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Abstract

We consider the registration of successive images over a cardiac ultrasound
sequence. A key challenge is speckle. We suggest that, for practical pur-
poses, speckle should be regarded as the sum of two components: the useful,
temporally correlated speckle pattern; and speckle noise, which is the unpre-
dictable change in the speckle pattern. We also propose that an increase in
robustness can be obtained by modelling the spatial correlation of speckle
noise. A model is introduced that captures the correlation of speckle noise,
by separating the noise into sub-bands and measuring variance within each
sub-band and covariance between bands. In order to gain contrast invariance,
we express similarity between sub-bands in terms of local phase only, and
describe a phase-based extension of the Demons algorithm. The parameters
estimated from the noise model significantly enhance the already good regis-
tration performance of the phase-demons algorithm.

1 Introduction

Motion estimation in echocardiography is a potential source of detailed information about
cardiac function. The problem has received much attention, however robustness is still a
problem for automatic measurement. A major reason for this is that ultrasound images are
dominated by speckle, an interference pattern caused by sub-resolution structures. Since
speckle is caused by an interaction of the ultrasound pulse with the tissue, it is often help-
ful to consider it as useful information. Of particular interest for motion estimation in
echocardiography, is the property of temporal correlation; when only small motions are
present, it is possible to recognize speckle patterns after a small movement and thereby
guantify motion in otherwise featureless tissue regions. However, it is unlikely that the
speckle pattern remains identical, particularly if any rotation or out of plane translation
occur [1]. We therefore propose that speckle be considered as the sum of two compo-
nents: a component which is predictable, which we refer to as speckle pattern, and a
component which is unpredictable, which we refer to as speckle noise. This work aims to
find a compromise between these two components, making use of speckle pattern, while
acknowledging the possibility of speckle noise.

The first order statistical properties of speckle [2] and speckle noise [3] have been
extensively modelled. Some of the simpler first order models have been incorporated into
motion estimation algorithms [4]. However, the second order properties are generally
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ignored, even though physical models for the process are well understood [5]. Despite
this, spatial correlation is the most striking feature of speckle noise.

In this paper, we describe an algorithm to estimate tissue displacement in ultrasound
based on the local image phase, which is estimated with a bank of bandpass filters. In the
frequency domain, the power spectrum of speckle noise is a smoothly varying function of
frequency. Since each filter responds to a limited range of frequencies, they each capture
a different part of the noise spectrum. The noise spectrum can therefore be approximated
by the power of the noise responses of the various filters. The more filters that are used,
the more accurate the approximation. The filter responses are converted into a contrast
invariant local descriptor by estimating the local phase, using the monogenic signal [6].
A similarity measure over local phases is described in section 3, which estimates the
reliability of phase information on the basis of a noise model developed in section 2, and
the local energy. This measure is then used to drive the demons algorithm [7, 8].

Bandpass filters have previously been used for ultrasound registration with some suc-
cess. Rousseat al[9] use the responses of oriented band-pass filters to represent image
locations. The similarity measure is based on the Bhattarchyya distance between filter
response distributions. This method is therefore texture driven, rather than feature driven,
and is perhaps better suited to registering significantly different images, e.g. scans taken
at different times. Yeungt al[10] also represent speckle with the responses of bandpass
filters. However, the feature vectors to be matched consist only of the energies of the
filter responses. Furthermore, the energy bands are summed together to give a local spec-
tral power estimate which is used as a single dimensional feature. The disadvantages of
this method include: the low dimension of the local descriptor, susceptibility to contrast
change and the implicit assumption of equal noise in each band. Local phase techniques
have been applied by Mulet-Parada to feature detection and tracking [11]. Although the
results of these algorithms are promising, there are two drawbacks: the number of filters
that need to be applied, and the choice of filter. The significance of both of these problems
are reduced in the present work: we make use of improvements in local phase analysis to
reduce the number of filters used, and we employ a multi-scale noise model provides a
probabilistic description of the local phase across scales, which reduces the need for the
filters to be well suited to the image structure.

2 Speckle Noise Model

Speckle is an interference pattern caused by sub-resolution tissue structures. We have
stressed the difference between a speckle pattern and speiikle When register-

ing consecutive frames of ultrasound, this distinction is important, since there will be
some correlation of the speckle pattern over time and these correlated speckle patterns are
valuable features. Here, we aim to estimate speckle noise, rather than speckle patterns.
Speckle has a certain amount of spatial correlation, depending on the shape of the Point
Spread Function (PSF) of the imaging system and the spatial correlation of the scatterers.
For cardiac ultrasound, the PSF tends to dominate. In this case, we expect the correlation
of the speckle pattern, and therefore of the speckle noise, to be determined by the auto-
correlation of the PSF [5]. In general, we expect the PSF to be a smooth, symmetrical
function, with a slowly varying, lowpass frequency spectrum. Therefore, the noise power
spectrum should also be a slowly varying function with greater power at low frequencies.



When the noise spectrum is relatively simple, it is possible to approximate it by the
sum of just a few functions. In this paper, we approximate the noise spectrum with a sum
of the spectra of Difference of Gaussian (DoG) filters; in principal, any bandpass filter
family could be used, but DoG filters are convenient to work with and cover the frequency
band of interest economically. The filters are chosen so that the positive Gaussian of one
filter is the negative Gaussian of the next filter, enabling the frequency band between the
highest and lowest frequency filters to be reconstructed by summing the filters:

N
II(X’ y) = ;dl <X7 y) 1)

wherel’(x,y) is the reconstructed image from which high and very low frequencies are
missing,N is the number of filters used to represent the image gdaixdy) is the response

of the ith difference of Gaussians filter at poijxty]. The noise is therefore also rep-
resented with sum of filter responses. It is assumed that the noise in each filter band is
Gaussian distributed and is an additive component. While this does not perfectly agree
with the theoretical distribution of ultrasound, it is often a good approximation (see sec-
tion 5). The aim of this work is to model the correlation of speckle noise. The classical
tool for this is the Power Spectral Density (PSD). Because each filter responds to a differ-
ent range of frequencies, it is possible to approximate the variation of noise power with
frequency (i.e. the PSD), by the mean noise in each filter band. Since the expected PSD
of speckle is smoothly varying [5], it should be possible to approximate it with a small
number of such samples. Lifx,y) denote an instance of the noise signal with (discrete)
Fourier transformN(u,v) and letdni(x,y) be the response of filtefi to the noise, with
Fourier transfornDy;(u,Vv). Ignoring the noise that falls outside the frequency response
of any of the filters, we have:

n(X, y) = Z dni (X7 y)
N(uv) = ZDni(u,V). 2

An estimate for the power spectral density may then be found in terms of the response
of the filters to a sample of noise:
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where (x) denotes the expectation ®f The PSD may now be approximated by intro-
ducing the assumption that, for each each pair of filfgps y) and f;(x,y), the noise has
constant poweuﬁ. The expectations in equation 3 may be then becomes:

(Dri(u,v)Dnj(u,v)) ~ R (u,v)Fj(u,v)o7. (4)



Hence the noise power spectrum is approximated by the various covariaric@ie
resulting PSD estimate may be written concisely in the form of the quadratic product of a
filter vector, KEu,v), with a covariance matrix:

E = [F(uv),...,F(u,v)] (5)
Cj = 0 (6)
W(u,v) = E'CE 7)

In order to complete the noise model, it is necessary to define a way to estimate the
model parameters from the data. Assuming the availability of a noise saniplg),
it is possible to derive estimates for eagh directly, by summing equation 4 over all
frequencies:

uv
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<Z Dni(u,V)Dn;(u,V)> = 0y R(UVFuY) (8)

In the case that the noise respodggis real and the applied filter is symmetric, it can be

shown that:
<Z Dni(U7V)Dnj(U7V)> = <Zdni(X;Y)dnj(X7Y)> 9)
v Xy

which identifies the r.h.s of 8 as the covariance of the filter noise-respo@%esAn
equivalent expression holds for the filters. It follows that:
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where ¢J is the covariance of the filter impulse responses. Figure 1 illustrates the perfor-
mance of an algorithm based on this technique on a 1 dimensional signal. The blue curve
is an estimate of the PSD of a synthetic signal designed to have properties comparable
to those of a line from a speckle pattern, after wide-band filtering to remove frequencies
outside the range of the chosen bandpass filters. The five black curves show the shape of
the power spectra of the five bandpass filters and the red curve shows the sum of these
and the cross power terms, weighted by C. In practice, because the noise is always ob-
served through the filters, it is possible to ignore the power spectral density and work with
the filter noise-response covarianc%(@'ectly , rather than the PSD model parameter C.
Nevertheless, for a given bank of filters one specifies the other. note also that the proce-
dure outlined above can be reversed, so that a known PSD (e.g. from calibration) may be
used to define the similarity measure directly, without the need to extract a noise signal.

3 Similarity Measure

The problem of analysing one image with an inconvenient noise model has been split
into the simultaneous analysis of several images with simple noise models. The next step



Figure 1: Approximating a PSD with variances of bandpass filters. Blue: the PSD esti-
mated from data sample. Black: five of the fifteen cross power terms of eq. 4.Red: the
approximated PSD is a good fit.

is to define a similarity criterion for registering the bandpass images. One option is to
assume constant intensity and use an optical flow method, such as the Demons algorithm
[7, 8]. The difficulty with this approach is that the intensity of an object in an ultrasound
image can change markedly over time. To avoid this we use a similarity criterion based
on constant local phase between images. Local phase is a contrast invariant, qualitative
description of the local shape of an image and is accompanied by a second quantity, local
energy, which is a measure of local signal activity. Local phase has previously been shown
to be a powerful tool for accurate registration and motion estimation [12]. Space does
not permit a detailed discussion of phase estimation technigues, which may be found in
[6, 13]. We estimate phase using the monogenic signal [6]. The monogenic signal enables
local phase and energy to be estimated from a bandpass Igilagthe application of two
further linear filters, which can be expressed in the frequency domain as:

u v
Hi(wv) = ———, Ho(WV) = —— 11
Wy = T = an
The responses of these filters to the bandpass image are combined, in the image do-
main, with the bandpass image itself to estimate local phase and energy as follows:

Axy) = B+ (et (o) (12)

_ ol lb
pixy) = tan <\/(h1®|b)2+(h2®|b)z> (13)

whereA(x,y) is the local energy angl(x, y) is the local phase. To measure phase similarity

in noisy data, it is important to be able to deal with the effects of noise. Equations 12 &
13 are expressed as functions of even and odd components, where the odd part is the
combined responses of the two odd filtegg(hy @ 1)2+ (h, ®1)2, and the even part is
simply the bandpass filtered imadg, The even and odd components are orthogonal

to each other, so for unstructured noise (which has a flat phase distribution), the noise
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Figure 2: The effect of random noise on a phasor

responses of the even and odd components are independently distributed. It is therefore
possible to model the effect of noise on phase and energy as illustrated in figure 2.

If we assume that the noise distribution is Gaussian with standard devititre
expression for phase error at a location with local enérig/[14]:

_ 1 =% AcosAgp ,% (AcosAqo)
P(Ag|o,A) T + T e Q 5
whereQ is the complementary error function. For the specific definitions of odd and
even components used here, the situation in figure 2 does not hold exactly when the odd
response is very small, in which case the noise, as shown, could theoretically make the
odd component negative, which is impossible in practice. However, we have found that
the effect is insignificant.

Note that the local energy appears in ratio with the noise standard deviation. The
ratio A/ o is the local signal to noise ratio (SNR). Although equation 14 appears rather
complex, for large values of SNR it is well approximated by a Gaussian distribution:

(14)

3 A A 5% 15
g, ~ e 2o

This approximation is reasonable even for signal to noise ratios as low as two. With
the phase noise expressed as a Gaussian, it is natural to express the phase distance as
a Mahalanobis distance. The Mahalanobis distabgg,between two multiscale phase
vectors is defined as:

D3 = AGTCAA® (16)
AD = [Agr,....,Aq) (17)

where € is the covariance of the Gaussian distributed phase errors, determined from
the local SNR according to (15) add, is the phase difference at scaldt may easily be



shown that the covariance’@an be derived at each point from the filter noise-response
covariance matrix &and the observed energies:

Al =amctT (18)

where Ais the local energy matrix, witmﬁ: AjA; andA; is the local energy at scaile

The operator> denotes element-wise multiplication, i.e{fé: Aijcidjfl. Note that this
depends on the assumption that the noise power in the odd and even filters is the same.
This is not strictly true of bandpass filtered speckle noise, but is a good approximation.
In the algorithm presented in the next sectioh i€ assumed constant over the image
(though this need not be the case). The local energy mairhovever, is non-constant

by definition, which means that the similarity measure is itself non-constant. Where the
underlying signal is strong, the energy matrix is large and so the corresponding covariance
matrix is small, which results in lower toleration of phase error. Conversely, when the
energy is very low, the covariance is very large and even significantly distinct phase values
do not appear very different. For this reason, we refer to (16) as an ‘local energy mediated’
similarity measure.

4  Algorithm

Our implementation is based on the demons algorithm, a fluid registration algorithm
which registers images on the assumption that intensity is constant over time [8]. We
extend the same framework to the problem of minimizing the phase distance according
to (16). The demons algorithm is an iterative method which updates the present estimate
of the displacement between imageg, with a function of the phase distance and the
gradient of the phase distance:

Dm(X,Y)
|DDm<x,y>|2+Dm<x7y>ZDD”‘(X’y)) (19)

WhereG, is a regularizing Gaussian of widih. The phase distandgy, is calcu-
lated at each point between the phases of the target images and the phases of the source
image deformed by the current transformation estingtd he gradient of the phase dis-
tance is approximated by central difference. At each iteration, the noise is estimated by
subtracting the target image from the source image deformed by the present registration
estimate. Initially, this noise field contains image structure and the resulting noise model
is contaminated. As the registration proceeds, the amount of signal contaminating the
noise decreases. The noise field is used to generate the noise model covaridnyce C
measuring the covariances of the bandpass filter responses. Since the filtered noise can be
found by subtracting the filtered images, noise estimation does not require any additional
filtering operations. For the results presented in this paper, five difference of Gaussian fil-
ters were used, given by the differences between six consecutive Gaussians, with standard

deviationso, = 2"%2, n=1:6. The regularizing Gaussian was setat 4.

Vni1(XY) = Go ® (Vn +



Figure 3: An example image from the high quality sequence (left) and the low quality
sequence (right)

5 Results

We illustrate the phase-based demons algorithm on to two cardiac ultrasound sequences,
one judged to be of high quality, the other of low quality. An example frame from each
sequence is shown in figure 3.

To evaluate the effect of the noise modelling, experiments were repeated twice, once
with the noise model and local energy based similarity measure and once using the iden-
tity matrix in place of the phase noise covariance (i.e assuming white noise and ignoring
local SNR). Although ground truth motion was not available for the two sequences, it was
possible to compare the consistency of the two motion estimates. To do this, we com-
pared two alternative ways of estimating the motion between next-but-one neighbors in a
sequence: direct estimation where the two frames are registered directly, and indirect es-
timation where the motion from the first frame to the middle frame is added to the motion
from the middle frame to the second frame. We make the assumption that the differences
between next-but-one neighbors are purely determined by motion and noise. In this case,
the difference between the direct and indirect motion estimates should be largely due to
noise. Table 1 shows the mean difference between direct and indirect motion estimates for
the good and the poor sequences, both with and without the proposed noise model. The
consistency of the noise-model based algorithm is better for both sequences. However,
even without any realistic noise model, the algorithm still performs quite consistently,
suggesting that it is inherently robust. Strangely, both algorithms seem to perform better
on the poorer image. The reason for this would appear to be that the high quality images
actually contain large regions (mostly blood) that don’t contain useful features.

To estimate the accuracy of the algorithm, we have also applied it to a synthetic data

Without noise model With noise model
High quality Low quality High quality Low quality
Mean 1.38 1.31 1.16 1.12
Variance 1.15 1.14 0.5 0.5

Table 1. Mean differences, in pixels, between direct and indirect motion estimates, with
and without the proposed noise model.



Mean error| S.D. | % Err. < 0.5
With n.m. 0.80 0.048 36%
Without n.m. 0.88 0.052 26%

Table 2: Summary of results of synthetic experiment.

set. This was a set of thirty image pairs generated from the high quality ultrasound se-
guence. The first frame of each pair is a randomly selected frame from the sequence. The
second frame is created by applying a randomly generated warp. Simulated speckle noise,
created using the method described in [15], was then added to both images. The simu-
lated speckle noise is designed to have many of the attributes of real speckle noise; it is
correlated, with location dependent autocorrelation function, and was generated by taking
the difference between the speckle patterns generated by two partially correlated scatterer
distributions. The random warps have a mean displacement of 3 pixels, and were gener-
ated by convolving a field of zero-mean random vectors with a Gaussian and so should be
fully compatible with the regularizer of the Demons algorithm. The synthetic image pairs
were then registered using the phase distance derived from the true noise model.

Figure 4 shows the distribution of mean error before and after registration. In the pres-
ence of tissue the registration error is significantly reduced. We can deduce from this that
the algorithm uses some of the fine scale information as well as the large features, such
as the blood-tissue boundary. If this were not the case, the algorithm would suffer from
the aperture problem and would not achieve such levels of accuracy. Table 2 summarizes
the results of the experiment. The increase in performance introduced by the noise model
is significant (p<0.001), but seems smak=(10%). However, since neither method can
effectively register the blood pool, this performance increase is concentrated in the tissue.
This is reflected in the 36% increase in the proportion of the image aligned with accuracy
of better than half a pixel width.

6 Discussion

We have introduced a method to model the second order statistics of speckle noise by
independently modelling the first order statistics of the responses of band-pass filters. We

Figure 4: Average errors before and after registration for the synthetic sequence



have shown how this model can be combined with local phase estimation to produce a
contrast invariant local similarity measure, with a non-white noise model. This is used to
drive the demons algorithm, but could, in principal, be combined with many other cost
function minimization strategies. It should also be noted that the method is not restricted
to ultrasound; provided an appropriate family of bandpass filters is chosen, the method
could be applied to any data with correlated noise. The registration method appears to be
both accurate and intrinsically robust, but benefits significantly from a model of the noise
correlation. At the present, it is not possible to say whether the benefits of modelling
noise correlation outweigh those of accurate modelling of the first order properties. To
this end we are currently carrying out an extensive test of the method, in competition with
two other methods based on first order noise models.
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