Shape from non-homogeneous, non-stationary,
anisotropic, perspective texture

Angeline M. Loh" and Richard Hartley*
"The University of Western Australia,
¥ Australian National University, and National ICT Australia
angie@csse.uwa.edu.au, Richard.Hartley@anu.edu.au

Abstract

We present a method for Shape-from-Texture in one of its most general
forms. Previous Shape-from-Texture papers assume that the texture is con-
strained by one or more of the following properties: homogeneity, isotropy,
stationarity, or viewed orthographically. We make none of these assump-
tions. We do not presume that the frontal texture is known a priori, or from
a known set, or even present in the image. Instead, surface smoothness is
assumed, and the surface is recovered via a consistency constraint. The key
idea is that the frontal texture is estimated, and a correct estimation leads to
the most consistent surface. In addition to surface shape, a frontal view of the
texture is also recovered. Results are given for synthetic and real examples.

1 Introduction

Shape-from-Texture aims to estimate the shape of a surface based on cues from markings
on the surface, or its texture. The problem is ill-posed unless some assumptions are
made. This work avoids making some of the usual assumptions regarding texture, by only
assuming surface smoothness and performing an efficient search for the frontal texture.

1.1 Basic Idea

Suppose that a texture is composed of individual texels, and that one texel is known to
be viewed frontally in an image. Other texels may be slanted away from the camera, and
lie at a different distance from the camera than the frontal texel. Slanting the texel will
cause foreshortening in the tilt direction!, and changing distance from the camera will
result in a change of scale. The appearance of any texel will be related to the appearance
of the frontal texel by a geometric transform, which locally can be modeled as an affine
transformation. By measuring at each texel the affine transformation that relates that local
texel to the known frontal texel, we may determine the orientation of the surface at that
point in the image. From this information it is possible to reconstruct the surface.
Sometimes however, no frontal texel is visible, or identifiable in the image. Our ap-
proach is to search over all possible texels to determine which is frontal. Each hypoth-
esized frontal texel leads to an estimate of the orientation across the surface. However,

I'Slant is defined as the angle between the line of sight and the surface normal. Tilt is the direction in which
the surface is slanted.
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the key observation of this paper is that an incorrect hypothesis of the frontal texel leads
to estimates of surface orientation that are inconsistent, and in fact can not be realized
by a reconstructed surface. Therefore, a search over all possible frontal texels leads to a
unique consistent estimate of frontal texel, and hence surface shape. We demonstrate that
this is feasible using the orientation cue. The search is carried out using the Levenberg-
Marquardt method, and does not require that the frontal texel be visible in the image.

It has been shown by Forsyth [5], that under orthographic projection, the frontal texel
can be determined regardless of the shape for the surface. However, his approach cannot
be applied in the case where individual texels may be scaled due to perspective views or
for any other reason. The contribution of this work is to provide a Shape-from-Texture
method that does not assume that the texel is homogeneous, isotropic, or stationary, or
that we are using an orthographic view. To our knowledge, no algorithm exists for this
level of generality.

1.2 Defining Assumptions

In this work, the assumptions regarding texture are defined as such: Homogeneity means
that the distance between texels and their pattern of placement is consistent across the
surface. The term refers to the location of texels, without regard to the rotation of each
texel. Stationarity means that the texels differ by a translation on the surface but not a
rotation. Isotropy means that the texel has a constant inertia about every axis.

2 Relevant Work

Interest in Shape-from-Texture is said to have started with Gibson’s ‘The Perception of
the Visual World’ in which he proposes that texture provides an important visual shape
cue. Despite the large number of papers in Shape-from-Texture produced since Gibson’s
work, there are curiously few methods that actually estimate the shape of a surface based
on its texture [5].

There are still fewer methods that may be commonly applied to images of real sur-
faces. This is due to restrictive assumptions made about either the texture or camera
model. All Shape-from-Texture algorithms begin with some assumption about the tex-
ture. Witkin [19] and Brown [1] assume that the texture is isotropic, although this is in
reality rarely the case. Texture homogeneity is more frequently seen in the literature, for
example in the work of Kanatani [9], Lee [11] and Stone [17]. Work by Garding [6],
Malik [13] and Clerc [3] assume stationarity, so these algorithms cannot be used when
the texture is allowed to rotate on the surface.

Assumptions about the camera model can also limit the images to which the algo-
rithm may apply. An orthographic camera model requires that the visual angle is small
compared to the distance of the object from the camera. Choe [2] and Super [18] for ex-
ample make this assumption. When perspective effects, such as the shrinking of a texture
as it moves away from the camera, are non-negligible an appropriate assumption is the
perspective or pin-hole camera model, as used by Clerc [4] and Jau [8].

The method described in this paper solves the Shape-from-Texture problem for per-
spective views. The mathematical formulation in Section 3.1 is related to that found in
Forsyth’s paper [5] except that Forsyth uses an orthographic camera model. An additional
contribution of this work is the surface consistency measure, which allows us to estimate



the frontal texture even when individual texels are scaled with respect to the frontal texel
— a property not accounted for in the orthographic case.

Surface consistency measures have been used to constrain object shape in areas other
than Shape-from-Texture. For example see the work of Yuille et al. [20] who use a differ-
ent cost function to the one described in this paper.

3 Overview of the New Method

We begin with the image of a smooth textured surface. The shape of the surface is found
by firstly searching for the frontal texel, as described in Section 3.1. The search aims to
find the texel that leads to the best surface consistency measure, described in Section 3.2.
Surface shape is then estimated using the procedure in Section 3.3.

3.1 Searching for the Frontal Texel

Write T¢_,; as the affine transformation from the frontal texel f to the texel i. The aim is
to determine T7_,; for all 7, as these matrices may be decomposed to give the orientation
and distance of each i.

Since we do not know the appearance of the frontal texel, we can not compute the
matrices Ty_,; directly from the image. Instead, we can write

Tri = TjniTr (D
where T;_,; is the transformation from a reference texel j, arbitrarily chosen as a texel

from the image (or some affine transform of it), to texel i, and Ty, gives the affine
transformation from f to j. The matrices 7;_,; may be computed from the image, and it is
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Figure 1: Transformations between texels

then a matter of searching for the affine transformation 7_, ; such that the most consistent
surface is achieved from the matrices T;,;Ty_, ;. Our measure of surface consistency is
given in the next section. The matrix T7_, ; may be decomposed via RQ decomposition [7]
to give Tr_,; = RQ where R is a lower triangular matrix and Q is orthogonal. We are free
to replace Ty, ; with Ty_, ;P where P is a rotation matrix, as an initial rotation does not
alter our interpretation of the surface orientation, and hence does not affect our measure
of surface consistency. We choose P = Q7 so that we need only search lower triangular
matrices as candidates for 7y_, ;P. We can further reduce our search space by the fact that
our surface consistency measure does not depend on scale, so that we only need to search

for matrices of the form ( i 2 ) . Using a Levenberg-Marquardt search, we determine



the values of ¢ and b that give the most consistent surface, ¢y and b¢. The transformations

T¢_,; are then given by Tj_,; ( Cl l? )
' fOF

3.2 Surface Consistency Measure

We can test whether our transformations Tf_>,~ (where the hat denotes the fact that ff_,i
is only a candidate) give a consistent surface by doing the following: first, calculate the
surface normals that arise from the transformations ff_n-. This is done by decomposing
Ty via singular value decomposition such that

Tf—)i = UDVT )
=UuDpUT(UVT)
where D is a diagonal matrix satisfying D1y < D33, and U and V are orthogonal matrices.
The decomposition is interpreted as follows.

1. The texel is rotated by the rotation UV .

2. The image is now rotated by U7, stretched in the coordinate directions by D and
then rotated back by the rotation U. The nett effect of this is to scale it along two
axis directions whose orientation is determined by U.

3. Thus, U gives the tilt direction.

4. The amount of scaling (given by the entries of D) indicates the degree of slant.

Note that the degree of tilt or slant of the image does not depend on V. Hence we may
ignore it. Alternatively, we can multiply on the right by any rotation, without changing
the result of the slant or tilt calculation. If the slant and tilt of the surface patch are given

by ¢ and 7 respectively, then
cos(7) = Uyy,
Sin(T) = U123

3

COS(G) =D11/D22, (4)
sin(0) = /1 —cos?(0).

Equation 3 comes from the fact that

U:< cos(t)  sin(7) ) )

—sin(7) cos(T)

and Equation 4 arises from

_( cos(o)r O
o= ()
where r is the scaling factor. The surface normal is then given by
ny +cos(7)sin(o)
ny | = =sin(7)sin(o) |. 7
n; cos(0)

From the surface normals, the gradients are calculated for each patch:

fi=—ny/n; and f, = —ny/n,



The Fundamental Theorem of Line Integrals states that

| [vedrli=0 ®

for all closed curves C parameterized by r and a differentiable function z whose gradient
vz is continuous on C. Using our calculated surface gradients as v/z in Equation 8 and
setting C to be any closed curve, we would expect that the left-hand-side of Equation 8
would be close to zero if we had correctly estimated the frontal texel, and much larger
if we had not. Therefore, a measure of surface inconsistency is obtained by summing
the left-hand-side of Equation 8 around various loops. The loops used in our method are
triangles obtained by choosing sets of three neighboring texels and using their coordi-
nates as the corners of the triangles. The cost term is then a discrete approximation to a
continuous integral, given by

cost =X\ (Feitsfoin)-(Xip = Xi 1, vi2 — i) 9
+ (fri2>Sri2)-(Xi3 = Xi2,¥i3 = Yi2)
+ (fx,i,3 , fy,i,S) . (xi,l — Xi3,Yi,1 — yl',3)

where N is the number of loops, (xi’,,,y;’,,) is the location of the nth texel in the ith loop,
and (fy,in, fy,in) are the corresponding gradients in the x and y directions.

We use this cost term with the Levenberg-Marquardt method [14] to search for the
values of ¢ and b that result in the most consistent surface.

3.3 Estimating Shape Using the Frontal Texel
Once our frontal texel has been determined, we use it to estimate the surface shape. This

o ) via equations 2, 3

is done by decomposing the transformations Ty_,; = Tj; ( cr b
' fof

and 4. Then the orientation at each texel is specified by

T = arctan(U}, /Uy 1), and (10)
o = arccos(D1 /D)

4 Results

The algorithm was firstly tested on a synthetic image of a sphere. The texel used to cover
the surface is shown in Figure 3(a). This particular texel was chosen to demonstrate that
the algorithm works even if the texture is anisotropic. The texel also has many right angles
which clearly expose any potential error in the estimate of the frontal texel.

In order to place the texels, the frontal version was randomly rotated about its normal
axis, and placed at random locations on the surface such that its surface normal matched
that of the surface under it. The texels were also scaled to account for the shrinking effect
as texels move away from the camera. The textured surface shown in Figure 2 is a non-
homogeneous, anisotropic and non-stationary texture, with simulated perspective effects.
The only input into our Shape-from-Texture algorithm was the image of the textured sur-
face. Individual texels were found using the Maximally Stable Extremal Regions (MSER)
detector by Matas et al [15]. True texels were distinguished from other detected regions
using SIFT features [12] to initially find the “average” region. Regions were then rejected



Figure 2: The textured surface

as true texels if their distance function from the average exceeded a threshold. While a
more sophisticated method of pruning false texels (such as clustering) is clearly better,
the method described was found to be sufficient for our purposes.
In order to search for the frontal texel, we first nleeded to choose a reference texel
1

Jj- This texel j is later transformed by to give the true frontal texel. We

b
chose j to be an arbitrary texel that has been trfansformed to make it isotropic, that is,
it has constant second moment about every axis. This is a natural choice for j since all
visible texels need only be foreshortened to achieve a rotated and scaled version of j. The
texel j is shown in Figure 3(b).

The transformation 7;_,; for every texel i is found as follows: i is first foreshortened to
make it isotropic, and this is rotated and scaled to become j. The inverse of this process
gives T;_,;. This method of computing transformations was influenced by Schaffalitzky
and Zisserman’s work [16] using isotropic textures as a common point of reference.

Then to find the values of ¢y and by an initial coarse search in (c,b) space was per-
formed to find some near-optimal values. This was followed by a Levenberg-Marquardt
optimization starting from these values to find the optimal solution. The estimated frontal
texel which resulted is shown in Figure 3(c). The estimate looks good, given that its ro-
tation and scale compared to the true frontal in Figure 3(a) are of no consequence, since
these factors play no role in determining surface orientation.

The surface orientation at each texel can then be calculated. This is demonstrated
with the needle diagram shown in Figure 4(a). Note that the well-known tilt ambiguity
can be resolved here since during the placement of texels, scaling occurred to account
for the distance of each texel from the theoretical camera. The scale at each texel can be
deduced from the transformation Ty_,;. The tilt ambiguity can be resolved by choosing
the candidate for tilt which is in the direction of decreasing scale. The slant and tilt values
were interpolated at values in a regular grid and the surface was reconstructed using the
algorithm by Kovesi [10]. This surface is shown in Figure 4(b).

Next the algorithm was tested on a real image. Fabric was draped over the back of a
chair to form a the curved textured surface seen in Figure 5. This particular fabric was cho-
sen because it demonstrates that the algorithm works on non-stationary and anisotropic
textures. The image has clear perspective effects, seen by the decreasing scale of the
leaves as they move away from the camera. Again, the reference texel j was chosen to be
an arbitrary texel that has been transformed to make it isotropic, as shown in Figure 6(a).



N > 24

(a) True frontal (b) Reference texel (c) Frontal estimated
chosen arbitrarily by algorithm

Figure 3: The estimated frontal shown in (c) is a good match with (a), since the scale and
rotation of (c) compared to (a) make no difference to the recovered surface and hence the
surface consistency measure.
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Figure 4: (a) Needle diagram showing the calculated surface orientation at each texel. (b)
Calculated mesh surface.

The transformations T;_,; are found as before: each visible texel (such the one shown in
Figure 6(b)) is firstly made isotropic (Figure 6(c)), and this is rotated by the angle that
makes it most similar to the reference texel (Figure 6(d)). Therefore the sequence (b)—(d)
shows the transformation 7;_, ;; the inverse transformation gives 7;_,;. As before, an initial
coarse search in (c,b) space yields near optimal values for surface consistency, which are
then refined with a Levenberg-Marquardt method. Figure 7(a) displays the frontal texel
as estimated by the algorithm. It is a transformed version of the reference texel shown in
Figure 6(a). A real image of the fabric when viewed frontally is shown in Figure 7(b).
For comparison, and considering that initial rotations play no role in shape information,
we have rotated the image in (b) so that it matches the orientation in (a).

The estimated frontal texel is used to calculate the orientation at each texel. This is
shown in a needle diagram in Figure 8(a). Kovesi’s method [10] is used to construct the
surface seen in Figure 8(b). A mesh surface viewed from the side is shown in Figure 8(c).

Note that in the example above, there is no ambiguity when calculating the transfor-
mations 7;_,;. However ambiguities can occur if the texel has rotational symmetry; for
example, if the frontal texel is a rectangle (as in the case of bricks) then our reference texel



(a) Reference texel (b) Some visible texel ~ (c) Isotropic ~ (d) Rotated version
version of (b)  of (c¢) to match (a)

Figure 6: Calculating the transformations 7;_, ;. The sequence (b)—(d) shows how some
visible texel is transformed into the reference texel shown in (a).

Jj and all visible texels i are trapeziums. It is impossible to know which of the four sides
of j correspond to the four sides of each i. Furthermore, a circular frontal texel presents
infinite possibilities when calculating the transformations 7;_,; because an appropriate
scaling factor can be used to compensate for any rotation component. This problem is
intrinsic to all perspective views when the transformation between textures is calculated,
however it is only a problem when the textures exhibit rotational symmetry.

So far in this work, we have described textures in terms of distinct texels, but in prin-
ciple our algorithm will work for textures where one cannot distinguish individual texels;
interest point locators such as Lowe’s [12] might be used to detect corresponding points
in the repeated pattern, and a second moment matrix assigned to each point. Transfor-
mations between textures at different points would be determined by the transformations
between their second moment matrices.

(a) Frontal estimated (b) Real image of
by algorithm fabric viewed frontally

Figure 7: Estimated and true frontal texels.
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(a) Needle diagram also  (b) Calculated surface height (c) Mesh surface seen
showing detected texels shown in gray value from side view

Figure 8: Estimated surface shape.

5 Conclusion and Future Work

The real example given in this paper demonstrates the robustness of our algorithm; a sin-
gle image of a non-stationary, anisotropic texture is the only input to the method. The
frontal texture is unknown, and we do not even know if any frontal texture appears in the
image. There are also considerable perspective effects. The algorithm firstly estimates
the frontal texture using a smoothness constraint. Our results show an accurate estimate
of the frontal texture. Then, the surface shape can be estimated. The transformations
from the frontal texture to all other viewed textures can be calculated, and these trans-
formations interpreted to give shape information. Our real example gives a qualitatively
good surface reconstruction. This work contributes a Shape-from-Texture method that is
not restricted to homogeneous, isotropic or stationary textures, or an orthographic view.
To our knowledge no other method works with this level of generality. Future work will
explore the effect of noise in 7,_,; (the affine transformations between texels), as well as
the effects of surface smoothness, choice of reference texel and reducing the texel density.
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