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Abstract 
 

A novel segmentation-assisted method for film dirt detection is proposed. 
Since dirt manifests as a cluster of pixels whose intensity differs from that of 
its neighbourhood, we employ segmentation and assume that each small 
region as a dirt candidate. The assumption is validated by considering raw 
(non-motion compensated) differences between the current frame and each 
of the previous and next frames which provides a measure of a confidence. 
Our experiments show that our method compares favourably with standard 
spatial, temporal and multistage median filtering approaches and provides 
efficient and robust detection even for fast moving sequences.  

 

1  Introduction 
 
Automatic restoration is a key enabling technology towards facilitating access to 

historic film archives. By improving baseline picture quality and by reducing the 
perceptual impact of archive-related impairments restoration can meet viewers’  aesthe-
tic expectations and enrich the viewing experience. Moreover, the suppression of such 
impairments has vital implications on the efficiency of video coding algorithms used in 
the television and multimedia distribution chains such as MPEG-2 and MPEG-4.  

The emergence of new multimedia and broadcasting outlets has the potential of 
dramatically improving public access to cultural assets of unique educational and 
entertainment value. Consequently, film restoration has recently attracted a lot of 
interest and several high-profile collaborative projects have received EU funding such 
as AURORA (Automatic Restoration of Original Film and Video Archives, 1995), 
BRAVA (Broadcast Restoration of Archives by Video Analysis, 1999) and more 
recently PrestoSpace (Preservation towards Storage and access Standardised Practices 
for Audiovisual Contents in Europe, 2004).  

In their lifetime, films may suffer damage due to environmental hazards such as 
humidity and dust, chemical instabilities, improper storage and handling practices and 
even poorly maintained projectors [1], [2]. In this paper, we focus on the detection of 
impairments occasionally referred to ‘dirt’ . These are among the most commonly 
encountered impairments and consequently their successful detection is a priority issue 
in any archive restoration system [1].   
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In general, dirt is a temporally impulsive (single-frame) event, appearing mostly as 
dark or bright opaque spots of random size, shape and location (Fig 1). It is due to 
particles which attached to the film or abrasions which occurred during storage or 
when the film passed through various transport mechanisms [1], [7]. Due to their 
temporal characteristics inter-frame processing has proved a useful tool towards 
detection and concealment [2], [5].  

 

 

Figure 1: Examples of dirt  

A common approach is to use bi-directional motion compensation and subsequently 
apply temporal median filtering using the current frame and its two motion 
compensated neighbours. In Schallauer et al [2], a pixel is taken as dirt and filtered if 
both its absolute differences between current frame and the two compensated images 
exceed a first (higher) threshold while at the same time the absolute difference between 
the two compensated images is less than a second (lower) threshold. In Kokaram [4], 
the so-called “Spike Detection Index”  (SDI) is proposed. This is also based on the 
identification of high absolute differences between the current frame and two 
compensated images. The extended SDI method, SDIp, additionally requires sign 
consensus of the two differences above. Nadenau, and Mitra [5], have proposed the 
rank order detector (ROD), in which a total of seven pixels from three consecutive 
frames are compared against three thresholds. Gangal et al extended ROD to five 
frames to improve accuracy in heavily corrupted images or occluded blotches [3].  

Since motion-compensated prediction requires a high degree of complexity and can 
be unreliable when motion estimation fails, many spatial filtering techniques for dirt 
detection have also been proposed as alternatives [9-12]. Most of these methods employ 



   

median filtering, as it can preserve edges to a greater extent than linear filters [8]. 
Subsequently, dirt detection is based on the identification of high difference values 
between the current frame and the filter output. Nieminem et al [9] presented a multi-
stage median filter (MMF), which uses hierarchical median operations to reject sparkle 
distortions. In Arce [10], MMF filters are further evolved as multi-stage order statistic 
filters (MOS). Senel et al [11] proposed a topological median filter to extract edges in 
noise; however, the filtered images are of unacceptable visual quality in most cases. 
Hardie, and Boncelet [12], proposed LUM (lower-upper-middle) filters, which utilised 
two parameters for adjustable smoothing and sharpening of images. Compared with 
soft morphological filters (SMF), Hamid et al pointed out that LUM failed to restore 
fast-moving objects in image sequences [7]. However, SMF seems impractical for most 
applications because it needs sufficient representative dirt samples for training to 
optimise the size and shape of the filters.  

In this paper, we propose an efficient and robust method for film dirt detection. 
Relative to the other methods in the literature, a unique feature of our algorithm is that, 
thanks to segmentation, dirt is detected at a higher semantic level as a region 
consisting of connected pixels rather than as isolated pixels. This is consistent with the 
actual manifestation of dirt in real film samples. A second attractive feature of our 
scheme is that a confidence measure is derived and attached to detected dirt regions. 
This is an invaluable feature towards both automatic and operator-assisted dirt 
concealment as it allows a variable degree of treatment according to preference. Finally 
our method does not employ motion estimation and motion compensated prediction 
which reduces its complexity considerably and makes it a good candidate for fast 
implementations.  

 

2  Dirt Detection using Segmentation  
 

We have employed region growing for image segmentation as follows. For a given 
image, we use a raster scan order to identify any previously unmarked pixel. Such a 
pixel is used as a seed for region growing. All other pixels previously merged to form a 
region are marked. 

When growing, a normal distribution ),( 2σµN  is utilised in which µ  and σ  are 

the mean and variance of pixel values in a given region. An unmarked pixel p  which 

is adjacent to a pixel q  of that region will be merged in that region if its intensity 

0i satisfies both ]8.0)(,8.0)([0 σσ +−∈ qfqfi  and ]3,3[0 σµσµ +−∈i  , where 

)(qf  is the intensity value of the pixel q .  

Whenever a new pixel is merged, the mean and variance will be updated. For 

efficiency, we use λµσ /=  to approximate the statistical variance, and normally we 

have 62 ≤≤ λ . Finally, we assign the average intensity to all the pixels within the 
segmented region. When λ  increases, the variance σ  will decrease, thus more detail 
will be preserved in the segmented image. Fig 2 shows two different segmentation 
results from which we can see that dirt pixels have resisted merging and have 
remained visible.    

It should be noted that detection performance is fairly insensitive to the choice of 
segmentation method and associated parameters.  



   

 
Figure 2: Two segmented images with 2=λ  (left) and 4=λ  (right) respectively.  

Next we assume that each small region in the segmented image is a dirt candidate 
and use a threshold s  operating on region size to determine such candidates. Fig 3 
shows the detection masks obtained using two different thresholds underlining the fact 
that good threshold selection is essential. We can also see that there are still many false 
alarms in the detected mask, mainly due to moving edges or static small objects. In the 
next section, inter-frame information will be employed to validate the contents of the 
detection mask and improve its accuracy. 

 

Figure 3: Detection dirt masks (for the right hand side image of Fig 2) with size 
threshold 30=s  pixels (left) and 50=s  pixels (right), respectively.  

 

3 Confidence-Based Validation of Dirt 
 

3.1 Definition of Dirt Confidence 
 

The fundamental assumption that dirt is a single-frame event leads naturally to the 
idea of using inter-frame information for validation. Let nn ff ,1−  and 1+nf be three 

consecutive frames. We define 1−− −= nnn ffd  and 1++ −= nnn ffd  as the forward and 

backward frame differences, respectively.  We also consider the absolute values of −nd  

and +nd  as elementary confidence indicators.  We define nd  as: 
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 This attains its maximum value when an idealised dirt impulse occurs against a 
constant background i.e. when +− = nn dd .If both −nd  and +nd  are negative or positive, 

this relates respectively to dark or bright dirt pixels (particles adhered on negative or 
positive film stock). Figure 4 shows the shape of nd  when −nd  and +nd  vary in the 

range between 1 and 25. 
 

  

Figure 4. Partial surface of nd .              Figure 5. One confidence image obtained.  

 
Furthermore,  for each value m  in nd , dirt probability is defined as: 
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In (2) and (3), dp  is the intensity distribution PDF (probability density function) of 

nd , which can be derived from the histogram of nd . Parameter 0λ  is used to 

normalise )(mpn  within [0,1], and 0m  to control the removal of static background.  

It is worth noting that 00 =m in Eq. (2) amounts to histogram equalisation of nd . 

Nevertheless, a static background in the three consecutive frames, may force most  
pixel values in nd  near zero therefore straightforward histogram equalisation is not 

useful in this context.  
Let γµ,  and σ  be the mean, median and variance of the distribution of values in 

nd , and let 0m  be determined by 

σγµ ++=
20m      (4) 

Using np , we define a confidence image as ))),(((),( jidpgjiConf nnn = . Let 

)),(( jidpz nn= , we have 2ln/)1ln(*)1()( zLzg +−= . Since ]1,0[)( ∈mpn , we 

have ]1,0[),( −∈ LjiConfn .  

Figure 5 gives an example of a confidence image obtained for the bottom-left image 
of Fig 1. From Fig 5 we can see that dirt pixels appear very bright which means that 
they are detected with high confidence. On the other hand, there remain some false 
alarms mainly due to motion and moving edges.  



   

3.2 Object-Based Dirt Validation 
 
Assuming mB  is the binary dirt detection mask obtained in Section 2, and Conf  is 

the confidence image extracted in Section 3.1, we can use Conf  to validate mB .  

Firstly, a new image, dConf , is obtained as confidence of detection and given by 
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Obviously, dConf  is a greylevel image in which all the non-zero pixels are the 

detected dirt of mB , and the intensity in dConf  represents confidence of dirt detection.  

Secondly, we attempt to remove false alarms caused by the movement of small 
objects in dConf . Due to motion, these false alarms occupy a larger area in Conf than 

in dConf , thus they can be eliminated by comparing these two areas.  

Finally, for a given confidence level qc  a binary dirt detection mask qD , can be 

determined by thresholding as follows 

�� � −≥
=

otherwise

cLjiConfif
cjiD

qd
qq

0

*)1(),(1
),,(     (6) 

In general, qc  can used to control the sensitivity of detection. Figure 6 shows the 

dConf  image and binary detection mask with 9.0=qc  (or 90%). 

 

Figure 6. Confidence (left) and binary confidence mask at 90% (right). 

 

4  Experimental Results 
 

4.1 Visual Comparative Assessment 
 
For comparison purposes we have used standard approaches based on spatial, temporal 
and so-called multistage median filtering. These are explained below. 

In spatial median filtering, all the pixels are filtered before dirt detection. For each 
pixel ),( ji  in the current frame nf , a window W  of radius r  is defined as 

})(,)(|),{ (),,( 1111 rjjabsriiabsjirjiW ≤−≤−=    (7) 



   

The total number of pixels in W  is 2)12( +r . We sort the intensities of all the pixels 

in W  and take the median as the filter output. If ng  is the filter output i.e. 

),,()','(|))','((),( rjiWjijifmedianjig nn ∈= , the dirt detected by spatial median 

filtering (relative to a threshold st ) is given by  
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For temporal median filtering, at least three frames are needed: the current frame 

nf  and the two motion compensated frame neighbours, −nC  and +nC . In [2] the 

detected dirt tD  is defined by (9) with thresholds, 1t  and 2t , satisfying 21 tt > . 

��
��
�

<−
>−>−

= +−

+−

otherwise

tjiCjiC

tjifjiCtjifjiC
if

jiD nn

nnnn

t

0

|),(),(|

,|),(),(|,|),(),(|
1

),( 2

11

   (9) 

             
               (a)  W0              (b)  W1             (c)  W2               (d)  W3                (e)  W4  

Figure 7. Sub-windows defined in 3 frames for bi-directional MMF (radius = 1) 

As for multistage median filtering (MMF), the bi-directional one is taken in our 
experiments [10]. The basic concept of MMF is based on the five sub-windows defined 
in three consecutive frames (see Fig 7). After filtering using (10)-(12), the dirt mask, 

mD , is determined in the same way as spatial median filtering given above. 

]4,0[][ ∈∀= lwmedianz ll      (10) 

]4,1[]min[],max[ minmax ∈== lzzzz ll    (11) 

],,[)( 0minmax zzzmedianzMMF =     (12) 

Fig 8 shows the outputs of the spatial, temporal and multistage median filtering 
approaches above. For spatial filtering, the parameters are 3=r  and 15=st while for 

temporal filtering 251 =t  and 152 =t . In MMF, sub-windows in Fig 7 are used for 

filtering and then thresholded by 5=mt . Motion compensation was implemented by 

using dense motion fields of sub-pixel accuracy using the well-known Black-Anandan 
optical flow algorithm [6]. From Fig 8 we can see that although small-area dirt can be 
detected by spatial and multistage median filtering to reasonable extent, a lot of false 
alarms also exist. On the other hand, our results at a confidence level of 90% (see Fig 

1−nf

nf  
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6) are comparable to temporal median filtering, but expensive motion estimation is 
unnecessary with our method.  

 

Figure 8. Detected dirt mask using spatial (left), temporal (middle) and multistage 
(right) median filtering. 
 

4.2 Quantitative Comparative Assessment 
 
We obtain a quantitative performance assessment using manually derived ground truth 
maps and three key criteria namely correct detection rate cR , false alarm rate fR  and 

missed detection rate mR . If gD  is a ground truth dirt mask and ),,,( tsqmxDx =  is 

the detected mask obtained from any given method, these criteria are defined in as 
follows, where we have tsqmgy ,,,,=  in yD : 
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where Count  is a function counting the non-zero elements in a mask and operator 
⊗ is the logical AND between two masks. This logical AND is defined as follows:  
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In this set of experiments we have used broadcast resolution (720x576) sequence 
“Pennine Way”  which contains fast motion and textured background. Parameters are 
chosen as 3=r , 15=st , 251 =t , 152 =t , 4=λ , 20=s  and 90=qc  for the three 

methods, respectively. Quantitative comparisons of detected results on consecutive 20 
frames are given in Fig 9, from which we can see: (1) on the average our method yields 
the most accurate detection rate and the lowest missed rate; (2) due to failure of motion 
estimation, temporal median filtering may occasionally yield very poor detection rates 



   

results (see Fig 10e); (3) spatial median filtering yields a higher detection rate for some 
frames, however, this comes at the expense of more false alarms; (4) MMF shows 
similar correct rate as spatial median filtering but much less false alarms.  
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                     (a) Correct rate                                (b) False alarm rate 

Figure 9: Quantitative comparison of the three methods using cR  and fR . 

Fig 10 shows frame 210 of test sequence “Pennine Way”  with the detected dirt from 
spatial, temporal and multistage median filtering. Comparing Fig 10 and Fig 7, it is 
interesting to note that false alarms in temporal median filtering are mainly due to 
inaccurate motion estimation while those in spatial median filtering and MMF are due 
to sparkle type of noise or sharp edges. Owing to spatial segmentation and confidence-
based validation our method is less sensitive to both of those types of failure. 

 
     (a) Original frame                   (b) Dirt mask image of gD          (c) Dirt mask image of qD   

 
(d) Dirt mask image of sD          (e) Dirt mask image of tD           (f) Dirt mask image of mD                               

Figure 10: One test image and dirt mask images of ground truth ( gD ) and results 

from approaches of our method ( qD ) and spatial ( sD ), multistage ( mD ) and temporal 

( tD ) median filtering.  



   

5  Conclusions 
 
We have presented a segmentation-assisted method for film dirt detection. We demon-
strated that image segmentation can provide a useful framework for dirt detection in 
film restoration. The proposed method is effective, yields a useful measure of confi-
dence and outperforms conventional spatial, temporal and multistage median filtering.  
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