A,..., 407 ), where” holds the information of the data parts corresponding
to the individual sub-models. We minimize

CM) =L(#)+ 5 L) +L(Di| M)+, 2)
MEM

whereL(.¥) is the additional cost for transmitting the splitting information, adds a
penalty for the residual error. This corresponds to the maximization of the likelihood of
the model clique.

Description length of statistical shape models AAM represent shapes by a finite set of
nlandmarks. Each afy shapes in the training set can then be represented bym#n-

sional vectorx; generated by concatenation of thk@andy coordinates in 2 dimensional

data (extensions to 3D are straightforward). In order to achieve a compact representation
PCA is used on the sdl;,i = 1,...,nt} and thereby creates a new coordinate system
that represents each of the vectors

Xj =X+ Z ajej, 3
=1

in an optimal way. The modes are the eigenvectors of the covariance matrix sorted
according to decreasing eigenvaliie X is the mean shape amg can be chosen to fulfill
a given accuracy constraint. The eigenvaldgsorrespond to the variance of the data in
the directiore;.

If we model shape data by a multivariate Gaussian in the directions of the decorrelated
eigenvector®; as described above we can apply Shannons coding theorem [16] to each



of these 1D distributions. The corresponding coefficieijntsre quantized by the step size
A, which is related to the pixel-size, and are strictly boundedRpyFor each training
samplex; the new discrete coordinate’?‘ = KAim,k € Z with —R;j/2 < &; < R;j/2 are
modelled by a Gaussian distribution with coefficient mean valpe- 0 and standard
deviationoj = /4;.

For each dimensionof the eigenspace used to encode the data the transmission costs
of the modeIL((///q) are the quantized eigenvectar, and the quantization parameter
6; for the directione;. L(D|.#) is the cost of transmitting the data i.e. the quantized
coefficientsa’ of the training set with respect to the directign

The description length for the data encoded wittnglimensional eigenspace is the
sum of the transmission costs for the data encoded using the eigenv@giors . n,
together with the penalty for the residual error

Np

zl(L(///q)JrL(DMl%)) s @)
i=

The Criterion function for muliple eigenspace models A set of nt example shapes

each defined by corresponding landmarks is given. The general MDL formulation in

Eq. 2 can now be applied to a set of multivariate Gaussians each representing a sub-shape
i.e. a sub set of these landmarks. From that we will derive the criterion function allowing
for automatic splitting of AAMs. Although the primary thread refers to shape models the
application to any vector data is straightforward. When Eqg. 2 is applied to a diquie
eigenspace model#y, the criterion becomes

nm

C(M)=L()+ ; (pﬁm%), (5)
M. AmeM \ J=

wheren’,}? =max{j : oj > Aim} is the dimension of the utilized eigenspace fdn.
L(.~) is the additional cost to transmit the split information. This term acts as a penalty
for additional splits and prohibits possible trivial solutions. In our das#’) is the cost
of assigning each afi landmarks a sub-model. Assumihg> 1 sub-models and equal
probability for all possible split positions, the cost is

L(#) =n-logy(l) (6)
%jm is the coding cost term for thgh eigendirection of the eigenspact,

O, — Omi
e = 1+|0g2(w)+|logzéj|—nTIong|m+ (7)
j
2
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whereomax= R/2 andomin = 2A|m. Ris the strict upper bound of the coefficients w.r.t.
the distribution. A detailed derivation of the description length of 1D Gaussians is given
in [5]. Z is the penalty for the residual error that remains after fitting the training set with

the model
2n

A=nr 5 A (8)
j=np+1



Figure 2: Generation of new texture patches (gray); left: initial triangulation, the dashed
lines are edges that now connect different sub-models; right: triangulation after adding
additional landmarks

3 Splitting AAMs

Utilizing Eqg. 5 an optimal sub division of an AAM can be accomplished by optimization.
An AAM clique representing the training data in a more efficient manner can be gener-
ated by splitting the AAM based on the shape information. Taking texture into account
would make a deformation of the entire training set texture with respect to the landmark
sub-division necessary for each step, making it unfeasible for optimization. However the
landmark information is sufficient to give a sub-division that enhances texture represen-
tation as well (see Fig. 5c).

3.1 Finding an optimal sub-model clique

Given a set of shapes, the criterion in Eq. 5 is used to find an optimal set of sub-models
describing the training set in a more efficient manner than a single model would do. Al-
though constraints like connectivity conditions or a priori neighbourhood relations could
be used to influence the sub-model generation they are not necessary. The results in
this paper are derived only from the landmark coordinate information without constraints
enabling the algorithm to generate non-connected sub-models which is sensible in cases
where symmetry is present e.g. faces. For the clarity of presentation additional constraints
were set aside during the experiments. However using these contraints a considerable
speed up might be obtained. The algorithm to generate the sub-model clique performs as
follows:

1. Initialization ~ Givennr sets ofn corresponding landmarki }i—1,.. n and a number
L of sub-models, each landmark is assigned a random sub-mode] labfl, L] resulting
in a membership functiom € {1,...,L}".

2. Optimization Each data par{x}}i:1 n, corresponding to a sub-modeile. where

x = (xjl/m(j) =) is aligned, the eigenspace of shape variation is calculated and the
description length of the entire clique is determined according to Eq. 5. A simulated
annealing process [6] optimizes with respect taC(M). That is in each step a land-
mark can change its sub-model i.g.andl; € {1,...,L}\ m(j,) are chosen randomly,
m’(jr) =, and the corresponding new criterion function vali{&!’) is calculated. Given
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Figure 3: a. Medical radiograph data and b. face video data.

a temperature valug the membership function is updated — m’ with probability
p = exp6(C(M') —C(M))/T). With a reasonable decrease scheduld afuring the
process it converges at the global minimumQgM) with high probability, resulting in
the final model cliquéM ¢jng.

3. Cleaning Although from a purely information theoretic standpoiit;,; has to be
considered as optimal, a final step using a neighbourhood reldfion) established by

a simple Delaunay triangulation of the mean shape can improve the result slightly. The
use of neighbourhood is a reasonable due to the spatial nature of the data. Hence during
a final cleaning step isolated landmarks i.e. landmbgks .#; that are totally enclosed

by different sub-modelk, € .#j,,, jn # i change their membership to the sub-madé!

with the highest number of neighboursltg. This procedure results i

final*
3.2 Composing the final AAM clique

The model cliqueMg,, resulting from the opimization gives a partitioning of the set of
landmarks constituting the single AAM. Each of the sub-models exhibits its one param-
eter set. A straightforward Delaunay triangulation of each landmark sub set could result
in sub optimal texture representations due to gaps between sub-models and large overlap-
ping texture patches. In order to represent the texture properly the landmark triangulation
is performed as follows:

1. Adding additional landmarks Given the sub-model landmaris parts that were

not connected in the initial Delaunay triangulatiringe Of the single model stay non-
connected. For each of these parts a set of additional landmarks is generated in order to
capture texture information in between sub-AAMs. In Fig. 2 two parts of different sub-
models are depicted. For each landmark .7 that is corner of a trianglei; € tri sipgie

with 2 landmarkss,, s3 part of a different sub-model an additional landmsgy € .7 is

placed on the ray defined by the landmark and the centroid of the triangle. The distance is
defined by a factod,qq determing how much of the texture between the sub-AAMs is to

be represented. Since the additional landmarks depend only on one sub-model a seamless
coverage of the texture between the sub-models is no longer ensured. If inbetween texture
is important an overlap can be effected by increasipg.

2. Sub-model triangulation Each part of the landmarks of the resulting sub moﬂ|els
is Delaunay triangulated within its convex hull. However if necessary a more restrictive
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Figure 4: a. Initial data, b. generated AAM clique and c. cleaned AAM clique for hand
radiograph data.
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Figure 5: a. Reconstruction error, b. captured variance for landmarks and c. for texture of
hand bones. dashed line: single model, solid line: model clique, circles: cleaned model
clique.

hull can be chosen in order to avoid a high degree of overlapping texture patches.

4 Experiments

Setup Evaluation results will be given for two data sets: 1. For 40 hand radiographs
metacarpals and proximal phalanges 2 were segmented by a radiologist and corre-
spondences for 128 landmarks were established by an MDL based method [5]. 2. Face
data of a face talking made available by [1]. 68 landmarks were tracked by an AAM
over a sequence of 5000 frames of which 80 frames were randomly picked for model
building and splitting. The resulting AAM cliques were evalutated with respect to the
reconstruction error and the variation captured in the model.

Hand data In Fig. 4 the splitting results for the medical data is presented. Fig. 4a.
shows the texture triangulation of a single AAM, Fig. 4b. shows texture triangulations
for an AAM clique composed of 8 sub-models resulting from simulated annealing and
Fig. 4c. shows the AAM clique after cleaning. The decomposition of anatomical struc-
tures is nearly correct. Although the radiographs were acquired during a standard protocol
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Figure 6: Bone data: asland b. 29 mode of shape variation for single model, &, 2"
and 3% mode of shape variation for sub models.

designed to avoid varying hand posture i.e. individual bone rotations even the bones in the
carpus are detected as distinct entitites. In the proximal region overlaps of the bones occur
and are mirrored in the resulting sub-models. Fig. 5 gives a quantitative evaluation of the
resulting AAM cligue. With 3 modes the AAM clique represents@8 of the variation

in the data as opposed t0.8% with a single model. The cleaning step improves this
compactness only marginally to 296. The reconstruction error with 5 modes lies & 1

pixel for the model clique, and at&pixel for the single model. Even though only land-
mark information was used during the clique generation the compactness of the texture
model improves as well (Fig. 5¢). Figs. 6 and 7 depict the first modes of variation for the
single model and two sub-models for shape and texture, respectively. It can be observed
that the variation of bone shape is represented much more explicitly by the sub-models.

Face Data Fig. 8 shows the splitting results for the data of 80 frames taken from a
sequence of a talking face. Sub-models are indicated by numbers. The AAM clique is
constituted of 5 sub-models situated symmetrically w.r.t. the vertical face axis. 2 of the
sub-models consist of hon-connected parts. The quantitative evaluation indicates only
minor improvement of the model compactness, for 3 modes represented variation is in-
creased from 98% to 993%. The reason for the small improvement could lie in the
data acquisition by an AAM based tracking method. Nevertheless the automatic parti-
tion of the face landmarks corresponds to intuitively sensible parts of a face (eyes, nose,
mouth) and mirrors the inherent symmetry soundly. A connectivity constraint would have
hindered this result. An interesting obeservation is that although no connectivity or neigh-
bourhood constraints are applied large connected components of spatially neighbouring
landmarks emerge fairly early in the optimization process.

5 Conclusion

This paper proposes an MDL based method to automatically split active appearance mod-
els into cliques of sub-models. Thereby the compactness of the resulting representation
can be increased resulting in improved generalisation behavior and a more efficient AAM
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Figure 7: Bone data: a.1and b. 29 mode of texture variation for single model, c.
15,274 and 39 mode of texture variation for sub models.
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Figure 8: Face data: a. Initial data, b. generated AAM clique and c. cleaned AAM clique.

search. Results indicate that the method is able to distinguish anatomical structures or
even facial features by using their modelling behavior. It deals with non-linearities in the
data in a generic manner allowing for less user interaction during training.

The optimization algorithm utilized is applicable to other data as well. The interde-
pendency between the sub-models are neglected so far, current work concentrates on a
feasible meta-model and an optimization procedure including assignment of the number
of necessary sub-models. Future work will concentrate on efficient search methods for
cligues of sub-models and application to other data not necessarily of spatial nature. Ul-
timatly this work aims at more autonomous model building techniques being able to cope
with complex data considering the occurence of distinct entities.
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