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Abstract

Deformable or active contour, and surface models are powerful image
segmentation techniques. We introduce a novel fast and robust bi-directional
parametric deformable model which is able to segment regions of intricate
shape in multi-modal greyscale images. The power of the algorithm in terms
of computation time and robustness is owing to the use of joint probabilities
of the signals and region labels in individual points as external forces guiding
the model evolution. These joint probabilities are derived from a Markov–
Gibbs random field (MGRF) image model considering an image as a sample
of two interrelated spatial stochastic processes. The low level process with
conditionally independent and arbitrarily distributed signals relates to the ob-
served image whereas its hidden map of regions is represented with the high
level MGRF of interdependent region labels. Marginal probability distribu-
tions of signals in each region are recovered from a mixed empirical signal
distribution over the whole image. In so doing, each marginal is approxi-
mated with a linear combination of Gaussians (LCG) having both positive
and negative components. The LCG parameters are estimated using our pre-
viously proposed modification of the EM algorithm, and the high-level Gibbs
potentials are computed analytically. Comparative experiments show that the
proposed model outlines complicated boundaries of different modal objects
much more accurately than other known counterparts.

1 Introduction

Deformable or active model, is a curve in a 2D digital image or a surface in a 3D image
that evolves to outline a desired object. The evolution is controlled by internal and external
forces combined, together with user defined constraints, into internal and external energy
terms, respectively. Introduced first by Kass et al. [1], the models gave rise to one of
the most dynamic and successful research areas in edge detection, image segmentation,
shape modeling, and visual tracking. By representation and implementation, deformable
models are broadly categorized into parametric (e.g. [1, 2]) and geometric (e.g. [3, 4])
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classes. In this paper, we focus on parametric deformable models that form a parametric
curve and move it toward an object boundary.

Performance of the deformable model depends on proper initialization, efficiency of
the energy minimization process, and adequate selection of the force functions and energy
functions. The original iterative minimization in [1] is based on a closed-form solution
of Eulerian differential equations specifying the desired minimum. But it turns out to be
unstable and usually gets trapped into local minima. Amini et al. [5] point to shortcom-
ings of this minimization process in [1] and improve it by representing a contour as a
linked chain of control points and minimizing its total energy by discrete dynamic pro-
gramming. This approach allows for rigid constraints on the energy function that make
the minimization more stable. But still its control parameters must be adjusted very care-
fully, and the process remains too time consuming. Time complexity of a more advanced
greedy algorithm proposed by Williams and Shah [6] is linear with respect to both the
number of control points and the neighbors of each point which are taken into account for
energy minimization. It is much more stable and is simultaneously more than an order of
magnitude faster than the previous techniques.

To more closely approach a complicated boundary with concavities, Grzeszczuk and
Levin [7] control snake evolution by simulated annealing. In principle the latter eventu-
ally reaches the global minimum of energy and can escape local traps. But in practice,
as emphasized in [8], simulated annealing typically stops very far from the global mini-
mum. Alternative minimum-cut graph algorithms in [9] guarantee a close approximation
of geodesic contours in 2D (or minimal surface in 3D) images having the minimum global
energy under an arbitrary Riemannian metric of a set of boundary conditions. But both
these minimization processes are extremely slow. A faster precise boundary approxima-
tion proposed by Xu and Prince [2] introduces a gradient vector flow (GVF) as a new
external force. Due to its larger capture range, the GVF allows a contour to move into the
boundary concavities. A bi-directional deformable model in [4] combines the geodesic
contour and the GVF.

In spite of good segmentation results for objects of relatively simple shapes, the above
conventional deformable models have serious drawbacks. Most of them are slow com-
pared to other segmentation techniques, and the model evolution frequently stops well
before approaching a complicated object boundary with concavities. Also, to initialize
the model, typically a closed curve has to be interactively drawn near the desired bound-
ary, and this manual step hinders their use in many applications.

In this paper we propose joint probabilities of signals and region labels in individual
image points as a new class of external forces to guide the model evolution. This class
overcomes the above problems in the case of multi-modal images where each object of
interest relates to a separate mode of the empirical marginal signal distribution. We call a
model with the probabilistic external forces a stochastic deformable model. Its advantages
over more conventional models are in the automated initialization, insensitivity to the
initialization, and ability to follow complex shapes with concavities.

2 Parametric deformable 2D contours

A conventional parametric deformable 2D model, or snake, is a curveΦ =
(
φ(τ) =(

u(τ),v(τ)
)
;τ ∈ T

)
in planar Cartesian co-ordinates(u,v) whereτ is the continuous or



discrete index of a contour point andT is the index range. The deformable model moves
through the spatial image domain to minimize the total energy

E = Eint +Eext =
∫

τ∈T
ξint

(
φ(τ)

)
+ξext

(
φ(τ)

)
dτ (1)

whereξint
(
φ(τ)

)
and ξext

(
φ(τ)

)
denote the internal and external forces, respectively,

that control the point-wise model movements. The total energy is the sum of two terms,
the internal energy keeping the deformable model as a single unit and the external one
attracting the model to the region boundary. The internal force is typically defined as
ξint

(
φ(τ)

)
= α|φ ′(τ)|2 + β |φ ′′(τ)|2 where weightsα andβ control the curve’s tension

and rigidity, respectively, andφ ′(τ) andφ ′′(τ) are the first and second derivatives ofφ(τ)
with respect toτ.

Typical external forces designed in [1] to lead an active contour toward step edges in
a grayscale imageY are:

ξext
(
φ(τ)

)
= −|∇Y(φ(τ))|2 or

−∣∣∇[
G(φ(τ))∗Y(φ(τ))

]∣∣2 (2)

whereG(. . .) is a 2D Gaussian kernel and∇ denotes the gradient operator. But both
these and other traditional external forces (e.g. based on lines, edges, or the GVF) fail to
make the contour to closely approach an intricate boundary with concavities. Moreover,
due to high computational complexity the deformable models with most of such external
energies are slow compared to the other segmentation techniques.

3 Stochastic deformable 2D contour

The above drawbacks are overcome to a large extent when joint probabilities of image
signals and region labels in individual points along the deformable model are used as
new external forces. The probabilities are easily derived from a simple MGRF model
of multi-modal greyscale images. The model merges two interrelated spatial stochastic
processes. The low level process is a conditionally independent random field of image
signals (gray levels) with arbitrary probability distributions of signals. The distributions
differ for different regions but are the same for each pixel in the region. By assumption,
their mixed distribution for the whole image is multi-modal, each mode corresponding
to one of the regions. This process relates to the observed image whereas a hidden map
of regions is represented with the high level MGRF of interdependent region labels. The
interdependence is restricted to only pairs of labels in the nearest 8-neighborhood of each
pixel. By symmetry considerations, Gibbs potentials are the same for all pairs and regions,
depending only on whether the labels are equal or not in the pair, and thus have only two
values:γ for the equal and−γ for unequal pairs of labels.

To compute the forces, the low-level model is identified for a given imageY by the
LCG-approximation of the conditional marginal signal distributions in each region with
the modified EM-algorithm proposed in [10]. The estimated distributions allow us to get
a region mapX for the imageY by classifying the individual pixels. Then the high-level
model is identified for the region mapX using the analytic potential estimate derived in
accordance with [11]. In our case,γ = K2

(K−1)

(
feq(X)− 1

K

)
whereK is the number of



modes, or regions in the imageY and feq(X) denotes the empirical frequency of the equal
labels in the pairs of the nearest 8-neighboring pixels in the mapX. The total energy
of the active contour is minimized by exploiting the greedy strategy [6]. The detailed
description of these force computations has been given in our technical report [12].

Let k andq denote a region label and a gray level, respectively:k = 1, . . . ,K. The
stochastic external force for each control pointφ(τ) of a current deformable contour
evolving in a regionk∗ is defined as follows:

ξext
(
φ(τ)

)
=

{ −p(q|k)p(k) if k = k∗
p(q|k)p(k) if k 6= k∗

whereq = Y
(
φ(τ)

)
andk = X

(
φ(τ)

)
. For each iteration of the greedy algorithm, the

neighborhood of each control pointφ(τ) is analyzed, and the neighboring pixel ensuring
the smallest total energy becomes the new position for that control point as shown in
Fig. 1. The iterations continue until the whole deformable model (that is, all its current
control points) do not change anymore. The proposed algorithm of segmenting the region
k∗ is as follows:

1. Collect the empirical gray level distribution for a given imageY and identify the
low level MGRF model [10] .

2. Use the Bayesian classifier to get the mapX and identify the high level MGRF
model (i.e. findγ).

3. Use the pixel with the maximum joint probabilityp(q,k∗) as an automatic seed to
initialize the deformable contour.

4. For each control pointφ(τ) on the current deformable contour, calculate sign dis-
tances indicating exterior (+) or interior (−) positions of each of the eight nearest
neighbors w.r.t. the contour as shown in Fig. 1.

5. Check the labelk = X(φ(τ)) for each control point:

(a) If the point is assigned to the regionk = k∗, then

i. Estimate the region labels for its neighbors such that they have the(+)
distance.

ii. If some of these sites are also assigned to the classk∗, then move the con-
trol point to the neighboring position ensuring the minimum total energy
(i.e., expand the contour).

iii. Otherwise, do not move this point (the steady state).

(b) If the point is assigned to the regionk 6= k∗, then

i. Estimate the region labels for its neighbors such that they have the(−)
distance.

ii. Move the control point to the neighboring position ensuring the minimum
total energy (i.e. contract the contour)

6. If the iteration adds new control points, use the cubic spline interpolation of the
whole contour and then smooth all its control points with a low pass filter.

7. Repeat steps 4, 5, and 6 until no positional changes in the control points occur.



Figure 1: Greedy propagation of the deformable model.

4 Experiments and conclusions

To assess robustness and computational performance, the proposed model has been tested
on images of different objects with intricate shapes such as “Sea star” in Fig. 2(a). The im-
age has only two dominant modes (K = 2): the darker background and the brighter object.
The low level model is identified by the modified EM algorithm [10]. Figures 2 (b)–(d)
show, respectively, the LCG approximation of the mixed empirical bi-modal distribution
of signals for the image, the individual components of the LCG, and the LCG-models for
each region. Pixel-wise Bayesian classification based on this latter model produces the
initial region map for the “Sea star” image. Then the Gibbs potentials are analytically
estimated [11] (in this caseγ = 2.17), and the identified MGRF model is used to select
the point with maximum joint signal/label probability to initialize the deformable con-
tour. Figure 3(a) shows the initialization with a circle having the radius of 20 pixels from
the maximum probable point. Figure 3(b) shows the “Sea star” region segmented with
the proposed deformable model. The segmentation error is 0.0036% with respect to the
ground truth in Fig. 3(c).

Figure 4 compares results of a popular geometric model, the geodesic active contour
(GAC) [13], and our parametric model for a hand-shaped object. Our model preserves
better the topology of the shape. Because two middle fingers are very close to each other,
the initial curve splits into two separate curves so that the final GAC consists of a larger
outer curve and a disjointed smaller inner curve shown in Fig. 4(a). Our segmentation
in Fig. 4(b) keeps the separate boundary of each finger, and the final contour correctly
reflects the shape of the hand.

Figure 5 highlights the advantages of our stochastic model over two conventional
parametric deformable models by comparing segmentation results obtained by the pro-
posed approach and with the greedy algorithm using the conventional deformable model
proposed in [1] and with the like algorithm proposed in [2]. The two latter deformable
models involve the image gradient (DMG) and the gradient vector flow (GVF), respec-
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Figure 2: “Sea star” (a), LCG approximation of the empirical distribution (b), individual
Gaussians (c), and LCG region models (d).

(a) (b) (c)

Figure 3: Initialization of the deformable contour (a), our segmentation with the error of
0.0036% (b), and the ground truth (c).



(a) (b)

Figure 4: GAC [13] (a) and our (b) segmentation of “Hand”.

tively, as an external force. Figure 6 adds more results obtained by our approach for
objects of complicated shape.

These and other experimental results show that the proposed stochastic deformable
model outperforms other known deformable models in terms of both the overall accuracy
and processing time.
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Image Our model DMG [1] GVF [2]

e= 1.21% e= 35.1% e= 15.2%
t = 135sec t = 420sec t = 275sec

e= 0.0023% e= 32.1% e= 8.09%
t = 121sec t = 410sec t = 260sec

e= 0.0009% e= 31.8% e= 8.6%
t = 146sec t = 487sec t = 296sec

e= 0.0036% e= 41.1% e= 12.9%
t = 152sec t = 579sec t = 290sec

e= 0.0027% e= 66.7% e= 13.4%
t = 198sec t = 610sec t = 360sec

Figure 5: Comparative results on various shapes (e– the error;t – time for segmentation;
final object contours are shown in red).
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Figure 6: More results obtained by our approach; final object contours are shown in red.
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