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Abstract

The heat-kernel of a graph is computed by exponentiating the Laplacian
eigen-system with time. In this paper, we study the heat kernel mapping
of the nodes of a graph into a vector-space. Specifically, we investigate
whether the resulting point distribution can be used for the purposes of graph-
clustering. Our characterisation is based on the covariance matrix of the point
distribution. We explore the relationship between the covariance matrix and
the heat kernel, and demonstrate the eigenvalues of the covariance matrix are
found be exponentiating the Laplacian eigenvalues with time. We apply the
technique to images from the COIL database, and demonstrate that it leads
to well defined graph clusters.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph data is
that of characterising the topological structure of individual graphs. One of the most
elegant ways of doing this is to use the spectrum of the Laplacian matrix [6]. For instance
Shokoufandeh et al [10] have used topological spectra to index tree structures and Luo
et al [3] have used the the spectrum of the adjacency matrix to construct pattern spaces
for graphs. One way of viewing these methods is that of constructing a low-dimensional
feature-space that captures the topological structure of the graphs under study.

An interesting alternative to using topological information to characterise graphs is
to embed the nodes of a graph in a vector space, and to study the distribution of points
in this space. Broadly speaking there are three ways in which the problem has been
addressed. First, the graph can be interpolated by a surface whose genus is determined by
the number of nodes, edges and faces of the graph. Second, the graph can be interpolated
by a hyperbolic surface which has the same pattern of geodesic (internode) distances as
the graph [1]. Third, a manifold can be constructed whose triangulation is the simplicial
complex of the graph [2].

In the pattern analysis community, there has recently been renewed interest in the
use of embedding methods motivated by graph theory. One of the best known of these
is ISOMAP [8]. Here a neighborhood ball is used to convert data-points into a graph,
and Dijkstra’s algorithm is used to compute the shortest (geodesic) distances between
nodes. By applying multidimensional scaling (MDS) to the matrix of geodesic distances
the manifold is reconstructed. The resulting algorithm has been demonstrated to locate
well-formed manifolds for a number of complex data-sets. Related algorithms include lo-
cally linear embedding which is a variant of PCA that restricts the complexity of the input
data using a nearest neighbor graph [11], and the Laplacian eigenmap that constructs an
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adjacency weight matrix for the data-points and projects the data onto the principal eigen-
vectors of the associated Laplacian matrix (the degree matrix minus the weight matrix)
[4]. Collectively, these methods are sometimes referred to as manifold learning theory.

Recently, Lebanon and Lafferty [9] have taken the study one step further by using the
heat-kernel to construct statistical manifolds that can be used for inference and learning
tasks. The heat kernel is found by exponentiating the Laplacian eigen-system with time.
There are a number of different invariants that can be computed from the heat-kernel.
Asymptotically for small time, the trace of the heat kernel [6] (or the sum of the Lapla-
cian eigenvalues exponentiated with time) can be expanded as a rational polynomial in
time, and the co-efficients of the leading terms in the series are directly related to the
geometry of the manifold. For instance, the leading co-efficient is the volume of the
manifold, the second co-efficient is related to the Euler characteristic, and the third co-
efficient to the Ricci curvature. The zeta-function (i.e. the sum of exponentials found by
raising the eigenvalues to a non-integer power) for the Laplacian also contains geometric
information. For instance its derivative at the origin is related to the torsion tensor for the
manifold. Finally, Colin de Verdiere has shown how to compute geodesic invariants from
the Laplacian spectrum [5].

The aim in this paper is to investigate whether the heat kernel can be used for the
purposes of embedding the nodes of a graph in a vector space. We use the heat kernel to
map nodes of the graph to points in the vector space. In other words, we perform kernel
PCA on the graph heat-kernel. We provide an analysis which shows how the eigenvalues
and eigenvectors of the covariance matrix for the point distribution resulting from the
kernel mapping are related to those of the Laplacian. Based on this analysis we explore
how the covariance matrix eigenvalues can be used for the purposes of characterising and
clustering the graphs.

2 Heat Kernels on Graphs

In this section, we develop a method for approximating the geodesic distance between
nodes by exploiting the properties of the heat kernel. To commence, suppose that the
graph under study is denoted by G = (V,E) where V is the set of nodes and E ⊆ V ×V
is the set of edges. Since we wish to adopt a graph-spectral approach we introduce the
adjacency matrix A for the graph where the elements are

A(u,v) =
{

1 if (u,v) ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D, whose elements are given by D(u,u) =

∑v∈V A(u,v). From the degree matrix and the adjacency matrix we construct the Laplacian
matrix L = D−A, i.e. the degree matrix minus the adjacency matrix. The normalised
Laplacian is given by L̂ = D− 1

2 LD− 1
2 . The spectral decomposition of the normalised

Laplacian matrix is L̂ = ΦΛΦT , where Λ = diag(λ1,λ2, ...,λ|V |) is the diagonal matrix
with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the
ordered eigenvectors as columns. Since L̂ is symmetric and positive semi-definite, the
eigenvalues of the normalised Laplacian are all positive. The eigenvector associated with
the smallest non-zero eigenvector is referred to as the Fiedler-vector. We are interested
in the heat equation associated with the Laplacian, i.e. ∂ ht

∂ t = −L̂ht , where ht is the heat



kernel and t is time. The heat kernel can hence be viewed as describing the flow of
information across the edges of the graph with time. The rate of flow is determined by the
Laplacian of the graph. The solution to the heat equation is found by exponentiating the
Laplacian eigen-spectrum, i.e. ht = Φexp[−tΛ]ΦT . When t tends to zero, then ht ' I− L̂t,
i.e. the kernel depends on the local connectivity structure or topology of the graph. If, on
the other hand, t is large, then ht ' exp[−tλm]φmφ T

m , where λm is the smallest non-zero
eigenvalue and φm is the associated eigenvector, i.e. the Fiedler vector. Hence, the large
time behavior is governed by the global structure of the graph.

2.1 Heat Kernel Embedding

We use the heat kernel to map the nodes of the graph into a vector-space. Let Y be the
|V |× |V | matrix with the vectors of co-ordinates as columns. The vector of co-ordinates
for the node indexed u is hence the uth column of Y . The co-ordinate matrix is found by
performing the Young-Householder decomposition ht = Y TY on the heat-kernel. Since
ht = Φexp[−Λt]ΦT , Y = exp[− 1

2 Λt]ΦT . Hence, the co-ordinate vector for the node in-
dexed u is

yu = (exp[−1
2

λ1t]φ1(u),exp[−1
2

λ2t]φ2(u), ....,exp[−1
2

λ|V |t]φ|V |(u))T (2)

The kernel mapping M : V → R |V |, embeds each node on the graph in a vector space
R|V |. The heat kernel ht = Y TY can also be viewed as a Gram matrix, i.e. its elements
are scalar products of the embedding co-ordinates. Consequently, the kernel mapping of
the nodes of the graph is an isometry. The squared Euclidean distance between the nodes
u and v is given by

dE(u,v)2 = (yu − yv)
T (yu − yv) =

|V |
∑
i=1

exp[−λit](φi(u)−φi(v))
2 (3)

= ht(u,u)+ht(v,v)−2ht(u,v) (4)

2.2 Kernel PCA

One very simple way to characterise the heat-kernel mapping is to study the properties
of the covariance matrix of the point-set generated by the kernel mapping. To construct
the covariance-matrix for the kernel mapping, we commence by computing the mean co-
ordinate vector. The components of the mean co-ordinate vector are found by averaging
the elements in the rows of Y . The mean co-ordinate vector is given by

ŷ =
1
|V |Ye =

1
|V | exp[−1

2
Λt]ΦT e

where e = (1,1, ...,1)T is the all ones vector of length |V |. Subtracting the mean from the
kernel mapping co-ordinates, the matrix of centred co-ordinates is

YC = Y − 1
|V |YeeT = exp[−1

2
Λt]ΦT (I− 1

|V |eeT ) = exp[−1
2

Λt]ΦT MT ,



where MT = (I− 1
|V |eeT ) is the data centering matrix. The covariance matrix is

Σ =
1
|V |YCY T

C =
1
|V | exp[−1

2
Λt]ΦT MT MΦexp[−1

2
Λt].

Hence, we can write Σ = 1
|V |C

TC where C = MΦexp[− 1
2 Λt]. To compute the eigenvectors

of Σ we first construct the matrix, CCT = MΦexp[−Λt]ΦT MT = Mht MT , i.e. CCT has
eigenvalue matrix Λh = exp[−Λt] and un-normalised eigenvector matrix U = MΦ. As

a result the matrix CTC has normalised eigenvalue matrix Û = CTUΛ− 1
2

h and eigenvalue
matrix Λh. To see this note that

(CTUΛ− 1
2

h )Λh(C
TUΛ− 1

2
h )T = CTUUTC = CCT .

Hence CTC has eigenvector matrix Λh = exp[− 1
2 Λt] and normalised eigenvector matrix

Û =

(

MΦexp[−1
2

Λt]

)T

MΦ
(

exp[−Λt]

)− 1
2

= exp[−1
2

Λt]ΦT MT MΦexp[
1
2

Λt].

Finally, it is interesting to note that the projection of the centred co-ordinates onto the
eigen-vectors of the covariance matrix is YP = ÛTYC = exp[− 1

2 Λt]ΦT MT = YC. To char-
acterise the distribution of mapped points, we use the vector Bh = exp[− 1

2 Λt]e, which
has the eigen-values of the kernel mapping covariance matrix as elements. In our experi-
ments, we will compare the result of using this representation of the data with the use of
the vector of Laplacian eigenvalues BL = Λe.

3 Sectional Curvature

An interesting property of the embedding is the difference between the geodesic and Eu-
cludean distances. This difference is related to the sectional curvature of the path con-
necting nodes on a manifold that results from the kernel mapping. In this section, we
explore this relationship. We commence by showing how geodesic distance can be com-
puted from the spectrum of the kernel, and then show how this can be used to compute
sectional curvature.

3.1 Geodesic Distance

The heat kernel can also be used to compute the path length distribution on the graph.
To show this, consider the normalised adjacency matrix P = D− 1

2 (I − L̂)D− 1
2 , where I is

the identity matrix. The heat kernel can be rewritten as ht = e−t(I−P). We can perform a
McLaurin expansion on the heat-kernel to re-express it as a polynomial in t. The result of
this expansion is

ht = e−t
(

I + tP+
(tP)2

2!
+

(tP)3

3!
+ · · ·

)

= e−t
∞

∑
k=0

Pk tk

k!
(5)



The matrix P has elements

P(u,v) =











1 if u = v
1√

deg(u)deg(v)
if u 6= v and (u,v) ∈ E

0 otherwise

(6)

As a result, we have that

Pk(u,v) = ∑
Sk

k

∏
i=1

1
√

deg(ui)deg(ui+1)
(7)

where the walk Sk is a sequence of vertices u0, · · · ,uk of length k such that ui = ui+1 or
(ui,ui+1) ∈ E. Hence, Pk(u,v) is the sum of weights of all walks of length k joining nodes
u and v. In terms of this quantity, the elements of the heat kernel are given by

ht(u,v) = exp[−t]
|V |2

∑
k=0

Pk(u,v)
tk

k!
(8)

We can find a spectral expression for the matrix Pk using the eigen-decomposition of the
normalised Laplacian. Writing Pk = (I− L̂)k = Φ(I−Λ)kΦT , the element associated with
the nodes u and v is

Pk(u,v) =
|V |
∑
i=1

(1−λi)
kφi(u)φi(v) (9)

The geodesic distance between nodes, i.e. the length of the walk on the graph with the
smallest number of connecting edges, can be found by searching for the smallest value of
k for which Pk(u,v) is non zero, i.e. dG(u,v) = f loorkPk(u,v).

3.2 Sectional Curvature

An interesting way to characterise the non-linearity of the kernel mapping is to measure
the difference between geodesic and Euclidean distances. As we will show, in this section
this quantity is related to the sectional curvature associated with paths between nodes on
the manifold that results from the kernel mapping. The sectional curvature is determined
by the degree to which the geodesic bends away from the Euclidean chord. Hence for a
geodesic on the manifold, the sectional curvature can be estimated easily if the Euclidean
and geodesic distances are known. Suppose that the geodesic can be locally approximated
by a circle. Let the geodesic distance between the pair of points u and v be dG(u,v) and
the corresponding Euclidean distance be dE(u,v). Further let the radius of curvature of
the approximating circle be rs(u,v) and suppose that the tangent-vector to the manifold
undergoes a change in direction of 2θu,v as we move along a connecting circle between
the two points. In terms of the angle θu,v, the geodesic distance, i.e. the distance traversed
along the circular arc, is dG(u,v) = 2rs(u,v)θu,v, and as a result we have that θu,v =
gG(u,v)/2rs(u,v). The Euclidean distance, on the other hand, is given by dE(u,v) =
2rs(u,v)sinθu,v, and can be approximated using the McClaurin series

dE(u,v) = 2rs(u,v)

(

θu,v −
1
6

θ 2
u,v + ...

)



Substituting for θu,v obtained from the geodesic distance, we have

dE(u,v) = dg(u,v)− dg(u,v)3

24r2
s (u,v)

Solving the above equation for the radius of curvature, the sectional curvature of the
geodesic connecting the nodes u and v is approximately

ks(u,v) =
1

rs(u,v)
=

2
√

6(dG(u,v)−dE(u,v))
1
2

dG(u,v)
3
2

(10)

To characterise the geometry of the graph embedding we construct a histogram of
sectional curvatures. The sectional curvatures are assigned to m bins and the normalised
contents of the jth bin is denoted by H( j). The feature vector for the graph is constructed
from the normalised bin-contents and BC = (H(1),H(2), .....H(m))T .
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Figure 1: Eight objects with their Delaunay graphs overlayed.

We have applied our geometric technique to images from the COIL data-base. The
data-base contains views of 3D objects under controlled viewer and lighting conditions.
For each object in the data-base there are 72 equally spaced views, which are obtained as
the camera circumscribes the object. We study the images from eight example objects.
A sample view of each object is shown in Figure 1. For each image of each object we
extract feature points using the method of [7]. We have extracted graphs from the images
by computing the Voronoi tessellations of the feature-points, and constructing the region
adjacency graph, i.e. the Delaunay triangulation, of the Voronoi regions. Our technique
has been applied to the resulting graph structures.

In Figure 2 we show the result of performing PCA on the vector of heat kernel eigen-
values BC. Here we have projected the vectors onto the three leading principal com-
ponents directions. From left-to-right and top-to-bottom, the different subplots show the
results as the parameter t varies from 0.03 to 3000. The different colours in the plot distin-
guish the different objects. The object clusters evolve in an interesting way as t increases.



Initially, they are very compact but elongated, and distinct. At large values of t they are
more dispersed and overlapped.

For comparison Figure 3 shows the result if the PCA procedure is repeated on the
vectors of Laplacian eigenvalues BL. Here the clusters are more dispersed and overlapped
than when the small t heat kernel mapping is used, and are more similar to the result
obtained with the large t mapping.

In Figures 4 and 5 we show the results of using sectional curvature. In Figure 4
we show example histograms for the twenty views for four of the objects in the COIL
database. Here the histograms are stacked behind each other, and are ordered by increas-
ing view number. There are a number of conclusions that can be drawn from the his-
tograms. First, the histograms for the same object are relatively stable with view number.
Second, the histograms for the different objects have different shapes. The plots shown
were obtained with t = 0.003.

The results of applying PCA to the vectors of histogram bin contents are shown in
Figure 5 for different values of t. We obtain reasonably well defined clusters of objects. In
purely qualitative terms they appear poorer than those obtained using the kernel mapping,
but better than those obtained using the Laplacian eigenvalues.

To investigate the behavior of the methods in a more quantitative way, we have plotted
the Rand index for the different objects. The Rand index is defined as RI = A

A+E where A
is the number of ”agreements” and E is the number of ”disagreements” in cluster assign-
ment. The index is hence the fraction of views of a particular class that are closer to an
object of the same class than to one of another class. The results of the comparison are
shown in Figure 6. The blue curve in the plot shows the Rand index as a function of t for
heat kernel mapping. For low values of t the performance is around 90%, but this drops
rapidly one a critical value of t is exceeded. This shoulder of the curve corresponds falls
between the second and third panel in Figure 2. This appears to be associated with the
point at which the clusters cease to be compact but elongated and become more extended.
The red curve shows the result of the sectional curvature histograms are used. Here the
method gives slightly poorer performance at low values of t (around 0.87), but the per-
formance drop-off is at a larger value of t. Finally, when the spectrum of normalised
Laplacian eigenvalues is used then the Rand-index is 0.57, which is considerably lower
than the result obtained with the heat-kernel embedding.

5 Conclusion and Future Work

In this paper we have explored how the use of the heat kernel can lead to a useful char-
acterisation of the structure of a graph. Our method is based on performing kernel PCA
on the heat kernel. This allows graph nodes to be mapped to points in a high dimensional
space. We use the eigenvalues of the covariance matrix of the mapped points to charac-
terise the structure of the graphs. We demonstrate that the methods leads to well formed
graph clusters.

There are a number of ways in which we intend to extend this work. First, we will
explore the use of the method to construct a generative model that can be used to account
for the structure of graphs. Second, we will use the framework to develop a discriminative
model that can be used to accurately classify graphs.
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Figure 2: Distributions of graphs obtained by changing the t variable.
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Figure 3: Result of applying PCA to the leading Laplacian eigenvalues.
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Figure 4: 3-D views of the histograms of the sectional curvature.
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Figure 5: Distributions of graphs obtained from sectional curvature by varying the t pa-
rameter
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Figure 6: Rand index for the different clustering methods
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