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Abstract

A new multilinear constraint on the color of the scene illnamt based on the

dichromatic reflection model is proposed. The formulatieoi@s the prob-
lem, common to previous dichromatic methods, of having tt filentify

pixels corresponding to the same surface material. Onadspirtom two or

more materials have been identified, their correspondicigrdmatic planes
can be intersected to yield the illuminant color. Howeveis inot always
easy to determine which pixels from an arbitrary region ofraage belong
to which dichromatic plane. The image region may cover aa af¢he scene
encompassing several different materials and hence gdixets several dif-
ferent dichromatic planes. The new multilinear constraicttounts for this
multiplicity of materials and provides a mechanism for csing the most
plausible illuminant from a finite set of candidate illumims. The perfor-
mance of this new method is tested on a database of real images

Introduction

Image colors vary significantly with changes in the color loé tight incident upon a
scene. Being able to estimate accurately the scene illurhic@or from an image is
at the heart of the color constancy problem. Once the coldhefight is known, it is
easy to adjust the image colors accordingly [17]. The twonnagiproaches to illumi-
nation estimation can be classified roughly as statistacset) versus physics-based [6].
Statistics-based methods [10] [7] [3] have been quite ssfak however, they require
a relatively large number of differently colored surfacede present. They also make
no use of the underlying physics of image formation. Phyb&sed techniques derive
constraints from physical principles so that the illuminean be obtained as a solution to
a set of equations.
Of the physics-based constraints explored so far such aséfiections, shadows,
chromatic aberration [8] [4] [9] and specularities [6] [12}], specularities have proven
the most useful. Specularities constrain the illuminambading to the dichromatic re-
flection model [15]. It states that the colors reflected by rmomogeneous dielectric
material will be a linear combination of two characteristaors; namely, the color of
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the specular component reflected from the air-surfacefagerand the color reflected
from the body of the material. If neutral interface reflentis further assumed [13], as
it is customary, then the chromaticity of the specular réiftecis the same as that of the
illuminating light.

Under the dichromatic model, the image colors observed facsurface patch of a
single material must lie on a plane in color space. Given tifferént surface patches
illuminated by the same light, the color of the light can béneated as the intersection of
the two dichromatic planes. Although this method has beewsto work [5] [6] [14], it
requiresa priori knowledge as to which image colors emanate from a singlerrahte

The approach proposed here also exploits the dichromatiiehoonstraint, but over-
comes the requirement that image colors be pre-groupedistef scene materials. This
is achieved by describing the image colors in terms of a tméar model consisting of
several planes simultaneously oriented around an axisedefip the color of the illumi-
nant. From a set of candidate colors, the color of the ligkstimated by assessing how
well each of the candidates explains the observed coloorsspunder the assumption
that the observed response can be described by a certaimfixelder of coexisting lin-
ear models. The resulting multilinear constraint is refolated into a set of simultaneous
linear equations using a Veronese projection. The smaligstivalue of the resulting ma-
trix provides a quantitative measure of how well a candidhtminant explains the image
data. The candidate exhibiting the smallest eigenvaluweis thosen as representative of
the scene illuminant.

2 The Dichromatic Reflection Model

The dichromatic reflection models [15] asserts that thersaliisplayed by an inhomo-
geneous dielectric material live in a two-dimensional galoe of the color space. This
two-dimensional subspace is ordinarily referred to as thierdmatic plane of the mate-
rial. Under the assumption of neutral interface reflectib8] this subspace is the span
of two characteristic colors: the color of the illuminatitight and a color that depends
on the reflection properties of the observed material. Nuta that if different materials
are illuminated by the same light, the colors that these nadgedisplay lie on a finite
collection of two-dimensional subspaces and that the $etgion of this collection is a
one-dimensional subspace which is the span of the coloredfght.

3 A Constraint on the Observed Colors

The dichromatic reflection model constrains how the obgboators must distribute in
color spaces. As mentioned in the previous section, they organize into a particular
collection of two-dimensional subspaces. In our approatead of looking at the con-
straint in color space, a reduced space is used to developtidimear constraint on the
observed colors. The proposed constraint is then emplayatd estimation of the light.
Given the RGB image of a scene that complies with the dichtimeflection model,
suppose that the color of the illuminating light is known. efih the projection of the
observed colors onto the two-dimensional subspace thathiegonal to the color of the
light is a collection of one-dimensional subspaces of tbesahentioned two-dimensional
subspace. Note that if the number of different materialenles in the scene is equalrip



the number of one-dimensional subspaces is also equaltizo note that if the observed
colors are projected onto a subspace orthogonal to a lighsg/bhromaticity is different
from that of the actual light, then the projected colors do mecessarily reside within
a collection ofn one-dimensional subspaces. This observation is core tagheach
proposed here for the estimation of the light.

Developing on this observation, assume thatandm, are some orthonormal basis of
the two-dimensional subspace that is orthogonal to the ablihe light (which is denote
here by vectow). The projection of any coloz(x) into the subspace defined by vectors
my andms can then be written as:

d(x;w) = M(w)c(x), @
whereM(w) is a 2x 3 matrix derived from the orthonormal basis as:
mj
M(w) = . 2
w-[1] .

Suppose thatv is the color of the actual illuminating light. Then, sinceckaro-
jected colord(x;w) must lie on one of th& one-dimensional subspaces, there must be
a collection of two-dimensional vectofsi; }!_; such such thad(x;w)"u; = 0 for some
i € {1,...,n}. Therefore any projected color also satisfies:

ﬁd(x;w)Tui =0. (3)

This is the multilinear constraint on the observed coloa the use for the estimation of
the light. Since the constraint is developed on a subspatésiorthogonal to the light
(vectorw), note that the constraint is also satisfied for any othewraui the light written
askw, k # 0. Consequently, from this equation it is only possible tinggte the chro-
maticity of the illuminating light, not its intensity. Alsnote that if there are at least two
materials whose color responses differ sufficiently thay tbroperly fill their correspond-
ing subspaces (i.e., not a degenerate one-dimensiongbae)s then the color of the
light satisfying (3) is unique up to a multiplicative factdlearly, if the observed colors
are sufficiently varied, then the projections of the colamtoaany other two-dimensional
subspace (orthogonal to any other arbitrary light that ismthe span of the actual illu-
minant) will not reside within a collection af one-dimensional subspaces, but within a
larger collection of such subspaces.

4 Estimating the Color of the Light

To estimate the color of the illuminating light, we assumeat there is a finite set of can-
didate lights to choose from. We then check how well each e$¢lcandidates explains
the observed color response.

Consider the image of a scene satisfying the dichromatieatifin model under the
assumption of neutral interface reflection. Assume thattheen different materials in
the imaged scene. Then, from Equation (3), we can see thaka gandidate light is
the best explanation of the observed colors if there is afsewectors{u; }{_; such that
Equation (3) holds. This seems to require that in order tgéudhether or not a candidate



light is the actual illuminant, we must first estimate thie. However, as will be shown
next, this turns out not to be necessary.

Let us begin by considering how tlks may be estimated. Clearly, estimation of the
u's from Equation (3) is a nonlinear problem. Nevertheless,nste that by recasting
Equation (3), this nonlinear problem can be partially reedénto a linear one. Multiply-
ing out (3), it is not difficult to verify that the equation cae written as the sum of+ 1
terms of the forrmllnldznz (n1+n2 = n) with associated coefficients depending{on} ;.
The totality of these terms can be represented using thengseomap of degreeon two
variables § = [d; do]T), which is written as:

Wo(d)=[0f df'd} df2dZ .. df|T. (4)

Denote the overall coefficient associated with the teitfd)? asan, n,. Then, Equa-
tion (3) can be recast as:

Vn(d(X:W)) T8 = 3 8ny nyla (X W) a3 )% = O, (5)

which is a linear expression on the coefficieats Note that if we can solve for the
coefficientsa,, then froma, we can solve for the’s by using a technique for polynomial
factorization. The coefficients, can be solved for by constructing a system of linear
equations using colors from different image locati¢rg " ;, m> n+ 1. Stacking (5) in
matrix form, the resulting system can be written as:

Va(d(xz;w))"
Vn(d(x2;w))"
Anan = : an =0. (6)

V(A (X )T

Vidal et al. [16] proved that the rank of a matrix with the same structréhat of the
mx (n+ 1) matrix A is equal ton if among the considered colors (using the terminology
of our particular problem), there are colors from thdifferent materials observed in the
scene (which is ensured if all observed colors are consdjleFeom this result, itimmedi-
ately follows that a candidate coleris the actual color of the light if the smallest eigen-
value of matrixA\! A, is equal to zero. Indeed, in the least-square sense, théepra
finding a coefficient, satisfying (6) can be written as mjn|Anan||2 = ming, al Al Anan.
Since matrixA, has rankn, the null space of thén+ 1) x (n+ 1) matrix AT A, has di-
mension equal to 1.

We see then that it is possible to assess whether or not adededight is the actual
illuminating light simply by inspecting the smallest eigatue ofA! A,. There is no need
to solve for theu’s. In practice, due to noise or nonconformance of the oleskecolors to
the assumed color image formation model, this eigenvales dot vanish. Nevertheless,
from the given set of candidate lights, the light whose sesaleigenvalue is minimum
across the set of smallest eigenvalues is chosen as thériditing light.

Vidal et al. [16] also showed that the number of different models (the lmemof
different materials in the scene) can be estimated from l canstraint on matrix\n.
Here, we simply assume that a fixed number of materials doistoéhis assumption is
made relying on the observation that, in principle, the tamst of Equation (3) remains
valid even if a number of different models larger than theiaktalue is used to formulate
the constraint [16].



5 Experimental Results

To assess the performance of the proposed approach, wedcaut experiments on the
database produced at the Computational Vision Lab, SimasdfrUniversity [2]. This
database is populated with images that do not strictly eesttre assumptions on color
image formation laid down by the dichromatic reflection modi&vertheless, by such an
assessment we seek to determine how the proposed algosittionrps in unconstrained
natural scenes as well as to establish a comparison with #ie statistics-based tech-
nigues.

The SFU database contains images of 32 scenes under 1eudiffilrminants. These
images are divided into four categories: (@yndrian a set of images with minimal spec-
ularities; (2)specular images with non-negligible dielectric specularities) 3etallic,
images with metallic specularities; and f4)orescentimages of scenes with at least one
fluorescent surface.

As a strategy to maintain a moderate computational cost,pleasny given image
into non-overlapping regions so that we can then use a @ntstwith a relatively small
number of models on each of these regions. We assume thaniallesregion the number
of coexisting materials is also likely to be smaller. Nexgnfi each block, we obtain a
measure of how well each candidate light explains the oksecwvlors. The average of
these measures across all blocks is then used as an oveegkasent of each light. In
our experiments, images are split into blocks of 20200 pixels, and it is assumed that
in any of these blocks up to 4 different materials coexiste Th lights used to construct
the database are taken as the candidate lights.

Tables 1 and 2 show the performance of the proposed apprdatie 1 shows the
chromaticity error measured as the Euclidean distancedsgtthe chromaticity of the ac-
tual and the estimated light. In Table 2 the performanceas/sias the angular difference
in degrees between the estimated and the actual valueslajtihen both tables, results
are reported by the mean, the median and their correspoB8itgconfidence intervals
(c.i.). The mean has been used to report the performance jof statistics-based tech-
nigues [1]. More recently, the median has been advocatedras@appropriate measure
of the central tendency of measured errors [11]. The condelénterval gives some idea
about how uncertain we are about the measured statistics.

Overall, the errors reported in Tables 1 and 2 are higher tivagse produced by the
best performing algorithms reported in [1]. Nevertheldhs, approach shows a better
or comparable performance to that of commonly used algostiuch as the gray world
method. Note that there is a noticeable difference betweemiean and median values.
This is an indication that there are a few images with higbrsrrWe inspected the images
with a chromaticity error higher than 0.2. This is an ensenabl31 images out of the 518
comprising the database. To test the validitiy of the assiompghat each image block
contains 4 materials, we re-estimated the illuminant anenisemble assuming 8 models.
We then compared the errors between the two set of resultghi§end, for a given
image of the ensemble, we measured the difference betweerrbrs of the newly and
the previously estimated light. If this difference is negatthe newly estimated light is
better. Out of the 31 images in the ensemble, 13 had a neghiffierence, with a mean of
—0.096; 7 images, a positive difference, with a mean of 0.035.als%e re-estimated the
light using a partition of 10& 100 non-overlapping blocks, and 4 models. In this test, 10
images had a negative difference, with a meanr0f1L72; 2 images, a positive difference,



with a mean of 0.032. These tests suggest that the overaltaxycmight be improved by
a better estimate of the number of materials appearing ih ssgion. Underestimating

the number causes the multilinear constraint to be viojaieerestimating requires more
computation.

mean 95% c.i. median 95% c. i.

dataset 0.070 0.063-0.076 0.050 0.044-0.058
mondrian 0.059 0.050-0.068 0.037 0.026 - 0.044
specular 0.057 0.046-0.069 0.046 0.037-0.052
metallic 0.097 0.085-0.11 0.092 0.075-0.104
fluorescent 0.059 0.045-0.074 0.044 0.037-0.058

Table 1: Errors in rg-chromaticity. Errors obtained usingldnar models to explain the
colors of 200x 200 blocks. As a measure of the tendency of errors, the meadiamand
corresponding confidence intervals (c.i.) are given.

mean 95%c.i. median 95% c. I.

dataset 9.64 8.79-10.50 7.77 6.34-7.91
mondrian  8.17 6.88-9.42 4.30 3.76-6.34
specular  7.82 6.37-9.30 7.71 4.29-7.89
metallic 13.63 12.01-15.31 11.92 9.67-14.32
fluorescent  7.87 6.13-9.84 6.34 5.54-7.91

Table 2: Angular errors in degrees. The estimate of the Igghbtained by averaging the
assessment of each candidate over non-overlapping 200 blocks of the images under
the assumption that in each block up to 4 different matecieéist.

6 Concluding Remarks

In this paper, an approach for estimating the color of thevilhating light based on the
dichromatic reflection model has been proposed. We havershiwat through a multi-
linear constraint on the observed colors it is possible wuate how well these colors
are explained by a given candidate light. This evaluatiararsied out by inspecting the
smallest eigenvalue of a matrix that is derived from the plecolors, the color of the
candidate light, and an assumption as to the number of diffanaterials expected to be
present. Experiments on the SFU database show promisialisceShe approach elimi-

nates the need for grouping image colors in terms of masathalt is usually required for
methods based on intersecting dichromatic planes.
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