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Abstract

This paper shows that the common task of interest region matching using
local descriptors can be improved using a new similarity measure. The simi-
larity measure is motivated by the information theoretic image alignment that
maximize mutual information between images. A property of the mutual in-
formation metric is that it does not only depend on how similar the signals are
but also how complex they are. We present how similar logic can be applied
to the standard SIFT descriptor. The results show improvement at almost no
additional computational costs.

1 Introduction

There are many successful image analysis approaches for object recognition [6], 3D scene
reconstruction [4] and other image analysis tasks that start with extracting interest regions
from images.These approaches typically involve the following steps:

¢ Detecting the interest regions. An interest region detector defines a saliency mea-
sure and the interest regions are then detected by looking for the local maxima of
the saliency measure across the image positions, across different sizes of the region
and sometimes also across affine transformations of the region. The idea of check-
ing different region sizes is to be able to detect the same region even if the region is
present at different scales in different images. This leads to so called scale invari-
ant detection. Checking also affine transformation of the region should make the
detection affine invariant. The final result of interest region detection is a set of cir-
cular regions or elliptical regions if we also check the affine transformations. Years
of experience produced a number of well behaved saliency measures and efficient
methods for extracting the local maxima of the saliency measures. Various interest
region detectors are analyzed and compared in [10] and [8]. A general conclusion
from the empirical study [8] is that most of the modern interest point detectors give
similar final matching results.
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e Computing the local image descriptors. The goal is to describe each interest
region by a descriptor vector computed from the local image values. In order to
be able to easily compare the regions, the descriptor should be invariant to certain
geometric transformations (scaling, rotations,...) and robust to some typical image
changes (light changes, etc.). A good overview and comparison of various local
image descriptors are given in [7]. In this study the SIFT descriptor [6] was shown
to perform the best.

e Matching the interest regions using the local image descriptors. The regions
are matched between pairs of images or between an image and a database of im-
ages. Some simple matching strategies are discussed in [7]. A similarity measure
is defined between the region descriptor vectors in order to decide which pairs of
points are the most likely matches. The measure should be fast and easy to compute
since the matching usually involves computing the similarity for many of the pos-
sible region pairs. The similarity measure is commonly based on simple Euclidean
distance of the descriptor vectors. There is no much other work on other similarity
measures for the purpose of interest region matching.

This paper shows that the interest region matching using local descriptors can be im-
proved using a new similarity measure. The new similarity measure is motivated by the
work on information theoretic image alignment that maximize mutual information be-
tween images [12]. In Section 2 of the paper we describe the standard likelihood based
similarity measures that lead to Euclidean distance based similarity. A general discussion
about likelihood metric for image matching is given in [11]. Here we will study the prob-
lems that are specific for the task of fast interest point matching. We also demonstrate
how this problems are usually approached by using the SIFT descriptor as an example. In
Section 3 we discuss the mutual information based similarity metric and the difficulties
of applying such a scheme on our problem. We show that the mutual information met-
ric can be approximated by the standard likelihood metric that is penalized by a measure
of complexity of the matching interest regions. In Section 4 we show how this fact can
be applied in a simple way to the often used SIFT descriptor. We will use the standard
Euclidean norm and penalize it so that the complex descriptors are preferred by the new
measure. This will introduce a new similarity measure that is almost as easy to compute
as the standard Euclidean based similarity. In Section 5 we show that the new measure
greatly outperforms the Euclidean distance with almost no additional computational costs.
A number of questions raised by these results are discussed in Section 6.

2 Likelihood similarity measure

The relation between the image values v(x) from an interest region R with the correspond-
ing image values u(y) from the matching region from another image can be written in the
following way:

v(x) = F(u(T (x)), 0ext) + 1 ()

The transformation T relates the local image coordinates x from one image to the local
image coordinates of the other image y = T (x) or inversely x = T~!(y). The transforma-
tion tells us which point from one image region corresponds to which point in the other



image. It also transforms the region R to it’s corresponding region 7 (R). Since the inter-
est regions are usually small parts of the image, simple affine transformation 7 is usually
used as the transformation between the corresponding regions. The function F relates the
corresponding image values between the 2 images and 1) is a random variable that models
the noise. The external parameters 6,y;, that present for example light changes, motion
blur, etc., are usually unknown and the following simplified model is often used:

v(x) ~u(T(x)) +n 2

We can regard the image values v(x) and u(7(x)) as random variables with associ-
ated probability density functions p(v(x)) and p(u(T (x))). The probabilistic relation be-
tween the image values is expressed using their conditional probability density function
p(v(x)|u(T(x))). For example if the noise 7 = N(0,V) is zero a mean Gaussian with co-
variance matrix V we have p(v(x)|u(T (x))) = N(u(T (x)), V) or alternatively p(u(y)|v(T ~
N(T()),V).

The discrete image points from the region R are denoted by xp,...,xy. Image values
vi = v(x;) and the corresponding image values from the other image u; = u(y;) = u(T (x;))
can be considered as random samples. The vectors v = [vy,...,vy]7 and u = [uy, ..., un]"
are simple local descriptors of the regions. If we assume that the samples are independent
the log-likelihood of the values from one region v given the values u from the other region
and the alignment 7 is:

1

N
L(v[u,T) = Y log p(v(x;)|ui(T (x;))) 3)
i=1

The likelihood can be used as similarity measure between the regions. It is a symmet-
ric measure since it is possible to show that L(v|u,T) = L(u|v,T~!). We will use the
following notation to denote this common similarity measure:

Sp(u,v,T) =L(vju,T) = L(u|v,T ) “4)

If we assume Gaussian noise 1 = N(0,V) and diagonal matrix V = ¢2I we get the nega-
tive of the simple Euclidean distance:

1 N
Seuclidian(uvvv T) ~ _g Z(V(Xi) - M(T(xi))z ®)

i=1

Note that the likelihood measure directly depends on the noise model 1. In this paper we
use the Gaussian model. However, other noise models might often be better as discussed
in [11].

There are two other issues that should be considered when the likelihood similarity
measure is used for the region matching:

External factors. The external factors 8,,; in (1) are unknown and disregarded in (2)
but they could have a big influence on the values. Therefore the v; and u; from above
are often not pure image values which are sensitive to such influences but some function
of image values that are more robust. For example image gradient is often used since it
is invariant to brightness changes. In this paper we will analyze in Section 4 the SIFT
descriptor [6] that is based on the image gradient direction.
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Figure 1: SIFT feature descriptor. The original 8x8 image grid of the interest region (on
the left) is divided into 4 (2x2) sub-regions and for each of the sub-regions histogram
of the image gradient orientations is calculated. For our results we used 16x16 original
sample grid and 16 (4x4) subregions. See [6] for details.

Region alignment. The likelihood is highly sensitive to the alignment 7. Maximiz-
ing the likelihood with respect to T is a standard image alignment technique. However
matching interest regions would require the alignment between each pair of regions which
is computationally expensive. Therefore a solution is to make the descriptor values v; and
u; robust to some transformations. If we extract elliptical affine region we could first
rescale the region to become circular. For the circular regions we then need the rotation
that aligns the regions. Some approaches discussed in [7] try to make a rotation invari-
ant descriptor but the distinctiveness of the descriptor is reduced. The approach that was
performing the best is described in [6]. The local image gradients are used to determine
the main orientation for each region. The main orientation is used to align the regions.
See [6] for details. Anyhow, the scaling, the main orientation and often also the posi-
tion of the point are coarse estimates of the actual transformation that aligns the regions.
The descriptors v and u should be robust to such small deviations. Typically, the re-
gions are divided into subregions and some histogram-like measure per subregion is used
as descriptor. For example, the SIFT descriptor is composed of the gradient orientation
histograms of the subregions as presented in Figure 1.

3 Mutual information similarity measure
The entropy of a random variable is given by:

H(v) =~ [ p(v)logp(v)dv ©®

and the joint entropy of two random variables is:

H(v,u) = —//p(v,u)logp(v,u)dvdu (7

where p(v,u) is the joint probability density function. The entropy can be seen as a
measure of complexity of a random variable or alternatively a measure of the amount of



information that the variable carries. The mutual information between two descriptors
that are regarded as random signals is defined by:

Swr(w,v,T) = 1(v(x),u(T (x))) = H(v(x)) + H (u(T (x))) — H(v(x),u(T (x))) ~ (8)

The mutual information is an information theoretic measure that describes how much two
random signals have in common. It takes values between 0 and 1. The joint entropy, the
last term in (8), will be low if the two signals are related. However, if the two signals are
simple then the first two terms will also be low. For example for two constant signals the
entropy will be zero since the signals do not carry any information. A nice overview of
different similarity measures and the relation with the mutual information is given in [12].

A standard problem when using the mutual information is the estimation of the un-
derlying density functions. The joint density p(v(x),u(T (x))) is most difficult to estimate
since it has 2 times more dimensions than p(v(x) and p(u(T(x))). We can consider the
values v; and u; that we observed from the images as random samples. In contrast to [12]
where whole images are used, the typical number of samples for the interest regions is
much smaller and estimates of p(v(x),u(T (x))) will be of low quality. See [9] for some
properties of the small sample estimates of the entropy. Furthermore, the region matching
would require estimation of p(v(x),u(T (x))) for each pair of regions and that would be
computationally expensive.

After some manipulation [1] we can rewrite (8) as:

1(v(x),u(T (x))) ://p(V(X),u(T(X)))logp(V(X)IM(T(X)))+H(V(X)) ©

We often have some reasonable model for p(v(x)|u(T (x))), for example Gaussian as in
the previous section. Note that this is not the case in some medical applications which are
the main topic in [12]. Since the values v; and u; that we observed from the images can be
regarded as random samples from p(v(x),u(T(x))) we can approximate the second term
from (9) by its sample estimate:

N
I(v(x),u(T (x))) ~ %Zlogp(uh/) +H(v(x)) = ]lVSL(ll,V, T)+H(v(x)) (10)

Mutual information is symmetric similarity measure but the approximation (10) depends
on the order. By changing the order we can get I%SL(u,V, T)+ Hu(T(x))). In order to
correct for this bias we could write:

Sui(a,v,T) = %SL(II,V, T)+ %(H(v(x)) +H(u(T(x)))) (11)

The above equation describes the link between the likelihood similarity measure and the
mutual information measure. It follows that the mutual information can be approximated
by the likelihood measure with an additional term that takes into account the complexity of
the signals. The complexities of the signals can be computed offline. This also means that
we could use some simple to compute likelihood based similarity measure, for example
Euclidean based, and get an estimate of the mutual information measure at almost no
additional computational costs.



Note that the approximation (11) depends on the correct conditional model p(v(x)|u(T (x))).

Given a model the parameters of the model should also be estimated. For example for the
simple Gaussian (5) we need to estimate the standard deviation o. If we do not have a
correct model and/or we do not know the correct parameters of the model we can use
some approximate model g(v(x)|u(7T (x))). It can be shown using Kullback-Liebler lower
bound [1] that:

16),u(T() = [ [ p(o(6). (T () loga(v(olu(T () + HO@)  (12)

This means that the approximate solution using some model g(v(x)|u(T (x))) for the like-
lihood similarity Sy actually approximates a lower bound of the mutual entropy. For
example for Euclidean norm with unknown ¢ we could write:

A 1
SMl(ll,V, T) ~ Nseuclidian + E (H(V(x)) + H(M(T(x)))> (13)
where A = 1/62. Even with incorrect A we will have some approximation of a lower
bound of the mutual information.

4 Comparing SIFT descriptors

We could apply the same principle to the SIFT descriptors. However, the SIFT descriptor
is a vector with 128 values that lie between 0 and 255. Estimation of the local entropy of
the descriptor using only these 128 values would be tricky and the estimate would be of a
low quality. On the other hand we observe that the SIFT descriptor presents a histogram
of local image orientations by itself. The 8-bin histograms of the orientations are made
for each of the 16 subregions of the interest region. The orientations are weighed by the
strength of the gradients. Low gradient orientations are discarded and the high gradients
are clipped. See Section 2 and [6] for more details. If v=vy,...,vy is a SIFT descriptor
and if we normalize it so that it values sum to 1 we can use

N
Hv = —Zvilogvi (14)
i

as a local measure of complexity of the gradient orientations within the interest region.
Although they are computed on different domains we will still combine the Euclidean dis-
tance between the descriptors Seycrigian(V,u) and the local gradient ordination complexity
measures H, and H, as in (13). This could be motivated by the fact that the Euclidean
distance between the descriptors can be seen as some approximation of the likelihood sim-
ilarity measure of the gradient orientations. We used fixed empirically chosen A = 1/400
in our experiments. Compared to the Euclidean similarity, this measure requires minimal
additional computational costs to compute the H, and H,. Furthermore, the H, and H,
can be computed during feature point extraction and saved. Computation time for H,, and
H, is negligible compared to the time needed for the feature point extraction.

S Experiments

We will evaluate the new metric in the same way as in [7] and on the same data. We used
the SIFT detector and descriptor extraction routines that were provided by the author [6].
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Figure 2: Data sets. First and the last image form each data set are presented.

Data sets. In order to evaluate the performance of the new matching measure we used
some of the data-sets from [7]. The 4 data-sets we used contain 6 images under different
changing conditions: light changes, image blur, zoom+rotation and JPEG compression.
The changes become more drastic from image 1 to the last image in each data set. The
first and the last image from each data set are presented in Figure 2. See [7] for more
details about the data sets.

Ground truth. We use the same ground truth as in [7]. The interest regions are
transformed using homography transformations between the images that is supplied with
the data sets. We assume that a match is correct if the error in the image area covered by
corresponding regions is less than 50% of the region union.

Evaluation. Same as in [7] we present the results as graphs that show recall versus
1 — precision. Recall is the number of correct matching regions with respect to the total
number of corresponding regions:

recall — #correctmatches (15)
#correspondences

The number of false matches relative to the total number of matches is represented by the
1-precision:
#falsematches

(16)

1= precision = #correctmatches + # falsematches
As in [7] we determine the matches by checking for each pair of points if the similarity
between them is above a given threshold. We change the value of the threshold to plot
the as recall versus 1 — precision graphs. A perfect descriptor would give recall 1 for
any precision but in practice the recall will increase with decreasing the threshold. A
horizontal curve means that good recall can be obtained with high precision but there will
be very similar structures in the scene that are not distinguishable by the descriptor.
Results. The results for all 4 data sets are presented in Figure 3. We compared
the new similarity measure with the Euclidean similarity measure. The new similarity
measure leads to improvements and similar performance with almost horizontal line on
the graphs for all data sets. It is interesting to see that for all cases we can always get more
than 60% of the features at very low false-positive rate. The SIFT descriptor divides the
interest regions in blocks and this seems to make it robust to the JPEG compression that
also produces blocky structures. Therefore there is a small improvement using the new
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Figure 3: Results. The recall versus 1-precision graphs for each data set are presented.

measure on this data set. The improvement is the largest for the data set with strong light
changes. It seems that SIFT descriptors become very similar for the very dark images and
that the complexity term provides lot of useful information in such cases.

6 Conclusions and further work

We analyzed a number of similarity measures for the task of interest region matching
using local descriptors. We have shown how the standard simple to compute Euclidean
and other likelihood similarity measures can be extended by adding a term that considers
the complexity of the matched signals in order to approximate the mutual information
similarity measure. We present how similar logic can be applied to the standard SIFT
descriptor. The results show improvement at almost no additional computational costs.
The results could potentially be applied to other problems.

Typically region detection and matching are two separate processes. The new measure
couples these two processes since the detection in general aims at detecting complex
regions and the new measure takes the complexity also into account. There are interest
region detectors that search for the regions with high entropy [3, 5]. The matching is the
final goal of the interest region detection and it would be interesting to develop a top down
approach for task of interest region detection and matching. Furthermore, adding other



problem specific knowledge should also be considered. For example in [2] the interest
point selection is considered within a object classification framework.
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