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Abstract 
 

The expected value of missing data in a sample taken from a multivariate normal 
probability distribution is the mean of the conditional distribution of the missing 
dimensions given the known dimensions. We explain the derivation of this 
result, demonstrate its application to face image processing, then use it in a new 
method for recovering shape from image data. The context of our work is the use 
of 3D facial models to aid in recognition of human faces by humans. We explain 
the requirement for such models and review the practical possibilities for 
encoding depth information alongside photographs in identity documents like 
passports. The best alternative is to derive depths automatically from the photos, 
as this requires no side information. We show experimentally that conditional 
density estimation provides accurate face depth recovery, without recourse to 
explicit modelling of surface shape.  

 

1 Introduction 
 
In this paper we are principally concerned with the analysis of images of human faces. These 
may either be 2D images, where an array of pixels represents greyscale, or 2.5D (or, 
informally, 3D) images, where a second array represents depths. In common with other 
appearance-based approaches (e.g. [1]-[4]), we stack all the measurements (greyscales and 
depths) for an image into an n-dimensional column vector, which we consider as a sample 
point in a multidimensional space. Unlike most other appearance-based approaches, we do not 
assume that “face space” is a low-dimensional subspace of “image space”. Rather, we model 
faces as an n-dimensional normal distribution, with the parameters derived from training data. 
With this representation, conditional distributions can be used to estimate any number of 
missing measurements in a sample. Section 2 explains the theory, highlights some properties of 
the estimation, then shows how it can be applied to image reconstruction from partial data. All 
examples are faces, but the generalization to other domains is briefly considered. 

In section 3 we introduce the application with which we are concerned: the recovery of 
depth information from face photos. 

Because the number of samples available for training is less than n and therefore far too 
low for the scatter matrix of training samples to characterize the covariance matrix, we use a 
regularized covariance estimation method [5]. This mixes the scatter matrix and the identity 
matrix according to a reconstruction criterion, as described in section 4, which also contains 
the results of experiments to find the appropriate mixing parameter. 

Section 5 reports experiments on the recovery of depth data from photos of faces.  
 

2 Conditional distributions for data estimation 
 
2.1 Theory 
Consider the random vector X, distributed as Nn µ,Σ( ). Suppose we have a particular sample 

from the distribution P, which we call the “probe”, in which some of the measurements are 
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known and some are not. A binary vector M (or “mask”) may be used to indicate which 
dimensions in P are known values, and a permutation matrix R can then be defined which will 
reorder M into a column of q zeroes followed by p (= n – q) ones. 

When R is applied to P, it moves all the unknown values to the top: 
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where P1 and P2are column vectors of dimensionality q and p respectively (P1’s values are 
undefined). Similarly, 
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I.e. µperm is the mean vector reordered to match RP, the reordered probe vector. 

Similarly Σpermis the covariance matrix with rows and columns appropriately reordered. 

We now follow [6] (page 170) and define a matrix A with submatrices and dimensions 
as shown: 
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Now the random vector 
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is a linear transformation of the normally-distributed random vector Xperm and so itself is 

normally distributed with mean E A(Xperm − µperm)[ ]= AE (Xperm − µperm)[ ]= 0 and 

covariance matrix AΣpermAT  where the T denotes transpose. 

Using the identities Σ22
T = Σ22,Σ12

T = Σ21 (because of the symmetry of covariance 
matrices), we can calculate equation (6): 
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Equation (6) above is the motivation for choosing A as we did: when the covariance matrix is 
calculated, the top right and bottom left corners turn out to be 0 submatrices, meaning that 

X1 − µ1 − Σ12Σ22
−1(X2 − µ2) and X2 − µ2 have zero covariance and are therefore 

independent. We can therefore consider the quantity X1 − µ1 − Σ12Σ22
−1(X2 − µ2) as a distinct 

q x q multivariate normal distribution. When X2 takes the value P2, the random variable 

becomes X1 − µ1 − Σ12Σ22
−1(P2 − µ2) . As shown above, 

E A(Xperm − µperm)[ ]= AE (Xperm − µperm)[ ]= 0, so 

E[X1 − µ1 − Σ12Σ22
−1(P2 − µ2)] = 0. But µ1 − Σ12Σ22

−1(P2 − µ2)  is a constant, so the mean 
of X1, i.e. the expected value of the missing data we want to fill in, is given by: 



E[X1] = µ1 + Σ12Σ22
−1(P2 − µ2)        (7) 

We therefore have a direct method for estimating P1 from P2. All that then remains is to 
apply R-1 to Pperm to recover the full image corresponding to the probe. 

The above derivation is indirect. It is also possible to construct a proof that uses the 
densities directly ([6] pp 217-218). Also note that, as well as the mean, the covariance matrix 

of the estimated data has been derived as Σ11 − Σ12Σ22
−1Σ21. This could be used to explore the 

principal components of variation, i.e. the modes in which the real values are likely to differ 
from the estimate. We do not pursue use of the conditional density covariance further here. 
 
2.2 Geometric interpretation of the estimation. 
 
Figure 1 illustrates the estimation of a missing value in two dimensions. The geometric 
interpretations it suggests apply in n-dimensional space, namely: (a) The use of the expectation 
of the conditional density is equivalent to finding the point where the known subspace is 
tangent to an equivariance contour, or, equivalently, finding the minimum Mahalanobis 
distance from the known subspace to the class mean. (b) Given a particular known subspace 
(i.e. a particular distribution of pixels in the probe), the derivation of the missing values is a 
linear transformation. (c) It is important to have a full n-dimensional covariance matrix for the 
distribution. Were the method to be applied in a principal component subspace, for example, 
the missing values would be estimated by reflecting in the principal components. This will lead 
to large errors when the retained principal components are near parallel to missing value axes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Illustration of estimation for a 2D distribution 
 
2.3 Applying conditional estimation to the recovery of missing data in 
face images 
 
Although the focus of this paper is the recovery of depths from greylevels, we briefly illustrate 
the use of conditional density estimation for filling in missing or damaged data in images. 

X1 

X2 

X1= P (known value) 

X2= Q (estimated 
value for missing 
measurement) 

An equivariance 
contour of the bivariate 
normal distribution in 
(X1, X2). X1=P is 
tangent to this 
particular contour and 
their intersection gives 
the expectation of the 
conditional density of 
X2 | X1=P. 

Sketch of the 
conditional density of 
X2 | X1=P. 

This line shows the locus of 
intersections between X1=P and 
the tangent equivariance contour 
as P varies. It represents the linear 
projection from the probe to the 
missing values. 



Figure 2 shows the mean of a training set of 2325 38x38 face images together with the 
individual pixel variances (i.e. the diagonal of the scatter matrix). The faces are modelled as a 
multivariate normal distribution using the sample mean as maximum likelihood estimate of the 
distribution mean, and with the covariance matrix estimated as described in Section 4 below 
(and, more fully, in [5]). 
 

  
Figure 2: Sample mean and pixel variances for a 38 x 38 face-image training set 
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Figure 3: Example recovered pictures by estimation from pixels extracted by probes 
 
Figure 3 shows a table of pictures recovered by application of equation (7) to sets of probe 
pixels from face images. Five original test images (none of which were in the training set) are 
shown along the top of the figure, while six different probe patterns are shown down the left. 
In the probe images, white pixels represent points used in the probe. The dimensionality n is 
38x38 = 1444, while the number of points p in the probe is as follows: (a) the probe 
subsamples the image at regular intervals, p = 100 = n/14, (b) the probe subsamples the image 
at coarse regular intervals, p = 49 = n/29, (c) the probe is a fovea-like logarithmic spiral, p = 
104 = n/14, (d) the probe consists of all the face except the right-hand triangle, p = 1083 = 
3n/4, (e), the probe consists of the whole face except the eyes, p = 1015 = 7n/10, (f) the probe 
consists of the whole face except the mouth region, p = 1015 = 7n/10. Note that the known data 
in every original probe is taken directly from a test image and is not filtered. 

Figure 3 shows that recovery is possible no matter what the probe. Each additional pixel 
in the probe provides additional data about how the recovered picture should diverge from the 



mean, but the divergence is conservative. For example, in row (b), the recovered faces are all 
plausible though blurred, and reflect the lighting and pose of the original. So far as identity and 
expression are concerned, however, they tend towards the mean, as would be expected given 
the dimensionality requirements for identification and expression analysis [7]. Reconstructions 
improve with increasing probe size, though wherever there are large areas missing, the fill-in 
again has the property of being appropriate in both geometry and shading and therefore 
plausible, but neutral so far as expression is concerned. 
 
3 3D photos for human recognition 
 
The accuracy of human face recognition from single photographic images as on passports, 
driving licenses, etc., is surprisingly low, as demonstrated strikingly by Kemp et al [8]. Here, 
six subjects in the environment of a supermarket were asked to be alert for fraudulent use of 
credit cards. A test set of volunteers used credit cards with photographic ID. 35 percent of 
cards with significant variation between image and bearer were accepted, as were 64 percent of 
cards with similar but different faces to those of the bearer. 14 percent of non-fraudulent cards 
were rejected. 

Part of the reason for this poor performance is believed to be that in many practical cases 
the faces being recognised are not well known to the observer [9]. This is significant as with 
only one viewpoint to compare with a testing view, the observer’s perception of the ground 
truth (the person in the photo) is heavily reliant upon the environmental conditions when the 
2D image was taken – lighting, pose, and the presence of any transient features (spectacles, 
hats, etc) at the time. This is not such a significant problem when the face is already known by 
the observer, as familiar faces are recognised more accurately than unfamiliar faces under most 
circumstances. Familiarity appears to compensate for distracting influences that could be 
considered external. Two of these are significant for our purposes: 
1. As a face becomes more familiar, the observer becomes more adept at remembering, 
and therefore using as recognition cues, the “internal” features of the face – that is, features 
such as eye separation, mouth width, etc., which are not necessarily immediately apparent, but 
which are highly distinctive between individuals. Less familiar faces are recognised by using 
more obvious, large scale features, such as hairstyle, facial hair, spectacles, etc, which are 
readily apparent, highly distinctive when compared to the average face, and also potentially 
highly misleading as they are both easily changed and do not distinguish between – for 
example – all people with the same hair colour and style very effectively. 
2. As a face becomes familiar, more views of the face are stored and associated with the 
identity. In this model, transient features (such as hairstyle and facial ornaments) also become 
less significant, though for different reasons. Here, the presence or absence of, say, spectacles, 
becomes irrelevant as the observer associates both states to the person in question. The more 
significant element of this recognition process is the ability of the observer to recognise the 
subject under varying lighting conditions and in different poses as images of the subject in 
increasing numbers of different poses and conditions are stored in the associative memory of 
the observer. Troje and Kersten [10] show the significance of this process effectively. Here, 
subjects are presented with a selection of familiar faces (close colleagues) from a variety of 
angles along with an image of their own face (which they are familiar with in the frontal view) 
in profile. The speed at which they recognised and correctly named the faces was recorded, and 
showed while other familiar faces could be recognised equally quickly independent of view, 
the subject’s own face was consistently recognised more slowly in profile than in frontal view. 
Troje concludes that this is because although we are familiar with our own faces in the frontal 
view (as from our reflection), we rarely see our own face in profile, and so are less primed to 
recognise it. 

It has long been understood that familiar and unfamiliar faces, as subsets of familiar and 
unfamiliar objects, are recognised so differently that completely different memory processes 
are used – familiar using semantic memory, and unfamiliar using episodic memory. This 
makes it difficult to draw conclusions about one type of recognition from the other, as both 



have distinct and very different properties [11]. However, we can approach the problem from a 
different angle: we now have a list of external distractors which make unfamiliar face 
recognition rates poorer than familiar recognition rates. If these distractors could be in some 
way removed, then recognition should be less difficult. 

A further, very significant, interpretation of the Troje study [10] is that recognition is 
based on a collection of views, rather than a mental 3D model of a face. If a 3D mental model 
were used, recognising a familiar face from different angles should have no impact upon 
performance, whereas recognition based on a collection of views (akin conceptually to 
searching through a photo album of many views of a candidate before deciding upon 
recognition) will degrade when a familiar face is presented in a novel orientation. Therefore, 
the use of a virtual 3D model should provide functionality not available implicitly to the 
human recognition process. 

A natural extension of the study by Troje, and indeed the concept of pose as a problem for 
unfamiliar face recognition, is to posit that if a face is unfamiliar then pose, lighting and 
external feature changes will have a disproportionate impact on the observer’s identification of 
the face. Several studies [12,13] have suggested that changes in pose have a detrimental effect 
upon recognition though Troje and Bulthoff [14] suggest that the training view provided is 
significant, and the testing view is unimportant – i.e., with a good training view, any change in 
pose becomes unimportant. [15] demonstrates that changes in illumination direction can hinder 
identification, while Liu and Chaudhuri [16] support the view that facial structure is 
determined principally from shading – not stereopsis – which suggests that lighting has a 
strong effect upon our perception of face shape. Also of note is the finding [17] that 
perspective distortion caused by camera distance can have a severe effect upon recognition.  

In subjective tests we have shown that both lighting and pose changes do indeed have an 
impact on fully textured 3D facial masks, lighting being greater but pose being far from 
insignificant.  To summarise briefly, test subjects were exposed to a set of twenty training 
faces, in a random order, posed either facing the camera or looking off at approximately twenty 
degrees, for five seconds each. Lighting for each image varied between sources to the lower 
left or upper right of the face. The same twenty faces, all shown with either the alternate pose, 
lighting or both relative to the training image were then shown to the subjects mixed with 
twenty novel faces, rendered under the same range of conditions. After testing, a 
distinctiveness survey was used to remove unusually distinctive faces from the results. As can 
be seen in table 1, both pose and lighting changes pose a significant problem for recognition. 
Further, with a compound change in both lighting and pose correct identification drops to less 
than 60% after normalising for the positive or negative bias of each test subject. 

 

 Correct False Negative Normalised 
Correct 

Normalised 
False Negative 

Same Lighting, Different Pose 74.50% 25.50% 77.38% 23.44% 

Different Lighting, Same Pose 60.00% 40.00% 72.07% 33.41% 

Different Lighting, Different 
Pose 52.88% 47.13% 59.20% 43.52% 

Table 1: Recognition of faces in different poses and lighting conditions 
 

We conclude, therefore, that adjusting pose and/or lighting can significantly degrade the 
ability of an observer to correctly identify an unfamiliar face. If a full, accurate 3D model of 
the face in question were provided, this degradation may be ameliorated by mapping the initial 
2D image onto the model, re-positioning and re-lighting the model to conform to any given 
environmental test conditions and re-rendering a new 2D image. For example, a face caught on 
camera in profile may be more accurately compared with a passport photo by applying the full 
frontal passport image to the 3D model of the passport owner’s head and rotating to a profile 
view, re-illuminating to match the conditions in the test scene. Further manipulation, such as 



the addition or removal of spectacles, beard, hats, etc, are also possible as is the adjustment of 
perspective distortion upon the model. While this does not confer any form of familiarity with 
a novel face, which would be the ideal method of improving recognition, we suggest that the 
use of a well-fitted 3D model would allow us to remove many of the distracting factors that 
cause significant degradation to unfamiliar face recognition, in essence trying to boost the 
performance of unfamiliar recognition by providing some of the empirically apparent 
functionality of the familiar face recognition process. 

People do not carry laser-scanned 3D models of their own heads but only 2D 
photographs. Hyde and Robinson [18] suggest that there is a useful correlation between the 
greyscale information in a standard passport style photo and a depth map of the face which can 
be exploited in an application-specific coding scheme. We propose that the depth information 
for a face could be estimated from the greyscale information present in a 2D image with 
sufficient accuracy to provide a better 3D model than the mean face, and allow the re-posing 
and re-illumination of a 2D image. In the conditional density estimation process described in 
section 2, we have a mechanism for doing this. Training images consisting of greyscales and 
depths will be used to estimate a regularized normal model for faces. Greyscale faces will then 
be used as probes to recover all the missing depth dimensions. 
 
4 Covariance matrix estimation 
 
Robinson [5] reviews methods for covariance matrix estimation in the context of face 
classification and detection, then proposes an estimator of the form: 
                                       ISSΣ βααβα +−+= totalii )1(),(       (8) 

where ),( βαiΣ  is the estimated coefficient matrix for class i, iS  is the scatter matrix derived 

from a subset of the training samples of class i, totalS  is the scatter matrix of all available 

training samples over all classes and βα , are regularization parameters estimated by 

classifying the remainder of the training samples for class i and choosing the βα , that give 

best performance. The estimator in [5] includes further regularization parameters iγ which 

adjust the volumes of each class, again by maximizing classification performance. In our 

context, we have a single class so totali SS = , and α and iγ have no effect. The estimator 

therefore reduces to 
                                       ISΣ ββ += ii )(          (9) 

In contrast to earlier regularization methods (e.g. [19,20]), the estimator of [5] optimizes 
its parameters according to the application. Therefore during training we consider the 
estimation of missing data as a recovery problem and search for the β that produces the average 
best estimate during a training phase using sample images with known depths.  

The data available to us for the 3D face estimation comprises some 740 laser scanned 
images from the University of Notre Dame biometrics database. This database contains 
multiple images of some subjects in slightly different poses. In order to provide fair test 
images, 40 were removed from the set. These 40 were selected such that no other images of 
any of the subjects in the control set were present in the remaining 700 training images. The 
3D models were automatically converted into depth map images by filtering the images to 
remove noise caused by surface reflectance peaks which can cause highly inaccurate readings 
from a laser scanner, and then centring the point closest to the camera. It can be assumed that 
all images are facing forwards, so this nearest point is always the nose. This is verified by 
checking that the image has approximately the same amount of non-zero data to both the left 
and right of the peak. A set-size sample window is set about this central peak, cropping the 
model and texture information to the face portion of the images only. A backplane is then set 
by scanning through all models to determine the nearest backplane which does not result in 
data loss. The texture and depth maps are then generated using a rendering library (OpenGL) to 
return depth and colour information for specified sample points.  



As so few training samples are available relative to the size of the space of the problem, 
we have resized the images to 38 by 50 pixel greyscale texture and depth maps, limiting the 
dimensionality of the space to 3800 dimensions. All training images are mirrored to double the 
number of training samples available to 1400. 

Optimization was performed by sweeping through values for β from 1 to 17500. The 
covariance matrix was computed using a “leave-one-out” method – that is, omitting one of the 
training images, computing the covariance with the remainder, regularising using the current 
control value, calculating the projected depth model and hence a mean square error. As several 
subjects in the set are represented in multiple images, all instances of a given test subject were 
omitted from the training set when testing using an image of that subject. As shown in figure 4, 
a clear minimum is evident in the results, at approximately 4500.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4. Average reconstruction error vs parameter β during training 
 
In order to better understand the impact of varying the size of the training data, we have 
applied a simplified method of parameter estimation to cases where the scatter matrix was 
estimated from 175, 350, 525 and 700 images. In this experiment, we simply evaluated the 
optimal β for the forty test images. Table 2 shows the results: 
 

Number of training 
images 

175  350 525 700 

Optimal β for the test set 20000 28889 11329 12210 
Average MSE over the 
test set at this β 

549 546 479 495 

Table 2. Optimal parameter values for restricted training sets 
 
In each case we also constructed the equivalent of figure 4. The graph’s shape is always the 
same: there is an initial rapid improvement in performance as the parameter value is increased. 
This then reaches a minimum with a very shallow curve, and then degrades towards the 
standard deviation of the training set (i.e. the average distance between the training samples 
and their mean). It will asymptotically approach this value, which corresponds to the use of the 
mean depth for recovery, as β tends to infinity. While the estimation improves over the mean in 
all cases, improvement is clearly greater with more training samples. The β yielding the 
optimal performance decreases as the number of samples increases. 
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5 Recovery of depths from test images 
Application of an estimation transform using the optimal β value of 4500 determined in section 
4 to the forty test images not used in training yields results which consistently outperform the 
use of the mean depth image. Figure 5 shows that recovery via the conditional density provides 
on average an estimation with less than half the MSE of the mean depth. As shown in figure 6, 
the estimation provides a satisfactory model for use in a 3D render of the face. The top four 
rows of figure 6 are representative examples, while the bottom row shows the worst case 
(image 9 in figure 5). The original depths in this image were distorted and that has contributed 
to the poor MSE, but the reconstruction is also subjectively poor, probably because of the lack 
of images of similar framing and pose in the training set. 
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Figure 5. Depth recovery accuracy as Mean Square Error for 40 test images 
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Figure 6. Example depth reconstructions 



6 Conclusions 
 
We have applied conditional distribution estimation to the recovery of missing data in images. 
In particular, we have shown how accurate estimates of face depths are recoverable from face 
photos. In future work we will use the depth data to relight the photographic information, and 
test the extent to which this aids human recognition. 
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