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Abstract

The random sample consensus (RANSAC) algorithm, along with its many
cousins such as MSAC and MLESAC, has become a standard choice for
robust estimation in many computer vision problems. Recently, a raft of
modifications to the basic RANSAC algorithm have been proposed aimed
at improving its efficiency. Many of these optimizations work by reducing
the number of hypotheses that need to be evaluated. This paper proposes a
complementary strategy that aims to reduce the average amount of time spent
computing the consensus score for each hypothesis. A simple statistical test
is proposed that permits the scoring process be terminated early, potentially
yielding large computational savings. The proposed test is simple to imple-
ment, imposes negligible computational overhead, and is effective for any
given size of data set. The approach is evaluated by estimation of the fun-
damental matrix for a large number of image pairs and is shown to offer a
significant reduction in computational cost compared to recently proposed
RANSAC modifications.

1 Introduction
The RANdom SAmple Consensus algorithm, proposed by Fischler and Bolles [5], is a
simple and powerful method for estimating model parameters given a data set heavily
contaminated by outliers to the correct model. It has proved extremely effective in sifting
multi-view relations, such as homographies, epipolar geometry and the trifocal tensor,
from point-to-point correspondences [10, 11, 6].

Recently, a number of modifications to the basic RANSAC algorithm have been pro-
posed aimed at improving its overall efficiency. Tordoff and Murray [9] propose a scheme
in which the similarity score associated with each putative feature correspondence is used
to bias the sampling procedure to favour high-confidence matches and to eschew ambigu-
ous matches, the motivation being that this will tend to sample good basis sets earlier
in the process. Chum et al. [2, 1] proposed the LO-RANSAC variant in which a model
optimization step is performed using the complete set of inliers whenever a new best hy-
pothesis is discovered. This tends to improve the consensus score more rapidly than is
the case in “vanilla” RANSAC, and hence the condition for termination may be reached
more quickly. Chum et al. [3, 4] and Werner and Pajdla [13] propose a cheirality test
for the fundamental matrix based on consideration of the oriented projective geometry

BMVC 2005 doi:10.5244/C.19.78



that allows hypotheses that do not satisfy the oriented epipolar constraint to be rejected
without further evaluation. Nister [8] proposes a radically different approach in which
multiple hypotheses are scored in parallel, with the least promising hypotheses being
dropped at successive stages. This is intended for use in real-time tracking applications,
in which a reasonable RANSAC hypothesis must be found within a fixed amount of time,
but requires that the approximate inlier percentage is known a priori.

The algorithm proposed in this paper is not intended for real-time use, but rather it at-
tempts to minimize the average time spent evaluating hypotheses in an off-line RANSAC
process. No prior knowledge of the inlier percentage is required. We propose a novel test
that may be used to “bail-out” part-way through the consensus scoring loop for a given
hypothesis. Bail-out occurs when it becomes sufficiently certain that the score being com-
puted will fail to better the previously recorded best consensus score. The test is simple
to implement and imposes negligible computational overhead. This is most similar to the
approach proposed by Matas and Chum [7] who propose a d-out-of-d (Td,d) pre-evaluation
test that aims to reduce the average time spent computing consensus scores by insisting
that all correspondences in a randomly selected subset of size d must be inliers to the
given hypothesis in order for full consensus scoring to take place.

2 Background
The steps in the basic RANSAC algorithm are generally well known and understood,
but for the sake of clarity they are detailed in table 1. It is assumed that we have a
data set consisting of putative feature correspondences, a subset of which are consistent
with (inliers to) some multi-view relation, such as a homography or epipolar relation, the
parameters of which are unknown. The task is to estimate these parameters, along with
the set of consistent correspondences (inliers).

In our experiments the data are point-to-point feature matches between two views and
the relation considered is the fundamental matrix F. RANSAC proceeds by repeatedly
sampling randomly selected subsets of the data, each containing the minimal number of
correspondences required to compute the relation exactly. In the case of F these minimal
subsets contain seven correspondences. Each subset yields either one or three hypotheses
for the parameters of F (see [6] for details).

The level of support for each hypothesis is evaluated using a robust consensus score
applied to the whole data set. In our experiments each correspondence is scored using the
robust cost function suggested by [12],

ρ(d2) = d2 , if d2 < Tinlier

= Tinlier , otherwise
(1)

, where d2 = d2
F(x,x′) is the Sampson approximation to the squared F-manifold re-projection

distance [6] for a correspondence c = (x,x′) and fundamental matrix F. Tinlier is an in-
lier/outlier threshold based on the expected feature localization accuracy (see [6]). Sam-
pling continues until a termination criterion is met (discussed below). The hypothesis with
the best consensus score is the final estimate. Note that this score is really a penalty score,
bounded below at zero, and monotonically increasing as additional correspondences are
considered, hence lower = better.

From inspection of the algorithm in table 1 it is clear that the overall complexity of
RANSAC is a product of the number of samples (and hence hypotheses) that are tested



and the average cost of scoring each hypothesis. The method proposed in this paper is
aimed at reducing the latter. It is similar in spirit to Matas and Chum’s Td,d [7] test, which
attempts to avoid scoring the entire set of correspondences by first applying a d-out-of-d
pre-test to a randomly selected subset of size d. Only if all d are found to be inliers does
the full scoring proceed. The authors suggest a value of d = 1 is a most effective choice.

Prerequisites

• A set of feature correspondences C

• A means of sampling minimal basis sets S from C

• A means of generating model parameter hypotheses p given a basis S
• A robust correspondence scoring function ρ(p,c)

Algorithm

n := 0
nmax := ∞

While n < nmax

(1) Sample a basis set S of size m from C

(2) Generate a set of model hypotheses P from S
For each hypothesis p in P

If using Td,d test
If ρ(p,c) > Tinlier for any of d randomly chosen c ∈ C ,
continue to next hypothesis.

(3) Evaluate consensus score Cp = ∑c∈C ρ(p,c) and set of inliers I

(4) If Cp < Cbest

If using LO-RANSAC
Refine model parameters p using all inliers I
Re-evaluate consensus score Cp, as step (3)

Cbest := Cp , pbest := p
(5) Recompute nmax = logη

log(1−εm) , where ε = |I |
|C | (eqn. 3).

n := n+1
Return pbest .

Table 1: The vanilla RANSAC algorithm comprises steps 1 to 5. Matas & Chum’s Td,d
pre-evaluation test, and Chum et al.’s LO-RANSAC modification are also shown boxed.

Before proceeding to discuss the proposed method, it is necessary briefly to consider
the details of the global termination criterion that indicates when enough samples have
been taken. The standard termination criterion for RANSAC (see [10]) applies the fol-
lowing reasoning. Given the true fraction of inlying correspondences ε , the probability of
selecting a basis set of size m that consists entirely of inliers is εm. Hence the probability



of sampling k basis sets all of which are polluted by at least one outlier is

η = (1− ε
m)k (2)

Therefore the minimum number of samples k that must be taken in order that this proba-
bility falls below a given confidence threshold η∗ is given by

k ≥ logη∗

log(1− εm)
(3)

Of course, the true inlier fraction ε is typically unknown before RANSAC begins.
However, every time a new best hypothesis is discovered, a lower bound ε̂ ≤ ε may be
computed, and hence the number of samples k that are required in order to be confident
that we have sampled at least one unpolluted basis may be updated as RANSAC pro-
gresses.

Matas and Chum’s Td,d test requires a small but significant modification to this crite-
rion. In this case, there is an additional probability (1−εd) that a good hypothesis will fail
the pre-evaluation test. Hence the expression for the minimal number of samples required
becomes

k ≥ logη∗

log(1− ε(m+d))
(4)

implying that use of the Td,d test requires that more samples be drawn before termination
than with “vanilla” RANSAC. This modification turns out to be very important, as we
shall see in section 5. It is noted by Tordoff and Murray [9] and by Chum et al. [2] that
these termination criteria can be overly optimistic, especially when the correspondences
themselves are rather noisy, since in such cases a basis sample that contains only inliers
to the correct model may not itself yield a model hypothesis with high support. However,
in the experiments performed in this paper, the standard termination criterion, with con-
fidence threshold η∗ = 0.01, appears to be sufficient to ensure that all the methods tested
return similar and satisfactory solutions for the epipolar geometry.

3 The hypergeometric bail-out test (HG-test)
In this section we describe the principal contribution of this paper : a novel early bail-
out test that provides significant computational savings in the computation of the robust
consensus score for a given model hypothesis (step 3 in table 1).

A trivial early bail test Before describing our proposed scheme, it is worth mentioning
an extremely trivial early bail test that is not often noted in the literature, but which can
(and should) always be used. It works as follows. The consensus scoring function is
typically implemented as a simple loop over all the correspondences C , during which the
accumulated score Ci = ∑i<|C |ρ(p,ci) grows monotonically. Remember that Ci is really
a penalty score, better hypotheses having lower scores. Hence, we can always bail-out
early if, during the evaluation loop, a point is reached at which the score for the current
hypothesis, Ci, exceeds (is worse than) the current Cbest , since Ci can only increase (get
worse) from this point on.



A novel early bail test The proposed bail-out test can be explained intuitively as fol-
lows. Given a hypothesis to be scored, we evaluate a randomly selected subset of size n of
the correspondences and observe an inlier fraction εn. If εn is very much smaller than the
current best εbest then it’s highly unlikely that evaluating the remaining correspondences
will yield an inlier fraction greater than εbest, so we need not continue.

More formally, considering a subset of correspondences Cn of size n, the number of in-
liers κn contained within Cn follows a hypergeometric distribution κn ∼HypG(κ,n, κ̄,N),
where κ̄ is the total inlier count for the given hypothesis, and N = |C | is the total number
of correspondences. Imagine we have a current best hypothesis Sbest with inlier count κ̄best
and that we have partially evaluated some new hypothesis S, having so far considered a
subset of n correspondences. Ideally, we would like to take a Bayesian stand-point and
ask the question “Given the κn inliers that we’ve observed so far, what’s the probability
that the total κ̄ > κ̄best?”

P(κ̄ > κ̄best) =
N

∑
κ̄=κ̄best

P(κ̄|κn,n,N) (5)

If this probability is below a given threshold, we can safely abort further scoring of S.
Although it is straightforward to calculate this probability, it is computationally rather

expensive and, unfortunately, does not lend itself easily to tabulation or approximation. So
instead, we consider a related, but much simpler, one-sided confidence test. Denoting the
cumulative density function as HG(κ0,n, κ̄,N) (the probability that κ ≤ κ0), a confidence
Pconf lower bound κmin on the number of inliers κn observed within Cn is defined by

HG(κmin,n, κ̄,N)≤ Pconf < HG(κmin +1,n, κ̄,N) (6)

Our rejection hypothesis is that the total κ̄ is < κ̄best, so we set κ̄ = κ̄best in the above. If
κn < κmin, the rejection hypothesis is accepted and we can bail out.

Given the above, the proposed algorithm for scoring a hypothesis proceeds as follows.
It is essential that correspondences are scored in randomized order. After each corre-
spondence is tested, the number of inliers κ observed so far is compared to a lower bound
κ̂min that is a function of the current best inlier count κ̂ , the size of evaluation set n = |Cn|
so far considered, and the total size N. If κ < κ̂min the evaluation loop is aborted without
considering the remainder of the correspondences. Pconf = 0.01 in all of our experiments.
We shall refer to this test as the HG-test.

Implementation details The correspondences may be randomly pre-shuffled prior to
starting RANSAC, which can be done efficiently in O(N) time. For small values of n, the
hypergeometric lower bound κmin(n, κ̂,N) may approximated by the binomial distribution

κ ∼ Bin
(

n,
κ̂

N

)
= Bin(n, ε̂) (7)

for which values may be tabulated for the chosen value of Pconf. For large n, the hyperge-
ometric distribution may be approximated by a normal distribution

κ ∼ N(µ,σ2) = N
(

nε̂,nε̂(1− ε̂)
(

N−n
N−1

))
(8)



in which case the value zconf of the Pconf lower confidence limit for a unit normal distribu-
tion may be computed/looked-up in advance. Then the value of κ̂min for particular values
of n and ε is given by

κ̂min = bnε̂ − zconfσc (9)

The steps in the proposed hypothesis scoring function are shown in table 2.

r := 1 , k := 0 , C := 0
Apply a random shuffle to C

While r ≤ |C |
ρr = ρ(p,C {r})
If ρr < Tinlier then k := k +1
C := C +ρr

Compute kmin using eqn. 9
If k < kmin then abort evaluation
r := r +1

Return C.

Table 2: The hypothesis scoring function using the hypergeometric bail-out test (HG-test).
This function corresponds to step 3 in table 1.

4 Experiments
In this section we evaluate the effectiveness of the proposed test as compared to the Td,d
test and the LO-RANSAC variant. We also assess the performance of the proposed test in
combination with LO-RANSAC.

The test data consists of ten 100 frame video sequences (1000 frames total) captured
with a hand-held PAL DV camera and containing a mixture of indoor and outdoor scenes
(see figure 1). Robust F estimation is performed between all consecutive frames of video
as follows. Between 1200 and 1500 point-features are detected in each 720× 576 im-
ages. Putative point-to-point matches are found using a correlation-based similarity score
and subject to a maximum disparity limit of ±10% of the image width (±72 pixels).
This yields between 645 and 1081 (mean=850) putative correspondences. Six RANSAC
variants are then applied to estimate F : vanilla RANSAC, RANSAC with Td,d test, LO-
RANSAC, LO-RANSAC with Td,d test, RANSAC with the HG-test, and LO-RANSAC
with the HG-test.

The shots used were chosen to be quite challenging for geometry estimation. The
indoor clips are shot in low-light with the subject close-up, so the video is rather noisy and
the motion jerky and blurry. The outdoor shots feature complex structure (e.g. foliage)
and non-rigid motion (e.g. foaming water). Consequently, estimation of the epipolar
geometry in these images tends to be more difficult than one might expect, with rather
low inlier fractions ranging from 0.37 to 0.88 (mean=0.60).

In all cases, the value of d in the Td,d test is d = 1 as suggested by [2]. The RANSAC
global termination criterion is computed with η∗ = 0.01 (eqns. 3 and 4). The Pconf lower
bound on the number of inliers κ in the hypergeometric bail-out test is Pconf = 0.01 (i.e.
< 1% chance that κ < κ̂min). The trivial bail-out test is employed as a baseline criterion
in all variants except those labelled “No bail test”.



5 Discussion
It is clear from table 3 that both the Td,d test and the proposed HG-test significantly re-
duce the required number of evaluations of the robust scoring function ρ(p,c), with the
hypergeometric+LO-RANSAC variant performing best (a factor of two fewer evaluations
than with the Td,d test). The average time required per image pair for each variant is
shown in table 4. This indicates that the reduction in function evaluations achieved by
the HG-test results in a significant reduction in the overall computational cost (a factor of
two compared to the next best). Also note that the trivial bail-out test yields significant
performance advantages compared to the “no bail test” variants.

It is interesting to note that those variants employing only the trivial bail-out test are
not greatly slower than those employing the Td,d test in these experiments. This is because
a large part of the total computational burden in RANSAC is the actual generation of
hypotheses from sample sets, which in the case of F requires construction and SVD/QR
decomposition of a 7× 9 matrix and solution of a cubic polynomial. This takes around
35µs per F hypothesis in our implementation. As shown in table 5, the Td,d test requires
many more hypotheses to be evaluated before its modified termination criterion (eqn. 4)
is met. This tends to offset the efficiency gains made in consensus scoring.

By comparison, the HG-test variants manage to keep both the average cost of scor-
ing each hypothesis and the total number of hypotheses tested to a minimum. The
hypergeometric+LO-RANSAC method out-performs all other variants in this respect.

Finally, table 6 shows the average and minimum inlier fractions computed across each
shot for each of the six RANSAC variants that were tested. The fact that there is very little
variation across the columns indicates that each method is returning similar and satisfac-
tory results for the epipolar geometry. This reassures us that each method is drawing a
sufficient number of samples and that none is guilty of sacrificing “diligence” for speed.

avg. n eval /105 Vanilla RANSAC LO-RANSAC
No bail test 8.20 7.19

Trivial bail test 5.40 4.72
Td,d test 1.31 1.19
HG-test 0.55 0.51

Table 3: The average number of F Sampson distance evaluations per image pair that was
required by each of the six methods over the course of the 1000 RANSAC runs. The
variants using the HG-test perform significantly fewer evaluations than the Td,d test, and
both are a great improvement over vanilla RANSAC.

avg. time / msec Vanilla RANSAC LO-RANSAC
No bail test 166 149

Trivial bail test 113 102
Td,d test 89.8 84.7
HG-test 42.0 40.3

Table 4: The average time taken per pair of images. Variants using the HG-test are signif-
icantly faster.



avg. n hypotheses Vanilla RANSAC LO-RANSAC
No bail test 1026 898

Trivial bail test 1005 904
Td,d test 2139 1962
HG-test 1000 902

Table 5: The average number of putative F hypotheses that were required per pair of
images. Compared to the vanilla and hypergeometric methods, the Td,d method requires
many more hypothesis samples to be generated before the global termination criterion
(eqn. 4) is met. This significantly increases the computational overhead associated with
using the Td,d test.

Shot Std Td,d LO LO+Td,d HG-test HG-test+LO
0 0.51 (0.41) 0.52 (0.41) 0.52 (0.42) 0.52 (0.41) 0.52 (0.41) 0.52 (0.42)
1 0.47 (0.37) 0.47 (0.38) 0.48 (0.38) 0.48 (0.38) 0.47 (0.37) 0.48 (0.38)
2 0.49 (0.42) 0.5 (0.44) 0.5 (0.43) 0.5 (0.44) 0.5 (0.42) 0.5 (0.43)
3 0.65 (0.54) 0.65 (0.55) 0.66 (0.54) 0.65 (0.55) 0.65 (0.55) 0.66 (0.54)
4 0.65 (0.54) 0.65 (0.55) 0.66 (0.54) 0.65 (0.56) 0.65 (0.55) 0.66 (0.54)
5 0.82 (0.74) 0.83 (0.75) 0.83 (0.75) 0.83 (0.76) 0.82 (0.74) 0.83 (0.75)
6 0.56 (0.47) 0.56 (0.48) 0.56 (0.47) 0.57 (0.48) 0.56 (0.47) 0.56 (0.47)
7 0.65 (0.42) 0.65 (0.42) 0.65 (0.43) 0.65 (0.42) 0.65 (0.42) 0.65 (0.43)
8 0.54 (0.46) 0.54 (0.46) 0.55 (0.47) 0.55 (0.46) 0.54 (0.46) 0.55 (0.47)
9 0.68 (0.43) 0.68 (0.41) 0.68 (0.39) 0.68 (0.44) 0.68 (0.43) 0.68 (0.39)

Table 6: The average and minimum (in brackets) inlier fraction in each of the ten 100
frame test shots at termination of each of six methods. Within each shot (row), there is
very little variation across the columns, indicating that all of the methods are returning
sufficiently similar results for the epipolar geometry, and none are guilty of sacrificing
“diligence” for speed.

6 Conclusions
In this paper, we have proposed a novel and simple bail-out criterion that increases the
efficiency of RANSAC by reducing the average computation cost associated with the
consensus scoring of individual hypotheses. The proposed test has been evaluated for the
robust estimation of the fundamental matrix using a large data set, and has been shown
to provide significant computational savings compared to recently proposed RANSAC
variants. The proposed approach has two key advantages. First, it can always be applied
and will provide efficiency gains no matter how large or small the set of correspondences.
Second, the bigger the set of correspondences, the greater are the benefits of effective
early bail-out.

Future work should evaluate the effectiveness of the approach for the estimation of
other multi-view relations, such as homographies and the trifocal tensor. The approach
should also be evaluated for problems involving very large data sets (> 104 correspon-
dences).



Figure 1: Three pairs of images from the evaluation set of ten 100 frame shots (1000
frames total). The video was captured with a hand-held PAL DV camera. The indoor
clips are shot in low-light with the subject close-up, so the video is rather noisy and
the motion jerky. The outdoor shots feature complex structure (e.g. foliage) and non-rigid
motion (e.g. foaming water). Consequently, the feature correspondence problem for these
images is actually quite challenging. Inliers to the epipolar geometry are super-imposed
in yellow.
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