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Abstract

A large share of the early work on on-line handwriting recognition involved
structural and syntactical methods. These approaches were soon abandoned
in favor of template matching and statistical methods due to the difficulty in
defining reliable rules dealing with the large variability in on-line handwritten
characters. However, any method for HWR utilize the structural information
implicitly and one could argue that their success depends on how well this is
done. This paper presents a novel template matching method, the Frame De-
formation Energy (FDE) matching, that utilizes the explicit structure of the
samples to model the non-linear global variations by a set of affine transfor-
mations through a structural reparameterization. Experiments on a large data
set show that for single models the FDE, despite its ad hoc implementation
in this paper, outperforms conventionally used template matching schemes
such as DTW and Active Shape.

1 Introduction
Although template matching systems for single character recognition still exist in the
form of various implementations of the DTW algorithm [15, 18], most of the focus has
been shifted towards statistically based systems utilizing HMM and/or Neural Networks
[1, 6, 7, 12]. Although dependent on the data sets used for experiments as well as the im-
plementation, this shift by the general research community has probably been triggered by
the higher recognition rates reported from such statistical systems during the past decade
[2]. There are, however, merits of template matching systems as well. Since they do not
require any type of training, they are well suited for incorporation of adaptivity as well as
user customization [15]. Furthermore, the minimal distance concept seems to be some-
thing comparatively transparent to the human mind and some reports indicate that humans
have a more intuitive understanding of errors made by a template matching scheme [10].

The simplest template matching scheme for on-line handwriting is to compare sam-
ples with the natural Euclidean distance in the space induced by their dimension as de-
cided by the number of coordinates placed under an arclength parameterization of the
handwritten curves. An arclength parameterization is, however, dependent upon the
length of different curve segments thus causing a varied number of coordinates to be
placed on corresponding curve segments of different samples of the same symbol. The
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remedy to this problem is DTW which allows a warping path to connect coordinates to
the closest coordinate of the matched curve and thus under some constraints divert from
the pairwise sequential matching order. This type of DTW, however, does not attempt
to solve issues of the variations of the internal structure of the segments and it has been
shown previously that, especially for complex symbols, significant improvements can be
made to the conventional DTW strategy [17].

In this paper we present a novel template matching method that we call Frame Defor-
mation Energy (FDE) matching. This method assumes that a structural parameterization
identifying a segment decomposition has been conducted on the handwritten samples.
The matching is then conducted in three steps by calculating global transformation prop-
erties, the affine transformation of the constituting segments and finally obtaining some
matching distance value for the remaining intermittent points, thus implicating a coarse
to fine strategy for the matching procedure. We have constructed a simple system based
on these ideas and tested it on a large data set. Comparisons are made both for single
models as well as in a kNN context. Although still in the cradle of its development the
new method FDE outperforms DTW for single models on the large data set used in ex-
periments.

2 Structural Reparameterization with Core Points
Extracting points of significant structural importance is a subject that has been studied in
detail for the purpose of segmenting cursive script in the past [11, 13]. A comprehensive
summation of many of these techniques can be found in paper [9]. It has been realized
by many that extreme points in the direction orthogonal to the writing direction contain a
large portion of such interesting points for the on-line single character problem. We will
therefore use this subset, that we call the core point frame of a sample, as a basis for our
structural reparameterization. The curve between two successive points in the core point
frame will be referred to as a segment.
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Figure 1: The first four components of principal component analysis of one allograph of
n, automatically separated by the allograph separation scheme of Section 2.1.



Before the extraction of the core point frame, every sample is centered and normal-
ized. We also assume that they are roughly rotationally aligned so that the x-axis is aligned
with the writing direction. Since we aim at removing redundance from the samples and
minimize the number of points between the coordinates chosen in the core point frame
we try to make a clever choice of a fixed number of intermittent points. For the English
alphabet we have observed that the most complex curve, the s, is legible even if we limit
the number of intermittent points to three and hence we have chosen to place this number
of fixed points on every segment. Instead of just spacing the points evenly on the segment
as we would if we were to use conventional arclength parameterization, we first try to find
all points that have a significant curvature. This search is done recursively by picking any
point with a diversion from the line between the start and end point that exceeds a thresh-
old. If the number of curvature points chosen in this manner is less than our fixed number
of points per segment we add points and try to space them as evenly as possible. We call
the complete set of extracted points with the core point frame and intermittent points, the
core points C(X) of a handwritten character sample X . The first modes of some samples
of allographs that have been structurally reparameterized in this way are shown in Fig-
ure 1. It clearly shows that our reparameterization has managed to model the movement
of the core points independently from the statistical variations of the curvatures on each
segment.

In the case of severe noise parallel to the y-axis there may be false points in the core
point frame. Future research will therefore concentrate on the development of methods
for assessing the validity of segments in an extracted core point frame. Since this problem
may be viewed as a way of extracting a configuration of points of a certain shape from
a larger context of points, we could possibly apply the Vector Context Matrix to solve
the problem [14]. Further investigation of this issue is, however, beyond the scope of
this paper. It is also evident from the experimental results that it is not a crucial issue
since the results of automatic training and testing with the crude parameterization strategy
presented here are highly competitive.

2.1 Allograph Separation
An important topic for handwriting recognition systems that utilize unsupervised training
data is allograph separation. Normally this problem is referred to as clustering in the field
of HWR, since the most common method of allograph separation is to perform clustering
of the training samples [16]. For kNN, clustering is mainly performed to identify and
exclude outliers as well as to reduce the data set used for matching. For single model
matching the allograph separation and outlier removal plays a crucial role in the appear-
ance of the obtained set of single models. With single model matching we mean that only
one artificial sample, usually the cluster center, has been chosen as a template for every
allograph. In this paper we have chosen a crude allograph separation scheme based on the
structural reparameterization of Section 2. We define an allograph cluster sequence as the
sequence of labeled core points, with labels L∈ {N,S,n,s,m}. Here the {N,S,n,s} points
denote the local maxima n and minima s of the core point frame, further differentiated by
capitalization depending on convexity. The intermittent points are labeled m. The first
modes of two allograph clusters separated by this crude technique are shown in Figure 1.

The strategy explained above is not optimal in the sense that some allograph clusters
may be very similar to others. Since this problem is not a topic of this paper the strategy



was sufficient for the experimental section of this paper. Outliers have not been removed
in our implementation and this is also reflected in the reported recognition accuracy of
the various systems implemented in Section 4. Outliers can be removed by removing
clusters with few members as in paper [1] or by a voting strategy depending on internal
distance calculations [15]. It could be interesting to evaluate the effect of such a removal
on the different methods for single model matching (only cluster removal) as well as kNN
matching (also removing individual samples from clusters).

3 The Frame Deformation Energy Model
One of the limitations of template matching techniques such as DTW lies in the fact
that the normalization is global. Even though DTW is successful at enabling matching
between samples of varying dimension it is still dependent on normalization and thereby
also sensitive to non-linear variations. In other words a handwritten sample X is in general
not only the result of global transformation of the reference template but also of individual
transformations of each segment of the core point frame. One such way to depict the
transformations of just the segments is to compute the thin-plate spline transformation of
one core point frame to the other. The deformed grids for one in-class and one inter-class
example of such transformations are depicted in Figure 2.
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Figure 2: Bending the core point frame while leaving the parameterization fixed. The
four figures in both cases display the original sample, the affine approximation to the
target sample, the complete thin plate spline of the core point frame and finally the target
sample.

These facts motivate the search for a method that tries to find both the local segment
transformations as well as calculate the resulting distance to the transformed segments.
In short we want to divide the matching process of a sample X = {xi} to a template
(prototype) P= {pi} into three stages:

1. Find the best global linear transformation AP = argminL ‖P−LX‖



2. Find the frame bending transformation BP, pi = BP(xi),
∀xi, pi in their respective core point frames

3. Calculate a distance value dependent on the transformations AP, BP and the re-
maining difference P−BP(AP(X))

Analysis of samples of on-line handwritten characters clearly shows that in-class
global transformations of handwritten characters are constrained linear transformations.
There are no reflections and only limited rotation and skew. We define the frame bending
transformation as the set of affine transformations identifying corresponding core point
frames. Since we have left the parametrization of each segment fixed during these trans-
formations we have actually obtained a kind of Bookstein coordinates on each individual
segment [4]. An example of two samples being matched to each other in this way is
shown in Figure 3.
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Figure 3: A sample of an a being matched to mean templates according to the scheme of
Section 3.

3.1 Frame Energy Model Distance Measure
A popular method to achieve exact transformations between templates in pattern recogni-
tion is thin-plate splines. Although there have been successful applications of thin-plate
splines to the character recognition problem in the past [3] it has obvious shortcomings.
The main problem is that common variations in handwritten patterns involves points on
the extension of a line being distributed on either side of the line causing folding of the
thin-plate spline [5]. To counter this problem we introduce a much simpler energy model
for the frame. We let each segment be modeled by a robust spring that is equally sensi-
tive to compression and prolongation and let the connection between each segment be a
coiled spring that is equally sensitive to torque in both directions. The most simple dis-
tance measure for the bending energy of the frame between a sample X and a template P
of m core points, with frames FX = ( f 1X , . . . , f nX ) to FP = ( f 1P , . . . , f nP) is then given by



EB(X ,P) = kx
n−1

"
i=1

(‖ f i+1X − f iX‖−‖ f i+1P − f iP‖)2+

ka
n−2

"
i=1

#2i (arg( f i+2X − f i+1X , f i+1X − f iX )− arg( f i+2P − f i+1P , f i+1P − f iP))
2, (1)

where kx,ka are the spring constants for the segment springs and the inter-segment springs
respectively. #i =

min(‖ f i+2X − f i+1X ‖,‖ f i+1X − f iX‖)
$ is a normalization constant to balance angle

and length variations in the core point frame. For notational convenience we will imply a
modula 2$ for the subtraction operation of angles retrieved by the arg :R2×R2→ [0,2$)
operator. As described in the previous section the result of the bent frame BFP(FX ) is that
‖BFP(FX )−FP‖ = 0, however, the intermittent points are just Bookstein coordinates in
their respective surrounding segment and will generally not be identical.

From an implementation point of view the most simple way to model the energy of
transforming points from one curve to the other is to to find a model that corresponds to
the Euclidean measure. This is achieved by imagining that each of the intermittent points
is attached to the corresponding point in the sample being matched by elastic strings. This
induces an energy measure for the intermittent points by

EEucM (BP(AP(X)),P) =
m

"
j=1

k j(BP(AP(x j))− p j)2, (2)

where k j is the spring constant for the string attached to core point j in P. Evidently setting
k j = 1, j = 1, . . . ,m gives the square Euclidean distance of the bent frame transformed
sample ‖BP(AP(X))−P‖2.

Table 1: Results of k-NN matching on the MIT database.

k-Distance Measure Original data Reparameterized
1-Euclidean 86.3% 89.2%
3-Euclidean 86.5% 89.4%
1-DEuc

R N/A 87.4%

Above we have described methods to account for the two steps of frame bending and
curve segment comparison. It is not entirely obvious how to fit a suitable penalization of
global transformations into this. On one hand global transformations are natural varia-
tions of isolated handwritten character data and on the other some kind of penalization is
necessary since the energy EB(X ,P) of (1) is invariant to global rotation. We have tried
global transformations of just rotation and of the triple scale, rotation and skew. For the
global parameters of scale (%x,%y), rotation ! and skew & we can use a distance measure
similar to that of the bending energy by setting

ERSS(X ,P) = k% ((
%x
%y

)t% −1)2+ k! (
mod (! ,$)

$
)2+ k&(

mod (& ,$)
$

)2, (3)



where t% is 1 %x < %y and −1 otherwise. We will use the notation ER(X ,P) for the global
transformation energy of just the rotational component in (3).

Combining the distance components for global transformation, bending energy and
curve segment into a weighted sum produces the following distance functions:

DEuc
R (X ,P) = wRER(X ,P) +wBEEB(A(X),P)

+wMEEucM (A(B(X)),P), (4)
DEuc
RSS(X ,P) = wRSSERSS(X ,P) +wBEEB(A(X),P)

+wMEEucM (A(B(X)),P). (5)

We refer to matching with the distance measures in (4) or (5) as Frame Deformation
Energy Matching (FDE).
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Figure 4: The best matches of two samples from the MIT-database

4 Experiments
We have conducted recognition experiments on the MIT single character database [8].
We chose the set of 37161 samples from the w section (single characters from words) as
the test set and the 2825 samples from the l section as the training set. Both the test set
and the training set were separated according to the labeling technique of Section 2.1 in-
dependently of whether the reparameterization was performed or not. The best matching
models for two samples matched with single model FDE are shown in Figure 4.

For single models we compared our new template matching method FDE with DTW
as well as a Gaussian Active Shape Model (AS). For the FDE and DTW methods we
constructed a single model for each allograph as the mean of the samples belonging to that
allograph class. For AS we built one model for each allograph class. As expected from
the qualitative plots of the first modes, the recognition rate for AS increases significantly
when we use the structural technique instead of conventional arclength parameterization.
The FDE was implemented with the DEuc

R measure in the most simple way by setting all



Table 2: Results of single model matching on the MIT database.

Method Original data Reparameterized
AS 77.2 % 82.4 %
DTW-mean 79.5% -
FDE-mean N/A 82.9%

the spring constants in (1), (2) and (3) to 1, as well as all of the weights in (4). Even with
this simple ad hoc setting the FDE method outperforms AS and FDE for these settings as
is seen in Table 2.

For some reason the FDE with the same parameter settings as in the single model
case did not perform well here. It is possible that the FDE method may be more sensitive
to outliers, which were not removed in the experiments, and that this has an impact on
results when using all the samples in each allograph class for recognition.

5 Discussion and Conclusions
In this paper we have presented a novel template matching method, the Frame Energy
Matching (FDE), which is based on a structural parameterization. The method outper-
forms both DTW and AS for single models even in a very basic ad hoc implementa-
tion. The FDE introduces a coarse to fine strategy for matching templates of handwritten
characters and it is thus probable that it better handles the non-linearity of global varia-
tions present in handwriting data. Surprisingly the setting implemented in this paper gave
slightly worse results for classification via the 1-nn rule. Possibly this is an indication that
the flexible match of the FDE is more sensitive to outliers in data. We will continue to
work with improvements to the new method. A natural next step is to investigate ways
of optimizing all the various spring constants and weights. One can also try to use this
framework with a statistical method. It might be even more efficient to view the problem
in a probabilistic way by determining the class C with a model MC that has the highest
probability P(C|A(MC,X),BX ,BX (MC)−X). Since the novel FDE technique already at
this early stage has shown great capacity for computationally efficient single models it
will be especially useful in on-line cursive script systems based on segmentation graphs.
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