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Abstract

Morphological scale-spaces have become an important tool for analysing
greyscale images. However, their extension to colour images has proven elu-
sive until recently. In this paper an original evaluation of two recently pro-
posed colour sieves is presented, both algorithmically and in terms of their
computational and segmentation performance. A new colour sieve structure
is also proposed, motivated by the relative advantages of the two sieves pre-
viously studied. A quantitative evaluation of the segmentation performance
using a set of images with human ground truth from the Berkeley dataset
shows the new method to produce the best segmentation performance.

1 Introduction

Morphological scale-space filters provide an attractive alternative to diffusion methods
for the hierarchical analysis, segmentation [16] and classification [1] of greyscale images.
Current greyscale morphology scale-spaces can be considered to belong to two categories:
those based on the use of fixed structuring elements [13, 4] and those that employ area
operators [2, 1]. Both classes are implemented by the application of successive openings
and closings of increasing scale to produce a tree-based image representation. Of the two
approaches the latter is the most attractive as it obeys the property of strong causality and,
unlike the former, does not require any a priori knowledge of the shape of objects present.
In common with other morphological methods, major difficulties are encountered
when trying to extend morphological scale-spaces to colour or other multichannel im-
ages as vector values cannot be placed in an unambiguous order. There have been some
attempts to propose definitions for colour openings and closings for fixed structuring ele-
ments [3] that could be employed for scale-spaces but it is the advantages of the area mor-
phology approach that have lead to its extension to colour receiving recent attention. In
particular, in 2003 two approaches to colour morphological scale-spaces were presented,
here referred to as the convex colour sieve (CCS) [8, 9] and the vector area morphology
sieve (VAMS) [5, 6]. These sieves employ connected operators which operate by altering
the colour of connected regions of constant colour, called flat zones, to produce regions
that show some correspondence with image objects and, in the greyscale case, have been
formally related to segmentation algorithms based on region merging/classification [7].
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This paper presents a comparison of the two colour sieve methods, both algorith-
mically and in terms of evaluating their extrema definition, processing speed and seg-
mentation performance. In addition, a new colour sieve structure is proposed that seeks to
combine the relative merits of the two methods. Section 2 briefly reviews greyscale sieves
and describes the CCS and VAMS algorithms. Section 3 presents the new colour sieve
structure and a comprehensive performance evaluation is undertaken in section 4, includ-
ing a quantitative evaluation of the sieves’ segmentation performance using the Berkeley
segmentation dataset. Finally, discussion and conclusions are given in section 5.

2 Colour Morphological Scale-Spaces

A greyscale area open-close (AOC) sieve can be formed by successive area openings and
closings of increasing scale [1] and, for the images defined by

AOG(X) = ¢V (#7112 4(- (92Y5($7Y2(X))))) 1)

wherey? and¢? are respectively area openings and closings to an area lifittiis sieve
structure is also known as a# sieve [2] and forms a tree as the maxima and minima
are merged with their closest greyscale neighbour. In a similar manner, the closings can
be performed before the openings, giving rise to an area close-open (AC®)ieve.
Combining the maxima and minima in this manner ensures the property of strong causal-
ity, with no new extrema being generated as the scale increases. Alternatively, maxima
and minima can be treated separately to give the max- and min-trees of [14].
Algorithmically, area morphological scale-space algorithms follow these steps:

1. Identification of extrema regions;
2. Merge all scale 1 extrema regions with their nearest neighbour;
3. Repeat step 2 with increasing scale until only 1 region remains.

The CCS and the VAMS were developed independently and first presented within a
few days of each other at Scale-Space 2003 [8] and the 2003 IEEE-EURASIP Workshop
on Nonlinear Signal and Image Processing [5] respectively. Although they differ in some
aspects, the two techniques follow the same general algorithm:

1. Identification of extrema regions;

2. Merge all scale 1 extrema regions with their nearest neighbour;

3. Repeat steps 1 and 2 until no extrema are found at current scale;

4. Repeat steps 1 to 3 with increasing scale until only 1 region remains.

Comparing the greyscale and colour scale-space algorithms, it can be seen that the
latter requires an additional stage (step 3) to ensure itempotence. This is because the
process of merging in vector spaces can result in the creation of new extrema in the area of
influence of the merged regions. Both the CCS and the VAMS use the Euclidean distance
to select the closest region for merging with in Step 2, although they differ in how ties
are resolved: the CCS uses luminance, then individual colour channels while the VAMS
uses scan order. They also both only process extrema as it is not possible to differentiate
between maxima and minima for vector values. Therefore, their main difference lies in
the mechanism for determining extreme regions in Step 1 of the algorithm and to provide
a comparison between the two techniques their approaches are discussed in detail below.
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Figure 1: Colour sieves example using 8nn connectivity. (a) Complex image, (b) convex
hull for 5— 1i region and (c) VAMS scalar image with extrema marked in bold.

2.1 Determination of Extrema

Unlike greyscale sieves, the multivariate data associated with colour sieves cannot be
unambiguously ordered and as the CCS and VAMS use different extrema definitions they
produce different extrema for a given image. As colour sieves generate additional extrema
at each scale as a result of the region merging process the behaviour of a colour sieve is in
a large part determined by the proportion of image regions marked as extreme, which in
turn depends on the extrema definition. If a high proportion of extrema regions is found
then the repetition of steps 1 and 2 of the algorithm will result in few, if any, regions
of area less than the current scale surviving while a low proportion of extrema regions
will leave a significant proportion of the image untouched until relatively large scales. In
addition, the proportion of extrema regions has a significant effect on the processing time.
The approach to extrema definition adopted by the CCS is one based on a local convex
hull. For a setSof points ind-dimensional space, the convex hull is the smallest convex
polygon containing all the points & The CCS forms a local convex hull for each pixel
and its connected neighbours and then defines the pixel as extreme if it lies on the edge of
the hull. This approach has the advantage that the topology of the local hull is unaffected
by linear axes transformations and monotonic scaling but can result in large proportion
of extrema. For example, consider the complex image shown in figure 1(a). The local
convex hull for thes — 1i region in figure 1(b) shows the region to be extreme as it lies on
the edge of the hull. However, examination of the local convex hull for the other regions
in the image shows that they are all extreme. Part of this problem results from degenerate
cases: @-dimensional hull requires at leagt + 1) different points to be non-degenerate
and although an approach to reduce the number of extrema for degenerate cases was
presented in [8], they can still correspond to a significant proportion of the total extrema.
This result is confirmed by figure 2 which shows the initial extrema forliB@x 230
colour test image Lily. The CCS result in figure 2(b) classifies the majority of the image
as extrema, a finding confirmed by other images. With 4nn connectivity the number of
dimensions is reduced and the CCS, if anything, finds even more extrema. Therefore
the action of the CCS is very aggressive and the total number of regions will rapidly
decrease with increasing area size. However, classifying the majority of pixels as extreme
is counter-intuitive as extrema are associated with outlying values. In addition, there are
many connected extrema which cannot simply be explained as alternating maxima and
minima, which cannot be differentiated in colour sieves.
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Figure 2: CCS and VAMS extrema (white pixels) using 8nn connectivity. (a) Original
image Lily, (b) CCS extrema and (c) VAMS extrema.

The VAMS uses reduced ordering to form a scalar image in which colour extrema
correspond to regional maxima. In the scalar image, the value of each pixel is initially
given as the sum of the vector differences between the pixel and its connected neighbours.
The scalar values for all the pixels in each flat zone are then summed and normalised by
the region’s area and this value is assigned to all pixels within the region, see figure 1(c).
Finally, extrema are identified as the maxima of the scalar image. In figure 1(c) there are
only two extreme regions corresponding to the flat zones with vak3es2i and1 — 3i in
figure 1(a) and although it is theoretically possible for neighbouring regions to be marked
as extreme if they have exactly the same scalar value in practice this rarely happens. The
extrema found by the VAMS for the Lily image are presented in figure 2(c) and confirm
the findings of figure 1 that the VAMS produces far fewer extrema than the CCS. As the
VAMS extrema correspond to pixels whose colour is very different from their neighbours
(either isolated regions or at positions of high gradient), they can therefore be considered
as “true” extrema. However, if extrema are viewed as seeds from which the image is
altered through merging, then a low extrema proportion may result in much of the image
being unaffected by the sieving process until larger scales.

3 \Vector area morphology open-close sieve

Summarising the previous section, the CCS has many extrema and an aggressive sieving
action while the VAMS finds fewer, more meaningful extrema and is less aggressive. In
addition, while the convex hull used by the CCS is quite inflexible with regards to its
extrema definition, changes can be made to the VAMS structure to try and combine the
advantages of the two methods. To this end, the vector area morphology open-close sieve
(VAMOCS) is proposed that applies both area openings and closings to the scalar surface
produced by the VAMS. While the maxima in the scalar surface correspond to image
extrema, local minima mark regions that are closer in value to their neighbouring regions
than other regions in their connected neighbourhood. Processing the minima essentially
merges regions that are in relatively flat parts of the image in a manner reminiscent to
that of [15], which introduces a bouron the allowable greyscale fluctuations within a

flat zone. Providing the merging is handled sensibly closings can increase the numbers of
seeds without adversely affecting the segmentation performance. Here, the merging rules



Figure 3: Colour sieve results for Lily test image using 8nn connectivity. Top to bottom:
CCS, VAMOCS (openings only), VAMOCS (closings only) and VAMOCS (combined
openings and closings). Left to right: area = 10,100,1000 and 10000.

proposed by Salembier and Garrido [14] are used for closings. The VAMOCS algorithm
also has an additional minor modification in which the sum of scalars for the pixels within

a flat zone is normalised by its perimeter rather than its area. As the distance between all
pixels within a flat region is zero, this approach effectively calculates the average vector
difference per unit perimeter for all pixels on the perimeter of a region and makes the
sieving action less dependent on the complexity of the regions’ geometry.

Figure 3 shows the results of sieving the Lily image at selected scales using the CCS
and the VAMOCS. Also shown are the VAMOCS results using openings and closings
only (rows 2 and 3 of figure 3 respectively). Separate openings and closings both pre-
serve colour edges while creating large flat regions although their filtering actions differ,
with the former removing outliers and the latter leaving islands of extrema as the rel-
atively flat regions are extended. The combined VAMOCS results shows the openings
and closings to compliment each other, producing a colour sieve with an action similar
in aggressiveness to the CCS. However, comparing the VAMOCS extrema in figure 4(a)
with those of figure 2 shows the VAMOCS to produce many fewer extrema than the CCS
and roughly equal in number to the greyscale extrema shown figure 4(b). The VAMOCS
therefore appears to have achieved its aims and a comprehensive performance analysis of
all the colour sieves is undertaken in the next section.



(@) (b)

Figure 4: Extrema for Lily test image produced by (a) VAMOCS and (b) greyscale AOC
sieve. Maxima shown in white and minima in black.

4 Performance Evaluation

To evaluate the performance of the colour sieves, a number of criteria were used includ-

ing processing time and the proportion of the image regions defined as extreme. One
of the most useful applications of these sieves is colour image segmentation and an ini-
tial study of the segmentation performance of the CCS was undertaken in [9]. Here, the

Berkeley segmentation dataset is used to provide the basis for a quantitative evaluation.
The colour sieves were implemented in C++ using an approach based on the pixel-queue
algorithm [12] and then run as mex files under Matlab. Eight nearest neighbours connec-

tivity and the Euclidean distance metric were used for all sieves.

The first aspect to be considered is the processing time, given in figure 5, which also
includes the greyscale AOC (GS-AOC) sieve for comparative purposes. As the processing
times are related to the number of extreme regions, each of which has to be merged and
updated, the percentage of extrema for each sieve is also plotted, with exact values for
selected scales given in table 1. As expected, the greyscale sieve has the lowest processing
time, although the VAMS is only fractionally slower for areas100 The CCS has
the highest processing time reflecting its high proportion of extrema, although its rapid
reduction in the total number of regions produces a relatively constant processing time for
areas> 100. In contrast, the processing time for the VAMS increases with scale and at

scale 1 2 10 50 100 500 1000
VAMS 2209 1054 151 21 8 1 1
41207 37199 27547 19660 16102 8024 6871
ccs 33616 12852 2211 456 223 44 23
41207 16402 2878 572 279 53 25
GS-AOC 4062 1973 424 110 63 11 7
41207 36553 28457 20697 17040 9114 6150
VAMOCS 4388 2353 476 112 16 8 9

41207 33882 14326 3856 1845 298 132

Table 1: Variation of proportion of image extrema with scale. Fractions give the number
of extreme regions the total number of regions.
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Figure 5: Processing times and proportion of extrema regions for Lily test image.

high scales approaches that of the CCS. The VAMOCS is more expensive than the VAMS
for scales< 100as it has more extremato process. However, as it reduces the total number
of regions more rapidly (see table 1), larger scales require little extra processing.

An objective measure of segmentation performance is obtained by using the Berkeley
Segmentation Dataset and Benchmark available at http://www.cs.berkeley.edu/projects-
Ivision/grouping/segbench [10]. The ground truth for each image in the dataset is given as
the collection of boundaries produced by all human subjects. A quantitative performance
measure is provided by precision-recall (P-R) curves, where precision is the probability
of boundary pixels being correctly identified and recall is the amount of boundary pixels
detected. The F-measure is given by the harmonic mean of precision and recall along the
curve, with its maximum providing a single measure segmentation performance [11]. In
addition, it allows both edge- and region-based methods to be compared and avoids the
trivial cases where the GCE of [10] gives zero error. Unlike [9] where the evaluation takes
the most representative set of regions near the root of the tree, trimming branches to the
level (attribute) required, here the entire tree is sieved to the same level. Although subop-
timal in terms of segmentation performance, this allows a focus on the global threshold
while maintaining itempotency.

P-R curves for 100 images from the dataset were generated by sieving each image
with increasing scale until the total number of regions was and plotting precision
and recall for a range of values of A fixed number of regions was used in preference
to a constant area (or other attribute) since it is less dependent on image content and also
allows comparison with other attributes. This approach is also compatible with the dataset
definition where a small(— 30) number of equally important regions is suggested.

The P-R curves for one image from the dataset produced by the GS-AOC sieve, CCS
and VAMOCS are shown in figure 6, with the point producing the maximum F-measure
marked in bold. To help visualise these results, figure 7 presents the corresponding human
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Figure 6: P-R curves for (a) GS-AOC Sieve, (b) CCS and (c) VAMOCS. The maximum
F-measure and number of regions at which it occurred are also shown.

and colour sieve segmentations. These results are for just one image and a more compre-
hensive comparison is given by averaging the P-R curves and peak F-measure for all 100
images, see table 2. The target number of regions at which the peak F-measure occurred
is also shown as a technique that can achieve a high F-measure with the minimum number
of regions is preferable to one with more regions. The results in table 2 show that both the
CCS and VAMOCS out-perform the greyscale sieve, although the VAMS does not. The
VAMOCS has the highest average F-measure of 0.51, achieved with a target number of
50 regions. Table 2 also presents a set of results for the contrast attribute. These follow
the same trend as the area attribute with the VAMOCS result being 0.02 higher than the
CCS, albeit with an increased number of regions.

Method  Attribute F-measure (R,P) Regions
GS-AOC 0.46 (0.50,0.44) 300
CCS Area 0.49 (0.61,0.41) 30
VAMS 0.40 (0.51,0.32) 100
VAMOCS 0.51 (0.61,0.43) 50
GS-AOC 0.47 (0.55,0.41) 1000
CCs 0.50 (0.65,0.41) 30
vams  Contrast ac 042.030) 500
VAMOCS 0.52 (0.65,0.43) 90

Table 2: Figure of merit comparison using the Berkeley dataset

5 Discussion and conclusions

Two recently proposed colour morphological scale-space sieves have been evaluated al-
gorithmically and in terms of their definition of extrema. The link between proportion of
image regions defined as extreme and the processing speed was also investigated. The
CCS was found to produce large numbers of extrema and show an aggressive sieving ac-
tion whereas the VAMS has fewer extrema and therefore a lower computational cost. To
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Figure 7: Colour sieve segmentation of Koala image. (a) Original image and collection of
human segmentations, (b) and (c) CCS and VAMOCS results for different target number
of regions (top) and best result (bottom).

combine their relative advantages, the VAMOCS was proposed. The VAMOCS works by
also processing image minima which correspond to regions in “nearly flat” parts of the
image. For scales 100, the VAMOCS has the lowest processing time of all colour sieves
despite its aggressive action.

A major application area of greyscale connected sieves has been image segmentation
and to assess any advantage gained by applying colour sieves to this task a quantita-
tive evaluation of its segmentation performance was undertaken using the methodology
of [11]. The new VAMOCS produced the best average segmentation performance over
100 images, showing the benefits conferred by using colour. Although its overall per-
formance falls short of that of state-of-the-art colour segmentation techniques such as
the combined brightness/colour/texture gradients of [11], the potential of the VAMOCS
for segmentation has been demonstrated. An improved segmentation performance can be
achieved by more advanced post-processing of the colour tree and algorithms for this, and
the development of improved attributes, are areas of current research.
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