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Abstract

The expected value of missing data in a sample takema multivariate normal
probability distribution is the mean of the conalital distribution of the missing
dimensions given the known dimensions. We explaie derivation of this
result, demonstrate its application to face imagegssing, then use it in a new
method for recovering shape from image data. Thé&egbof our work is the use
of 3D facial models to aid in recognition of hunfanes by humans. We explain
the requirement for such models and review the tigadcpossibilities for
encoding depth information alongside photograph&émtity documents like
passports. The best alternative is to derive degibsmatically from the photos,
as this requires no side information. We show drpamtally that conditional
density estimation provides accurate face deptbvery, without recourse to
explicit modelling of surface shape.

1 I ntroduction

In this paper we are principally concerned with #malysis of images of human faces. These
may either be 2D images, where an array of pixelsrasents greyscale, or 2.5D (or,
informally, 3D) images, where a second array regres depths. In common with other
appearance-based approaches (e.g. [1]-[4]), weé sthahe measurements (greyscales and
depths) for an image into ardimensional column vector, which we consider asample
point in a multidimensional space. Unlike most othppearance-based approaches, we do not
assume that “face space” is a low-dimensional saadespf “image space”. Rather, we model
faces as an-dimensional normal distribution, with the paramstderived from training data.
With this representation, conditional distributionan be used to estimate any number of
missing measurements in a sample. Section 2 egplatheory, highlights some properties of
the estimation, then shows how it can be appligichmge reconstruction from partial data. All
examples are faces, but the generalization to atbwains is briefly considered.

In section 3 we introduce the application with whige are concerned: the recovery of
depth information from face photos.

Because the number of samples available for trgiisitess tham and therefore far too
low for the scatter matrix of training samples t@m@cterize the covariance matrix, we use a
regularized covariance estimation method [5]. Thises the scatter matrix and the identity
matrix according to a reconstruction criterion,d@scribed in section 4, which also contains
the results of experiments to find the appropnmabeng parameter.

Section 5 reports experiments on the recovery pfiddata from photos of faces.

2 Conditional distributionsfor data estimation

21  Theory
Consider the random vecti, distributed aan(,u, Z). Suppose we have a particular sample
from the distributionP, which we call the “probe”, in which some of theeasurements are
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known and some are not. A binary vecMr (or “mask”) may be used to indicate which
dimensions irP are known values, and a permutation ma®igan then be defined which will
reorderM into a column ofy zeroes followed bp (=n — g ones.

WhenR is applied td?, it moves all the unknown values to the top:

R
Prem = RP=| - &)

2
where P, and P,are column vectors of dimensionaliyandp respectively £'s values are

undefined). Similarly,
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We also defingl/,o, = R = {iu—l} and .= RER= {_Zil_)r_z_l% ©)
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l.e. HUper is the mean vector reordered to matBi#®, the reordered probe vector.
Similarly Zpermis the covariance matrix with rows and columns appately reordered.

We now follow [6] (page 170) and define a matrixvith submatrices and dimensions
as shown:
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Now the random vector
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is a linear transformation of the normally-disttiédi random vectorX,,,,,, and so itself is

normally distributed with meanE[A(Xperm - /'Iperm)] = AE[(Xperm - luperm)] =0 and

.
covariance matrixA> /A" where theT denotes transpose.

Using the identities>}, =% ,,,5/, =%, (because of the symmetry of covariance
matrices), we can calculate equation (6):
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Equation (6) above is the motivation for choosfgs we did: when the covariance matrix is
calculated, the top right and bottom left cornens1tout to be 0 submatrices, meaning that

X, =t —2,55(X,—4,) and X,—g, have zero covariance and are therefore
independent. We can therefore consider the quadjty- £4 — ,,555(X, — 14,) as a distinct
g x g multivariate normal distribution. WheK, takes the valud®,, the random variable
becomes X, == 2,550 (P,— 14,). As shown above,

E[A(Xperm _luperm)] = AE[(Xperm _luperm)] = O’ SO

E[X, — 44— 2,5,5(P,—1,)] =0. But g4, —%,,5,5(P, — 4,) is a constant, so the mean
of Xy, i.e. the expected value of the missing data wet weefill in, is given by:



EIX] = 14+ 2,,755(P, — 45) )
We therefore have a direct method for estimaBpfyom P,. All that then remains is to
applyR* to Ppermto recover the full image corresponding to thebpro
The above derivation is indirect. It is also possiti construct a proof that uses the
densities directly ([6] pp 217-218). Also note that well as the mean, the covariance matrix

of the estimated data has been derive@gs— Z,,%,,%,,. This could be used to explore the

principal components of variation, i.e. the modesvhich the real values are likely to differ
from the estimate. We do not pursue use of theitiondl density covariance further here.

2.2 Geometric interpretation of the estimation.

Figure 1 illustrates the estimation of a missindugain two dimensions. The geometric
interpretations it suggests applyrirdimensional space, namely: (a) The use of the ¢afiea

of the conditional density is equivalent to finditige point where the known subspace is
tangent to an equivariance contour, or, equivaterfihding the minimum Mahalanobis
distance from the known subspace to the class nfbarGiven a particular known subspace
(i.e. a particular distribution of pixels in theope), the derivation of the missing values is a
linear transformation. (c) It is important to haavdull n-dimensional covariance matrix for the
distribution. Were the method to be applied in mg@pal component subspace, for example,
the missing values would be estimated by refledtindpe principal components. This will lead
to large errors when the retained principal comptsare near parallel to missing value axes.
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Figure 1: lllustration of estimation for a 2D dibtition

2.3  Applying conditional estimation to therecovery of missing datain
faceimages

Although the focus of this paper is the recovergepths from greylevels, we briefly illustrate
the use of conditional density estimation forfiifiin missing or damaged data in images.



Figure 2 shows the mean of a training set of 23288 face images together with the
individual pixel variances (i.e. the diagonal o thcatter matrix). The faces are modelled as a
multivariate normal distribution using the sampleam as maximum likelihood estimate of the
distribution mean, and with the covariance matskmeated as described in Section 4 below
(and, more fully, in [5]).

Figure 2: Sample mean and pixel variances for a 38 face-image training set
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Figure 3: Example recovered pictures by estimdtiom pixels extracted by probes

Figure 3 shows a table of pictures recovered byicgifmn of equation (7) to sets of probe
pixels from face images. Five original test imagesne of which were in the training set) are
shown along the top of the figure, while six diffet probe patterns are shown down the left.
In the probe images, white pixels represent paised in the probe. The dimensionalitys
38x38 = 1444, while the number of poingsin the probe is as follows: (a) the probe
subsamples the image at regular intervats,100 =n/14, (b) the probe subsamples the image
at coarse regular intervals,= 49 =n/29, (c) the probe is a fovea-like logarithmic apip =
104 =n/14, (d) the probe consists of all the face exd¢bptright-hand trianglep = 1083 =
3n/4, (e), the probe consists of the whole face exttepeyesp = 1015 = #/10, (f) the probe
consists of the whole face except the mouth regien1015 = ®/10. Note that the known data
in every original probe is taken directly from attenage and is not filtered.

Figure 3 shows that recovery is possible no mattext the probe. Each additional pixel
in the probe provides additional data about howrétmevered picture should diverge from the



mean, but the divergence is conservative. For el@amprow (b), the recovered faces are all
plausible though blurred, and reflect the lightargl pose of the original. So far as identity and
expression are concerned, however, they tend teasaml mean, as would be expected given
the dimensionality requirements for identificatiamd expression analysis [7]. Reconstructions
improve with increasing probe size, though wherdliere are large areas missing, the fill-in
again has the property of being appropriate in bgglbbmetry and shading and therefore
plausible, but neutral so far as expression is eored.

3 3D photos for human recognition

The accuracy of human face recognition from sindietpgraphic images as on passports,
driving licenses, etc., is surprisingly low, as d&strated strikingly by Kempt al [8]. Here,

six subjects in the environment of a supermarkeevesked to be alert for fraudulent use of
credit cards. A test set of volunteers used creditls with photographic ID. 35 percent of
cards with significant variation between image hrdrer were accepted, as were 64 percent of
cards with similar but different faces to thosehaf bearer. 14 percent of non-fraudulent cards
were rejected.

Part of the reason for this poor performance igeletl to be that in many practical cases
the faces being recognised are not well known ¢oadihserver [9]. This is significant as with
only one viewpoint to compare with a testing vighe observer’s perception of the ground
truth (the person in the photo) is heavily reliapbn the environmental conditions when the
2D image was taken — lighting, pose, and the presef any transient features (spectacles,
hats, etc) at the time. This is not such a signifigagoblem when the face is already known by
the observer, as familiar faces are recognised marerately than unfamiliar faces under most
circumstances. Familiarity appears to compensatedigtracting influences that could be
considered external. Two of these are significanbfo purposes:

1. As a face becomes more familiar, the observer besomore adept at remembering,
and therefore using as recognition cues, the ‘matérfeatures of the face — that is, features
such as eye separation, mouth width, etc., whiemat necessarily immediately apparent, but
which are highly distinctive between individuals.skefamiliar faces are recognised by using
more obvious, large scale features, such as higiydfiycial hair, spectacles, etc, which are
readily apparent, highly distinctive when compatedhe average face, and also potentially
highly misleading as they are both easily changed do not distinguish between — for
example — all people with the same hair colour styl® very effectively.

2. As a face becomes familiar, more views of the famestored and associated with the
identity. In this model, transient features (sushhairstyle and facial ornaments) also become
less significant, though for different reasons.d{¢he presence or absence of, say, spectacles,
becomes irrelevant as the observer associatesstaitfs to the person in question. The more
significant element of this recognition processhie ability of the observer to recognise the
subject under varying lighting conditions and ifffetient poses as images of the subject in
increasing numbers of different poses and conditame stored in the associative memory of
the observer. Troje and Kersten [10] show the siganice of this process effectively. Here,
subjects are presented with a selection of famiaes (close colleagues) from a variety of
angles along with an image of their own face (whiaky are familiar with in the frontal view)

in profile. The speed at which they recognised @rdectly named the faces was recorded, and
showed while other familiar faces could be recogghiequally quickly independent of view,
the subject’s own face was consistently recognisece slowly in profile than in frontal view.
Troje concludes that this is because although wdaandiar with our own faces in the frontal
view (as from our reflection), we rarely see oumadface in profile, and so are less primed to
recognise it.

It has long been understood that familiar and uiifanfaces, as subsets of familiar and
unfamiliar objects, are recognised so differentigttcompletely different memory processes
are used — familiar using semantic memory, and mifite using episodic memory. This
makes it difficult to draw conclusions about onpe&yof recognition from the other, as both



have distinct and very different properties [11dwéver, we can approach the problem from a
different angle: we now have a list of externaltmistors which make unfamiliar face
recognition rates poorer than familiar recognitrates. If these distractors could be in some
way removed, then recognition should be less diltfic

A further, very significant, interpretation of ti&oje study [10] is that recognition is
based on a collection of views, rather than a nhé&amodel of a face. If a 3D mental model
were used, recognising a familiar face from différangles should have no impact upon
performance, whereas recognition based on a coleatf views (akin conceptually to
searching through a photo album of many views ofaadidate before deciding upon
recognition) will degrade when a familiar face resented in a novel orientation. Therefore,
the use of a virtual 3D model should provide fumadlity not available implicitly to the
human recognition process.

A natural extension of the study by Troje, and edléhe concept of pose as a problem for
unfamiliar face recognition, is to posit that ifface is unfamiliar then pose, lighting and
external feature changes will have a disproport®irapact on the observer’s identification of
the face. Several studies [12,13] have suggestadttanges in pose have a detrimental effect
upon recognition though Troje and Bulthoff [14] gegt that the training view provided is
significant, and the testing view is unimportarite-, with a good training view, any change in
pose becomes unimportant. [15] demonstrates tlaaigets in illumination direction can hinder
identification, while Liu and Chaudhuri [16] suppotite view that facial structure is
determined principally from shading — not sterespsiwhich suggests that lighting has a
strong effect upon our perception of face shapesoAdf note is the finding [17] that
perspective distortion caused by camera distantéaae a severe effect upon recognition.

In subjective tests we have shown that both lightind pose changes do indeed have an
impact on fully textured 3D facial masks, lightifgging greater but pose being far from
insignificant. To summarise briefly, test subjestsre exposed to a set of twenty training
faces, in a random order, posed either facing déineeca or looking off at approximately twenty
degrees, for five seconds each. Lighting for eachginvaried between sources to the lower
left or upper right of the face. The same twentyefaall shown with either the alternate pose,
lighting or both relative to the training image wethen shown to the subjects mixed with
twenty novel faces, rendered under the same rarfgeonditions. After testing, a
distinctiveness survey was used to remove unusdatinctive faces from the results. As can
be seen in table 1, both pose and lighting chapges a significant problem for recognition.
Further, with a compound change in both lighting aose correct identification drops to less
than 60% after normalising for the positive or nagabias of each test subject.

Correct False Negative Normalised | Normalised
Correct False Negative
Same Lighting, Different Pose 74.50% 25.50% 77.38% 23.44%
Different Lighting, Same Pose 60.00% 40.00% 72.07% 33.41%
Different Lighting, Different
Pose 52.88% 47.13% 59.20% 43.52%

Table 1: Recognition of faces in different poses lggitting conditions

We conclude, therefore, that adjusting pose ariidjfloting can significantly degrade the
ability of an observer to correctly identify an anfiliar face. If a full, accurate 3D model of
the face in question were provided, this degradatiay be ameliorated by mapping the initial
2D image onto the model, re-positioning and retligh the model to conform to any given
environmental test conditions and re-renderingva 2B image. For example, a face caught on
camera in profile may be more accurately companga avpassport photo by applying the full
frontal passport image to the 3D model of the passpwvner’'s head and rotating to a profile
view, re-illuminating to match the conditions iretkest scene. Further manipulation, such as



the addition or removal of spectacles, beard, ledts,are also possible as is the adjustment of
perspective distortion upon the model. While thagginot confer any form of familiarity with

a novel face, which would be the ideal method gbriowing recognition, we suggest that the
use of a well-fitted 3D model would allow us to e many of the distracting factors that
cause significant degradation to unfamiliar faceogmition, in essence trying to boost the
performance of unfamiliar recognition by providigpme of the empirically apparent
functionality of the familiar face recognition pess.

People do not carry laser-scanned 3D models ofr tbein heads but only 2D
photographs. Hyde and Robinson [18] suggest thaktis a useful correlation between the
greyscale information in a standard passport gfiyteto and a depth map of the face which can
be exploited in an application-specific coding snke We propose that the depth information
for a face could be estimated from the greyscalerimation present in a 2D image with
sufficient accuracy to provide a better 3D modeaintthe mean face, and allow the re-posing
and re-illumination of a 2D image. In the conditimlensity estimation process described in
section 2, we have a mechanism for doing this. irrgiimages consisting of greyscales and
depths will be used to estimate a regularized nbmaglel for faces. Greyscale faces will then
be used as probes to recover all the missing aépténsions.

4 Covariance matrix estimation

Robinson [5] reviews methods for covariance matbstimation in the context of face
classification and detection, then proposes amastir of the form:

L(a,h)=aS +(1-a)Sua + A (8)
where X, (a, ) is the estimated coefficient matrix for class, is the scatter matrix derived

from a subset of the training samples of clgs$,, is the scatter matrix of all available

training samples over all classes amr are regularization parameters estimated by
classifying the remainder of the training samplesdiassi and choosing ther, £ that give

best performance. The estimator in [5] includeshiertregularization parameteng which
adjust the volumes of each class, again by maxmgizlassification performance. In our
context, we have a single class Sp=S and g and J; have no effect. The estimator
therefore reduces to

Z,(B)=S +A (9)

In contrast to earlier regularization methods (E.6,20]), the estimator of [5] optimizes
its parameters according to the application. Theeefduring training we consider the
estimation of missing data as a recovery problethsaarch for th@ that produces the average
best estimate during a training phase using sammages with known depths.

The data available to us for the 3D face estimatimmprises some 740 laser scanned
images from the University of Notre Dame biometritatabase. This database contains
multiple images of some subjects in slightly diffier poses. In order to provide fair test
images, 40 were removed from the set. These 40 sedeeted such that no other images of
any of the subjects in the control set were presettte remaining 700 training images. The
3D models were automatically converted into deptiprmages by filtering the images to
remove noise caused by surface reflectance peaich whn cause highly inaccurate readings
from a laser scanner, and then centring the pdasest to the camera. It can be assumed that
all images are facing forwards, so this nearesttpisi always the nose. This is verified by
checking that the image has approximately the sameunt of non-zero data to both the left
and right of the peak. A set-size sample windowdt about this central peak, cropping the
model and texture information to the face portiérih@ images only. A backplane is then set
by scanning through all models to determine theastebackplane which does not result in
data loss. The texture and depth maps are thenajedersing a rendering library (OpenGL) to
return depth and colour information for specifiednple points.

total ?



As so few training samples are available relativehe size of the space of the problem,
we have resized the images to 38 by 50 pixel gedgsexture and depth maps, limiting the
dimensionality of the space to 3800 dimensionstilhing images are mirrored to double the
number of training samples available to 1400.

Optimization was performed by sweeping through ealtorp from 1 to 17500. The
covariance matrix was computed using a “leave-arntttoethod — that is, omitting one of the
training images, computing the covariance with timainder, regularising using the current
control value, calculating the projected depth nh@ael hence a mean square error. As several
subjects in the set are represented in multiplgésaall instances of a given test subject were
omitted from the training set when testing usingnaage of that subject. As shown in figure 4,
a clear minimum is evident in the results, at agipnately 4500.
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Figure 4. Average reconstruction error vs paranfetirring training

In order to better understand the impact of varying size of the training data, we have
applied a simplified method of parameter estimatiorcases where the scatter matrix was
estimated from 175, 350, 525 and 700 images. I ¢kperiment, we simply evaluated the
optimalp for the forty test images. Table 2 shows the result

Number of trainingl 175 350 525 700
images

Optimalp for the test set| 20000 28889 11329 12210
Average MSE over the 549 546 479 495
test set at thig

Table 2. Optimal parameter values for restricteihitng sets

In each case we also constructed the equivalefigufe 4. The graph’s shape is always the
same: there is an initial rapid improvement in parfance as the parameter value is increased.
This then reaches a minimum with a very shallow eurand then degrades towards the
standard deviation of the training set (i.e. therage distance between the training samples
and their mean). It will asymptotically approacksthalue, which corresponds to the use of the
mean depth for recovery, fgends to infinity. While the estimation improveseo the mean in

all cases, improvement is clearly greater with moegning samples. Th@ vyielding the
optimal performance decreases as the number ofleaimgreases.



5 Recovery of depthsfrom test images

Application of an estimation transform using theim@l § value of 4500 determined in section
4 to the forty test images not used in traininddgeaesults which consistently outperform the
use of the mean depth image. Figure 5 shows thaveey via the conditional density provides
on average an estimation with less than half th&MfSthe mean depth. As shown in figure 6,
the estimation provides a satisfactory model farinsa 3D render of the face. The top four
rows of figure 6 are representative examples, whigebottom row shows the worst case
(image 9 in figure 5). The original depths in tmgge were distorted and that has contributed
to the poor MSE, but the reconstruction is alsoetthjely poor, probably because of the lack
of images of similar framing and pose in the tnajnset.
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Figure 5. Depth recovery accuracy as Mean Squagg ferr 40 test images

LJ |

Ag

Greyscales Original Recovered Original Recovered Rendered with
depths depths rendered rendered mean depths

398
dd

4}
L
|
L

Figure 6. Example depth reconstructions




6 Conclusions

We have applied conditional distribution estimatiorthe recovery of missing data in images.
In particular, we have shown how accurate estimatdace depths are recoverable from face
photos. In future work we will use the depth dataelight the photographic information, and
test the extent to which this aids human recogmitio
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