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Abstract

Autonomous model building is a crucial trend in model based methods like
AAMs. This paper introduces an approach that deals with non-linearities by
detecting distinct sub-parts in the data. Sub-models each representing an in-
dividual sub-part are derived from a minimum description length criterion.
Thereby the resulting clique of models is more compact and obtains a bet-
ter generalization behavior than a single model. The proposed AAM clique
generation deals with non-linearities in the data in a generic information the-
oretic manner reducing the necessity of user interaction during training.

1 Introduction
Active Appearance Models (AAMs)[4] utilize principal component analysis for the gen-
eration of a linear model of shape and texture variation enabling an AAM search to detect
objects even under difficult image conditions. They have proven to be very successful in
interpreting complex image data. Due to noise, overlapping structures of varying shape,
and the need to consistently identify instances of anatomical structures in a large number
of images of potentially different patients, the use of a priori knowledge is particularly
useful in medical imaging [2]. Furthermore it can be used to adopt a notion of healthy
versus pathologically altered shapes [8].

Since non-linearities violate the linearity assumption of PCA utilized in AAM build-
ing, they degrade the compactness and thus the efficiency of the resulting models. Among
other reasons non-linearities can occur due to movement of distinct anatomical structures.
Various approaches to deal with specific non-linearities have been proposed. In [12, 13]
they were dealt with by polynomial regression or multi-layer perceptrons. However the
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Figure 1: a.-d.: Aligned set of rotating rectangles, each with changing aspect ratio, and
first 3 modes of variation. e.-f.: first modes for the separate rectangles (the small lines
indicate the modes of variations for each landmark point).

order of polynomials or the architecture of the network had to be chosen application spe-
cific. In [3] mixture models were used resulting in more reliable models but becoming
un-feasible for large training set sizes. In [8] snakes were used to deal with pathological
local non-linearities during the search procedure. In Fig. 1 a simple example of non-linear
shape variation is depicted. Two rectangles rotate against each other while independently
changing aspect ratio. In Fig. 1a-d the aligned shape set and the first 3 modes of variation
resulting from the entire shape are shown. The modes are visualized by the mean shape
and lines indicating the deformation caused by the modes of shape variation. Note that
aspect ratio and rotation changes interact with each other and deteriorate the compactness
of the model considerably. In Fig. 1e-f the two rectangles are modelled separately and
the change of aspect ratio is plausibly represented in the first modes. A correct determi-
nation of distinct entities in the data seems to be a worthwhile alternative to modelling
the non-linear variations and is a crucial step to build compact and efficient models. In
this paper theminimum description length (MDL)principles capability to perform an au-
tomatic identification of distinct entities will be explored.

The MDL principle has been used successfully as a model selection criterion in dif-
ferent applications. It allows for the comparison of likelihoods of different models that
describe given data. In [9] an MDL based technique was used for image segmentation. In
[5] MDL was used to establish landmark correspondences on a set of shapes defined by
continuous contours before active shape model training was performed in order to obtain
a model not compromised by artefacts of mere landmark placement. In [17] group-wise
non-rigid registration was performed with help of MDL. A method proposed in [11] uses
MDL to select hypotheses for robust appearance based object recognition. In [10] multi-
ple eigenspaces were build in order to account for groups of different objects present in
a training set, thereby improving recognition results, using better and more specialized
models.

The contribution of this paper is an algorithm that splits AAMs in order to model
given training data with a set of sub-models (we call this setmodel clique) instead of
a single model. A general criterion function based on the MDL principle is proposed
making the approach applicable to other models as well. The AAM clique generation
procedure utilizes this criterion for the splitting of AAMs with respect to the eigenspace
model representing the landmarks. Finally building a multiple AAM clique taking texture
into account and allowing for efficient search is explained. The work is an extension



of optimal sub-shape model generation [7] where connected shape data is split without
dealing with texture or disconnected sub-models.

The paper is structured as follows: In Sec. 2 a criterion function for multiple model
selection is introduced, which in Sec. 3.1 is used to determine an optimal sub division of
given data. In Sec. 3.2 the composition of the corresponding AAM clique is described.
After experimental results are presented in Sec. 4, in Sec. 5 a final discussion is given.

2 A criterion for multiple model selection
After proposing an MDL formulation for multiple models a criterion function that allows
for the splitting of eigenspace shape models will be formulated.

Minimum description length In order to find an optimal model clique describing the
data set the minimum description length principle is used [14, 15]. It states that maximiz-
ing the likelihood of a modelM given certain dataD is equivalent to minimizing the cost
of communicating the model itself and the data encoded with help of the model i.e.

L(D,M ) = L(M )+L(D|M ). (1)

To model the AAM shape data PCA is applied to the coordinate vectors defining the
positions of the landmarks. The MDL criterion will be used to judge the encoding of
the shape data with cliques of sub AAMs, and ultimately aims at obtaining an optimal
sub-division of the data based on the spatial variation.

Multiple models A set of models{M1, . . . ,Mn} each representing a part of the dataD
with every part of the data covered by at least one model will be called amodel clique
M = 〈M1, . . . ,Mn;S 〉, whereS holds the information of the data parts corresponding
to the individual sub-models. We minimize

C(M) = L(S )+ ∑
Mi∈M

L(Mi)+L(Di |Mi)+R, (2)

whereL(S ) is the additional cost for transmitting the splitting information, andR is a
penalty for the residual error. This corresponds to the maximization of the likelihood of
the model clique.

Description length of statistical shape models AAM represent shapes by a finite set of
n landmarks. Each ofnT shapes in the training set can then be represented by a 2n dimen-
sional vectorxi generated by concatenation of thex andy coordinates in 2 dimensional
data (extensions to 3D are straightforward). In order to achieve a compact representation
PCA is used on the set{xi , i = 1, . . . ,nT} and thereby creates a new coordinate system
that represents each of the vectors

xi = x̄+
np

∑
j=1

a jej , (3)

in an optimal way. The modesej are the eigenvectors of the covariance matrix sorted
according to decreasing eigenvalueλ j . x̄ is the mean shape andnp can be chosen to fulfill
a given accuracy constraint. The eigenvaluesλ j correspond to the variance of the data in
the directionej .

If we model shape data by a multivariate Gaussian in the directions of the decorrelated
eigenvectorsej as described above we can apply Shannons coding theorem [16] to each



of these 1D distributions. The corresponding coefficientsai
j are quantized by the step size

∆Im which is related to the pixel-size, and are strictly bounded byRj . For each training
samplexi the new discrete coordinates ˆai

j = k∆Im,k ∈ Z with −Rj/2 ≤ â j ≤ Rj/2 are
modelled by a Gaussian distribution with coefficient mean valueµ j = 0 and standard
deviationσ j =

√
λ j .

For each dimensionj of the eigenspace used to encode the data the transmission costs
of the modelL(Mej ) are the quantized eigenvector,σ̂ j and the quantization parameter
δ j for the directionej . L(D|Mej ) is the cost of transmitting the data i.e. the quantized
coefficients ˆai

j of the training set with respect to the directionej .
The description length for the data encoded with annp dimensional eigenspace is the

sum of the transmission costs for the data encoded using the eigenvectors(ej) j=1,...,np

together with the penalty for the residual error
np

∑
j=1

(
L(Mej )+L(D|Mej )

)
+R. (4)

The Criterion function for muliple eigenspace models A set of nT example shapes
each defined byn corresponding landmarks is given. The general MDL formulation in
Eq. 2 can now be applied to a set of multivariate Gaussians each representing a sub-shape
i.e. a sub set of these landmarks. From that we will derive the criterion function allowing
for automatic splitting of AAMs. Although the primary thread refers to shape models the
application to any vector data is straightforward. When Eq. 2 is applied to a cliqueM of
eigenspace modelsMm the criterion becomes

C(M) = L(S )+ ∑
m:Mm∈M

(
nm

p

∑
j=1

C m
j +R

)
, (5)

wherenm
p = max{ j : σ j > ∆Im} is the dimension of the utilized eigenspace forMm.

L(S ) is the additional cost to transmit the split information. This term acts as a penalty
for additional splits and prohibits possible trivial solutions. In our caseL(S ) is the cost
of assigning each ofn landmarks a sub-model. Assumingl ≥ 1 sub-models and equal
probability for all possible split positions, the cost is

L(S ) = n· log2(l) (6)

C m
j is the coding cost term for thejth eigendirection of the eigenspaceMm

C m
j = 1+ log2(

σmax−σmin

δ j
)+ | log2 δ j |−nT log2 ∆Im + (7)

+
nT

2
log2(2πσ

2
j )+

nT

2
+

nTδ 2
j

12σ2
j

,

whereσmax= R/2 andσmin = 2∆Im. R is the strict upper bound of the coefficients w.r.t.
the distribution. A detailed derivation of the description length of 1D Gaussians is given
in [5]. R is the penalty for the residual error that remains after fitting the training set with
the model

R = nT

2n

∑
j=np+1

λ j . (8)



Figure 2: Generation of new texture patches (gray); left: initial triangulation, the dashed
lines are edges that now connect different sub-models; right: triangulation after adding
additional landmarks

3 Splitting AAMs

Utilizing Eq. 5 an optimal sub division of an AAM can be accomplished by optimization.
An AAM clique representing the training data in a more efficient manner can be gener-
ated by splitting the AAM based on the shape information. Taking texture into account
would make a deformation of the entire training set texture with respect to the landmark
sub-division necessary for each step, making it unfeasible for optimization. However the
landmark information is sufficient to give a sub-division that enhances texture represen-
tation as well (see Fig. 5c).

3.1 Finding an optimal sub-model clique

Given a set of shapes, the criterion in Eq. 5 is used to find an optimal set of sub-models
describing the training set in a more efficient manner than a single model would do. Al-
though constraints like connectivity conditions or a priori neighbourhood relations could
be used to influence the sub-model generation they are not necessary. The results in
this paper are derived only from the landmark coordinate information without constraints
enabling the algorithm to generate non-connected sub-models which is sensible in cases
where symmetry is present e.g. faces. For the clarity of presentation additional constraints
were set aside during the experiments. However using these contraints a considerable
speed up might be obtained. The algorithm to generate the sub-model clique performs as
follows:

1. Initialization GivennT sets ofn corresponding landmarks{xi}i=1,...,n and a number
L of sub-models, each landmark is assigned a random sub-model labelj → [1,L] resulting
in a membership functionm ∈ {1, . . . ,L}n.

2. Optimization Each data part{xl
i}i=1,...,nl corresponding to a sub-modell i.e. where

xl
i = 〈x j |m( j) = l〉 is aligned, the eigenspace of shape variation is calculated and the

description length of the entire clique is determined according to Eq. 5. A simulated
annealing process [6] optimizesm with respect toC(M). That is in each step a land-
mark can change its sub-model i.e.jr and lr ∈ {1, . . . ,L} \m( jr) are chosen randomly,
m′( jr) = lr and the corresponding new criterion function valueC(M′) is calculated. Given
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Figure 3: a. Medical radiograph data and b. face video data.

a temperature valueT the membership function is updatedm → m′ with probability
p = exp(δ (C(M′)−C(M))/T). With a reasonable decrease schedule ofT during the
process it converges at the global minimum ofC(M) with high probability, resulting in
the final model cliqueM f inal .

3. Cleaning Although from a purely information theoretic standpointM f inal has to be
considered as optimal, a final step using a neighbourhood relationN(i, j) established by
a simple Delaunay triangulation of the mean shape can improve the result slightly. The
use of neighbourhood is a reasonable due to the spatial nature of the data. Hence during
a final cleaning step isolated landmarks i.e. landmarksl iso ∈ Mi that are totally enclosed
by different sub-modelsln ∈ M jn, jn 6= i change their membership to the sub-modelMk

with the highest number of neighbours tol iso. This procedure results inM′
final.

3.2 Composing the final AAM clique

The model cliqueMfinal resulting from the opimization gives a partitioning of the set of
landmarks constituting the single AAM. Each of the sub-models exhibits its one param-
eter set. A straightforward Delaunay triangulation of each landmark sub set could result
in sub optimal texture representations due to gaps between sub-models and large overlap-
ping texture patches. In order to represent the texture properly the landmark triangulation
is performed as follows:

1. Adding additional landmarks Given the sub-model landmarksxl
i parts that were

not connected in the initial Delaunay triangulationtri single of the single model stay non-
connected. For each of these parts a set of additional landmarks is generated in order to
capture texture information in between sub-AAMs. In Fig. 2 two parts of different sub-
models are depicted. For each landmarks1 ∈Ml that is corner of a triangletri i ∈ tri single

with 2 landmarkss2,s3 part of a different sub-model an additional landmarksadd∈ M̃l is
placed on the ray defined by the landmark and the centroid of the triangle. The distance is
defined by a factordadd determing how much of the texture between the sub-AAMs is to
be represented. Since the additional landmarks depend only on one sub-model a seamless
coverage of the texture between the sub-models is no longer ensured. If inbetween texture
is important an overlap can be effected by increasingdadd.

2. Sub-model triangulation Each part of the landmarks of the resulting sub modelsx̃l
i

is Delaunay triangulated within its convex hull. However if necessary a more restrictive
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Figure 4: a. Initial data, b. generated AAM clique and c. cleaned AAM clique for hand
radiograph data.
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Figure 5: a. Reconstruction error, b. captured variance for landmarks and c. for texture of
hand bones. dashed line: single model, solid line: model clique, circles: cleaned model
clique.

hull can be chosen in order to avoid a high degree of overlapping texture patches.

4 Experiments
Setup Evaluation results will be given for two data sets: 1. For 40 hand radiographs
metacarpals and proximal phalanges 2− 5 were segmented by a radiologist and corre-
spondences for 128 landmarks were established by an MDL based method [5]. 2. Face
data of a face talking made available by [1]. 68 landmarks were tracked by an AAM
over a sequence of 5000 frames of which 80 frames were randomly picked for model
building and splitting. The resulting AAM cliques were evalutated with respect to the
reconstruction error and the variation captured in the model.

Hand data In Fig. 4 the splitting results for the medical data is presented. Fig. 4a.
shows the texture triangulation of a single AAM, Fig. 4b. shows texture triangulations
for an AAM clique composed of 8 sub-models resulting from simulated annealing and
Fig. 4c. shows the AAM clique after cleaning. The decomposition of anatomical struc-
tures is nearly correct. Although the radiographs were acquired during a standard protocol
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Figure 6: Bone data: a. 1st and b. 2nd mode of shape variation for single model, c. 1st,2nd

and 3rd mode of shape variation for sub models.

designed to avoid varying hand posture i.e. individual bone rotations even the bones in the
carpus are detected as distinct entitites. In the proximal region overlaps of the bones occur
and are mirrored in the resulting sub-models. Fig. 5 gives a quantitative evaluation of the
resulting AAM clique. With 3 modes the AAM clique represents 98.7% of the variation
in the data as opposed to 89.1% with a single model. The cleaning step improves this
compactness only marginally to 99.2%. The reconstruction error with 5 modes lies at 1.6
pixel for the model clique, and at 6.6 pixel for the single model. Even though only land-
mark information was used during the clique generation the compactness of the texture
model improves as well (Fig. 5c). Figs. 6 and 7 depict the first modes of variation for the
single model and two sub-models for shape and texture, respectively. It can be observed
that the variation of bone shape is represented much more explicitly by the sub-models.

Face Data Fig. 8 shows the splitting results for the data of 80 frames taken from a
sequence of a talking face. Sub-models are indicated by numbers. The AAM clique is
constituted of 5 sub-models situated symmetrically w.r.t. the vertical face axis. 2 of the
sub-models consist of non-connected parts. The quantitative evaluation indicates only
minor improvement of the model compactness, for 3 modes represented variation is in-
creased from 98.3% to 99.3%. The reason for the small improvement could lie in the
data acquisition by an AAM based tracking method. Nevertheless the automatic parti-
tion of the face landmarks corresponds to intuitively sensible parts of a face (eyes, nose,
mouth) and mirrors the inherent symmetry soundly. A connectivity constraint would have
hindered this result. An interesting obeservation is that although no connectivity or neigh-
bourhood constraints are applied large connected components of spatially neighbouring
landmarks emerge fairly early in the optimization process.

5 Conclusion
This paper proposes an MDL based method to automatically split active appearance mod-
els into cliques of sub-models. Thereby the compactness of the resulting representation
can be increased resulting in improved generalisation behavior and a more efficient AAM
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Figure 7: Bone data: a. 1st and b. 2nd mode of texture variation for single model, c.
1st,2nd and 3rd mode of texture variation for sub models.
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Figure 8: Face data: a. Initial data, b. generated AAM clique and c. cleaned AAM clique.

search. Results indicate that the method is able to distinguish anatomical structures or
even facial features by using their modelling behavior. It deals with non-linearities in the
data in a generic manner allowing for less user interaction during training.

The optimization algorithm utilized is applicable to other data as well. The interde-
pendency between the sub-models are neglected so far, current work concentrates on a
feasible meta-model and an optimization procedure including assignment of the number
of necessary sub-models. Future work will concentrate on efficient search methods for
cliques of sub-models and application to other data not necessarily of spatial nature. Ul-
timatly this work aims at more autonomous model building techniques being able to cope
with complex data considering the occurence of distinct entities.
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