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Abstract

Two images containing the same rigid object or scene are related according to
the epipolar geometry. Using local image correspondences, the fundamental
matrix describing the epipolar geometry can be estimated. Due to the pres-
ence of outliers in these correspondences, robust estimation methods need
to be used for the computation of the fundamental matrix. The ratio of out-
liers among the correspondences largely determines the complexity of these
robust estimators. We propose an algorithm that is able to decrease the effec-
tive outlier ratio under a minimal computational complexity. The algorithm
is based on the evaluation of the correspondences’ positions with respect to
a series of quadrics. It is generally applicable in the sense that it makes no
assumptions about the cameras or imaged points. Experiments performed on
both synthetic data and real images show the benefit of our approach.

1 Introduction

When an object is observed by cameras at two different positions, the resulting images
will be related by the epipolar geometry [4]. The fundamental matrix describes the epipo-
lar geometry, and can be computed from point correspondences between the images.
These correspondences are found by local feature detectors [10, 6, 5]. In general, a cer-
tain amount of correspondences established by these methods is erroneous. When such
outliers are present among the correspondences, robust methods need to be used to find
the fundamental matrix [9]. Usually these methods impose a large complexity on the
computational process.

One of the most frequently used robust estimators is RANSAC [2]. It is based on the
random selection of a small number of correspondences, so that the free parameters of
the corresponding fundamental matrix are set. The remaining data is then searched for
support for this model. The complexity of the algorithm depends on the outlier ratio and
the number of correspondences needed, which is seven for the fundamental matrix.

A way of speeding up RANSAC is by decreasing the outlier ratio, which can be ac-
complished by adjusting the sampling probabilities of correspondences. In [7] a method
in the context of motion estimation is proposed, that uses the matching score of a corre-
spondence to alter the probability of selecting that correspondence. The distinction can
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be further improved if spatial information of the correspondences is taken into account.
A method based on using this information is the ROR (Rejection of Outliers by Rota-
tions) algorithm [1]. Here it is shown that there exists a 3D rotation of the points in one
image, which makes the directions of all good correspondences in the joint image plane
equal. The directions that do not conform to the most prominent direction, which is found
by random trials, originate from outlying correspondences. Eliminating these correspon-
dences will decrease the effective outlier ratio. The method shows very good results, but
a drawback is that it makes a few assumptions about the data, like a dominant depth value
of the world points and the absence of significant camera rotation about the principal axis.
It also assumes the camera’s focal length to be known.

In this paper we propose a method to decrease the outlier ratio by using spatial cor-
respondence information, without making any assumptions about the cameras or imaged
points. The method is based on the comparison of the point correspondences to a series
of quadrics. Outlying correspondences tend to have an arbitrary position with respect to
a quadric. When we gather statistics about the correspondences’ positions, we can use
this fact to decrease the effective outlier ratio. The complexity of the proposed algorithm
is low, since only a small number of algebraic distances for each correspondence is com-
puted.

In Section 2 we describe the principle of fundamental matrix estimation. In Section 3
the proposed algorithm for outlier identification is explained. A short discussion of the
complexity of the proposed algorithm and ROR is given in Section 4. The evaluation of
both algorithms for synthetic and real data is given in Section 5. Finally, in Section 6, we
give some concluding remarks about the paper.

2 The epipolar geometry and robust estimation

Consider a set of points X; for i = 1,...,n in R?. Each point X is indicated by homoge-
neous coordinates X = (X,Y,Z,1)". When viewing this point through a camera, the point
is projected onto the image plane. The 3D point X is then transformed into the 2D point
x = (x,y, l)T where x and y are the image plane coordinates. The camera matrix P, which
contains the camera parameters such as focal length and relative 3D position, relates the
points by x = PX.

When viewing the same 3D point X through two cameras with matrices P and P/,
the relation between the projected 2D points x = PX and x’ = P'X is governed by the
fundamental matrix F [4] according to

X Fx=0 (1)

The 3 x 3 matrix F is completely determined by the camera matrices P and P/. Without
knowledge of P and P, it can also be determined from a set of 7 corresponding points
X; < X/i.

We call a correspondence x < X’ an outlier when the points x and x’ are not projections
of the same world point X. In practice, the points in the images are derived from interest
point detectors and local image neighborhoods are used for matching. When searching
for correspondences between the images, errors may arise if neighborhoods differ due to
large viewpoint changes.



Randomly selecting seven correspondences in the presence of outliers may not yield
the correct fundamental matrix; if there are one or more outliers among the seven corre-
spondences they will corrupt the estimate. A simple method to achieve robustness against
outliers is the RANSAC [2] algorithm. Here one randomly picks seven correspondences
and computes F. The remaining n — 7 correspondences are then examined to see how
close they are to the hypothesized F. If sufficient correspondences are close enough, the
matrix F will be accepted as the solution. If not, another set of seven correspondences is
picked and the process is repeated.

The complexity of RANSAC is given by the number of times M that a set of 7 corre-
spondences needs to be picked. We determine M by requiring that with high probability
p, say 0.99, a set of 7 inliers is picked at least once in M trials. If the outlier ratio is
denoted by &, we have the following relation between p, € and M:

p=1-(1-(1-¢")" @)

Methods that are able to decrease the outlier ratio, prior to the execution of RANSAC,
can therefore provide significant computational savings during F estimation.

3 Quadric comparisons

The fundamental matrix essentially defines a quadric relation on the points X in R>. This
can be seen by writing

X Fx=X"PFPX =0 3)

where the quadric is given by P’ TFP. This quadric is special in the sense that the locus,
i.e. the points X obeying (3), consists of all world points X.

Replacing F with an arbitrary 3 x 3 matrix Q will yield a quadric P’ TQP, for which
the locus in general consists of points X on a two-dimensional variety in R®. The quadric
will split the points X into two sets: those with positive and those with negative algebraic
distance to the quadric, that is

X'P QPX =0 )

If the quadric is shaped in such a way that the space with positive (or negative) algebraic
distance is very small, few points X will yield X P’' QPX > 0 (or X' P’ QPX < 0).
This is equivalent to having few image points with x/ TQX >0 (or ¥/ TQX < 0). In the
case of outliers, however, there are not necessarily few points like that. Since the outliers
do not correspond to real world points, their algebraic distances do not follow the same
subdivision as for the inliers. Ideally, the outliers have an equal probability of yielding
a positive or negative algebraic distance. The idea is that by examining statistics of the
signs for several different quadrics, we are able to distinguish between inliers and outliers.

The type of quadric formed by Q depends on the rank of the symmetric part of P/ TQP,
which is given by

P QP+ (P’TQP) !
2
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Figure 1: The quadric P’TQP formed by selection of lines 1 and I in the image planes.
Both camera centers C and C' lie on a plane of the quadric, which subdivides the points
X in the space.

The antisymmetric part, which equals (5) for a minus instead of a plus sign, always yields
zero in the quadric relation and therefore does not contribute to X " P’ TQPX. If we choose
Q to have rank 1, then both P’ QP and (P’ TQP)T from (5) have rank 1. As a result, the
sum of these matrices in the symmetric part will in general have rank 2. In this case the
locus corresponds to two planes. The camera centers C and C’ each lie on one of the
planes, so that this plane is visible as a line in the image. Therefore, the quadric of rank
2 can be defined by choosing appropriate lines 1 and I in the image planes, see Fig. 1. It
is possible to choose a Q with higher rank, but the abovementioned method seems to be
the easiest way of letting the quadric pass through the means of the projected points. This
is to make sure that there is enough variation in the sign of the algebraic distances. We
therefore select the lines 1 and I such that they pass through the means X = (%,7,1) " and
X' = (¥,¥,1)" in the first and second image, respectively. If the angles of the lines with
the image x-axis are denoted by 6 and 6’, the lines are given by

1= (—sin(6),cos(0),Xsin(0) —ycos(0)) " (6)

in the first image and

I' = (—sin(0'),cos(0’), % sin(0') — cos(8')) " @)

in the second. Then the matrix Q is constructed by

Q=11 ®)
which is a rank 1 matrix.

Note that we do not know the precise position of the planes of the quadric P/ TQP,
since the camera matrices P and P’ are unknown. Yet, we can pick an arbitrary 6 and
0’ and thus Q, and subsequently examine the sign of the algebraic distances of all corre-
spondences x; < x';. If the sign of the outliers is more or less random, the inliers should
determine the dominant sign. Therefore, a point belonging to the set with the dominant
sign is likely to be an inlier. Counting these occurrences for several different Q’s, will
gather statistics about the probability of dealing with either an inlier or an outlier. The
counts will be put in variables ¢; for i = 1,...,n, which are being updated after each



quadric used. We select L equally spaced angles from [0, 7] for both 6 and 6’, and for ev-
ery pair of 8 and 0’ a quadric is generated. It is also possible to select 8 and 6’ randomly
for each Q, which gives almost comparable results. However, due to the randomness we
should run it several times for averaging and this is more costly. The resulting algorithm
for equally spaced angles is given in Fig. 2.

oc¢i=0 1i=1,...,n
oforall@=0,% 2%  7—Zdo
oforall@ =022  7-Zdo

o Construct Q according to (6), (7) and (8).
o Find the index sets I, = {i|x';Qx; > 0} and I,,, = {i|x';Qx; < 0}, and
determine
I = argmax (|Zpos|, [Tneg)

pos ) neg

o Set the new counts

{ci—H ifiel
Ci —=

ci ifigl ol

o end for

o end for

Figure 2: The quadric algorithm.

The merit of the algorithm is the distinction that can be made using the values of the
counts. In particular, when the probability of selecting a correspondence x; < X/; is the
relative number of counts ¢;, the effective outlier ratio €,,, after applying the quadric
algorithm has become

Y

i€loyt

Eovd = &)

quad —
Y
i

where 1,,; denotes the index set of all outliers.

4 Complexity

The computational savings for a single iteration of RANSAC are the computation of F
and one or three times n distance computations [4]. We have chosen for L = 8 in the
experiments, which means that for the quadric algorithm we need 64n algebraic distance
computations. This is a minor computational load that justifies the use of the algorithm
prior to RANSAC in almost every situation.

The standard implementation of the ROR algorithm, however, uses 1,000 random
rotations to reject the outliers [1]. The authors propose to take the majority vote over 10
runs, so that the algorithm eventually requires 10,000n computations of segment angles
and 10,000 computations of the mode of an angle distribution. This makes ROR much
more costly than the quadric algorithm.



S Experimental results

We will evaluate the proposed quadric algorithm by comparing it to RANSAC without
any preprocessing and the ROR algorithm [1]. In ROR possible outliers are completely
rejected, so that the effective outlier ratio &y is the ratio of the number of retained outliers
and the total number of retained points. We have used the standard implementation' of
the algorithm without adjusting any parameters. In the quadric algorithm we have used
L = 8 angles for 6 and 6’.

5.1 Synthetic data

We have generated synthetic data by randomly positioning points in a cube in R?. The
cameras with equal internal parameters are randomly positioned on a sphere around the
cube. The radius of the sphere is twice the edge length of the cube. The points are between
20 and 60 focal lengths away from the cameras. The image coordinates of the inliers are
perturbed by Gaussian distributed noise with a standard deviation of 0.3% of the image
size. For the outliers we randomly select two different space points, and use their non-
corresponding projections as a data pair. The experiment is run 100 times for a particular
outlier ratio €, and each run will have different point and camera positions. For the ROR
algorithm we have scaled the coordinate values to resemble realistic pixel values.

The results for 50 and 200 points are shown in Table 1 and 2, respectively. In the
tables we have shown the average €, and &y and their standard deviations over the
100 runs. In addition, we have calculated according to (2) for each run the theoretical
number of iterations M, M,,,, and Mo, corresponding to €, €, and &g, respectively.
The quantities M., and Mgor were then averaged over all runs and are shown in the
tables.

£ 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Epad 0.078 | 0.158 | 0.245 | 0.333 | 0.433 | 0.540 0.656 0.773 0.892
Eror 0.046 | 0.101 | 0.171 | 0.199 | 0.309 | 0.405 0.525 0.684 0.867

STD &,,4| 0.013 | 0.016 | 0.022 | 0.021 | 0.021 | 0.022 0.025 0.025 0.015
STD &gg|| 0.055 | 0.093 | 0.122 | 0.155 | 0.175 | 0.188 0.181 0.140 0.075

M 8 20 54 163 588 2,809 | 2.110% | 3.610° | 4.6 107
M 6 14 32 78 254 1,125 | 9,769 | 2.810° | 49107
Meon 4 12 34 401 | 2,084 | 1.710° | 13107 | 6.6 10° | 1.4 10°

Table 1: The results for synthetic data containing 50 points. The quantities indicated are
the outlier ratio €, the average outlier ratios €, and & and their standard deviations,
the number of iterations M, and the average number of iterations M,,,, and Mgor.

In general, the results for 200 points are better than for 50 points both in terms of the
averages as well as the standard deviations. More points allow a better estimate of the
side of the quadric that is largest. We can see that our method reduces the outlier ratio in
both cases. An exception is the somewhat extreme case € = 0.9 for 50 points, where only
5 inliers are present.

The synthetic data essentially violates the assumption of a dominant depth value in
the ROR algorithm. Yet, in most runs the algorithm performs well, as can be seen by the

I'The code is obtained from http://www.cs.technion.ac.il/Labs/Isl/Project/Projects_done/ror/.



€ 0.1 02 | 03 04 | 05 0.6 0.7 0.8 0.9
€ || 0.075 | 0.155 | 0.237 | 0330 | 0425 | 0.528 | 0.637 | 0.756 | 0.883
Tror || 0.049 | 0.098 | 0.148 | 0.210 | 0.293 | 0.387 | 0.505 | 0.657 | 0.860

STD ¢,,,/| 0.006 | 0.011 | 0.012 | 0.016 | 0.017 | 0.016 | 0.015 | 0.015 | 0.011
STD €oq|| 0.042 | 0.082 | 0.109 | 0.134 | 0.164 | 0.183 | 0.178 | 0.139 | 0.071

M 8 20 54 163 588 | 2,809 | 2.110% | 3.610° | 4.6 107
M, 6 13 29 75 224 906 5815 | 1.010° | 2.3 107
Meor 5 11 26 69 452 | 7,430 | 3.410* | 1.010° | 1.2 10%0

Table 2: The results for synthetic data containing 200 points. The quantities indicated are
the outlier ratio €, the average outlier ratios €, and & and their standard deviations,
the number of iterations M, and the average number of iterations M,,,, and Mgo.

lower average outlier ratio that it achieves when compared to our method. However, the
standard deviation of ROR is larger, so there will be several runs where the outlier ratio
is substantially higher. Since the number of iterations increases quickly with the outlier
ratio, the average number of iterations for high outlier ratios is therefore much larger for
ROR.

5.2 Real data

We have also applied the algorithms to a set of real stereo images. The correspondences
were found by applying the SIFT keypoint detector” [5]. For every keypoint descriptor
in the left image we found the nearest descriptor in the right image using Euclidean dis-
tance. As proposed in [5], the correspondence is retained if the distance is smaller than
0.8 times the distance to the second nearest neighbor. The inliers among the resulting
correspondences are found by robustly estimating the fundamental matrix, for which we
have used [8]. We manually identified any remaining incorrect correspondences among
the inliers and labeled them as outliers. The images used are shown in Fig. 3. The left
images contain the set of inliers, and the right images show the interest points belonging
to the outliers. The results of applying the algorithms on the images are shown in Table 3.

Although the effective outlier ratio €,,,, is decreased compared to € for all image pairs,
the ROR algorithm shows impressive results here. Most image pairs apparently meet the
assumptions that are needed for the algorithm. However, if we introduce some additional
transformation like image rotation, the ROR algorithm may not be able to handle it very
well. We rotated the right images of all image pairs and noticed that & generally in-
creases. In two cases, which are indicated in Table 3, the increase was such that &g
became larger than the original €.

The image pair “tea box”, taken from the Amsterdam Library of Object Images [3],
provides a challenge for the algorithms. The box is rotated between the views, and due
to the similar text on both sides many outliers arise from the same regions. As a result,
the outlier distribution is somewhat structured and confuses the ROR algorithm. Our
algorithm also has difficulty with this image pair, but it does show a reduction in the
outlier ratio.

The strength of the proposed method is therefore being able to perform consistently
for various stereo pairs, rather than showing a superior performance for a constrained set
of stereo images.

2The code is obtained from http://www.cs.ubc.ca/~lowe/keypoints/.



| image pair | n | £ | Equad | Eror | M | M i ‘ Mior |

books 740 | 0.74 ] 0.679 | 0.165 | 5.710* | 1.3 10* 14

pile of books 548 | 0.82 | 0.788 | 0.286 | 7.510° | 2.4 10° 47
Valbonne 299 | 0.58 | 0.512 | 0.056 | 1,996 697 5

U. British Columbia | 911 | 0.56 | 0.481 | 0.089 | 1,441 452 7

U. British Columbia | 911 | 0.56 | 0.481 | 0.598 | 1,441 452 2,712

(rotated 180°)
corridor 262 | 0.43 ] 0380 | 0.082 | 234 129 6
Wadham college 921 | 0.71 | 0.655 | 0.183 | 2.710% | 7,914 17

Wadham college 921 | 071 | 0.657 | 0.737 | 2.710* | 8243 | 5.3 10°

(rotated 60°)

tea box 221 | 0.71 | 0.698 1 2.710% | 2.0 107 oo

Table 3: The results on the image pairs of Fig. 3. The quantities indicated are the to-
tal number of correspondences n, the outlier ratios €, €,,, and &g, and the number of
iterations M, M., and Mgog.

6 Conclusion

We have proposed an algorithm that compares the point correspondences of stereo images
to a series of quadrics. Using the fact that outliers in the correspondences tend to have an
arbitrary position with respect to a quadric, we can decrease the effective outlier ratio by
gathering statistics over multiple quadrics. Subsequent application of a robust estimator
will therefore be less complex. The quadric algorithm has a low computational com-
plexity and requires no assumptions on the data. Experiments show that the algorithm
reduces the original outlier ratio of both synthetic and real data sets. In the synthetic
data experiment, the quadric algorithm shows better performance than a previously pro-
posed method, which itself is much more complex. Although this method outperforms the
quadric algorithm for many real data sets, the quadric algorithm shows the most consistent
performance.

Future work includes investigating to what extent the camera positions influence the
performance of the algorithm.
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Figure 3: (continued)
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