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Abstract

In this paper we address the problem of projective reconstruction for de-
formable objects. Recent work in non-rigid factorization has proved that it is
possible to model deformations as a linear combination of basis shapes, al-
lowing the recovery of camera motion and 3D shape under weak perspective
viewing conditions. However, the performance of these methods degrades
when the object of interest is close to the camera and strong perspective dis-
tortion is present in the data.

The main contribution of this work is the proposal of a practical method
for the recovery of projective depths, camera motion and non-rigid 3D shape
from a sequence of images under strong perspective conditions. Our ap-
proach is based on minimizing 2D reprojection errors, solving the minimiza-
tion as four weighted least squares problems. Results using synthetic and
real data are given to illustrate the performance of our method.

1 Introduction

The simultaneous recovery of camera motion and shapes from multiple images has been
one of the fundamental problems in computer vision in recent years. Numerous tech-
niques have been proposed to solve the structure from motion problem and one of the
most successful approaches has been Tomasi and Kanade’s factorization algorithm [11]
developed in the early 90’s. The key idea of their method is the use of rank-constraints
to express the geometric invariants present in the data. This allows the factorization of
the matrix containing the image feature tracks (measurement matrix) into its shape and
motion components. Tomasi and Kanade’s algorithm works for rigid scenes viewed un-
der weak perspective conditions but the algorithm was later extended to work with more
general camera models [8, 13].

It was only recently that the factorization framework was extended to deal with non-
rigid objects. Most biological objects and natural scenes vary their shape, for instance,
a tree, a moving animal or a face which is undergoing different facial expressions. The
main challenge in non-rigid structure from motion is to disambiguate the contributions to
the image motion caused by the shape deformations and the rigid motion.

Bregler et al. [2] were the first to extend the factorization framework to the non-rigid
case. They introduced a representation for non-rigid 3D shape where any configuration
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can be expressed as a linear combination of basis shapes that define the principal modes
of deformation of the object. They proposed a factorization method that exploits the rank
constraint on the measurement matrix and enforces orthonormality constraints on camera
rotations to recover the motion and the non-rigid 3D shape. Torresani et al. [12] extended
the method of Bregler et al. to a trilinear optimization problem by minimizing 2D im-
age reprojection error using Alternating Least Squares. Brand [1] proposed an alternative
optimization method and added an extra constraint on the basis shapes: the deformations
should be as small as possible relative to the rigid shape. Xiao et al. [16] later proved
that the orthogonality constraints were insufficient to disambiguate rigid motion and de-
formations. They identified a new set of constraints on the shape bases which, when used
in addition to the rotation constraints, provide a closed form solution to the problem of
non-rigid structure from motion. However, their solution requires that there be K frames
(where K is the number of basis shapes) in which the shapes are independent. Recently,
Del Bue et al. [3] have proposed a further non-linear optimization step that minimizes
image reprojection error.

Note that all these methods assume the case of images acquired under weak perspec-
tive viewing conditions, useful when the relief of the object is small compared to the
distance to the object but problematic when the images are taken at closer distances and
perspective distortions appear, such as when using webcams.

The main objective of this paper is to extend non-rigid factorization to the full perspec-
tive camera model. Many works have addressed projective factorization [13, 8, 15, 4, 10]
but they assume that the objects in the scene are rigid. The rest of this work is orga-
nized as follows: The notation we use to formulate the problem is described in Section 2.
In Section 3 we present the factorization framework used to recover projective depths,
camera motion and 3D non-rigid structure. Some results using synthetic and real data
are described in Section 4 to illustrate the performance of our method. Finally we give
concluding remarks and the future direction of our work.

2 Background

2.1 Rigid Projective Factorization

The perspective projection equation models the projection of a 3D point X = [Xj,Yj, Zj, 17
on an image as

AijXij = PiX;] N
where Xjj = [Uij, Vij, 1]7 are the image coordinates of point j in the it" view, A; j is the pro-
jective depth of the point and P; is a 3 x 4 projection matrix. If we consider the projection
of n scene points on M views we can construct a (3mx n) scaled measurement matrix

AiXir ... AinXin
W= : : ()
AmiXmi .. AmnXmn
which contains the image coordinates of all the points in all the views scaled by their

projective depths. The matrix W can also be defined as the product W = PX where P =
[PIP]...PMT is the (3mx 4) matrix which gathers the projection matrices Pj in all m



frames and X = [X;,Xy,...,Xp] is the (4 x n) shape matrix that contains the projective
coordinates of all n scene points.

Since P and X are at most rank 4, the rank of the scaled measurement matrix W is
constrained to be r < 4. This constraint can be easily imposed by taking the Singular
Value Decomposition of the measurement matrix and truncating it to rank 4. Therefore, if
the projective depths {A;j } were known it would be possible to factorize the measurement
matrix into two rank-4 matrices, P and X. However, the result of the factorization would
not be unique since any invertible (4 x 4) matrix Q and its inverse can be inserted in the
decomposition leading to the alternative camera and shape matrices {PQ} and {Q~!'3}.
Therefore, without assuming any additional constraints on the cameras or on the scene
the reconstruction will be up to an overall projective transformation [6]. In general, the
true projective depths Ajj are unknown so the essence of projective factorization methods
is to deal with the estimation of projective depths A j in order to obtain a measurement
matrix which could be decomposed into camera motion and shape in 3D projective space
using the rank constraint described above.

Various projective factorization methods have been proposed so far for the case of
scenes with rigid objects. The first work to extend Tomasi and Kanade’s algorithm to the
perspective camera case was by Sturm and Triggs [9] who proposed a non-iterative fac-
torization method for uncalibrated cameras. The method solves for the projective depths
by calculating the fundamental matrices and epipoles between pairs of views. The over-
all accuracy of the algorithm depends greatly on the estimation of the epipolar geometry
as large errors in the fundamental matrix would affect the measurement matrix and re-
sult in errors in the shape and motion. On the other hand, Han and Kanade [4] perform
a projective reconstruction using a bilinear factorization algorithm without calculating
the fundamental matrices. Heyden’s method uses a different approach. It relies on us-
ing subspace constraints to perform projective structure from motion [7]. Ueshiba and
Tomita [15] presented a method by which the projective depths are iteratively estimated
so that the measurement matrix is made close to rank 4. The authors also derived metric
constraints for a perspective camera model in the case where the intrinsic camera param-
eters are available. Recently, Tang and Hung [10] proposed an iterative algorithm for
projective reconstruction based on minimizing the 2D reprojection errors. They show that
2D reprojection errors can be approximated by weighting each term of SVD reprojection
errors by an appropriate weighting factor.

2.2 Non-rigid Factorization

Tomasi and Kanade’s factorization has recently been extended to the case of non-rigid 3D
structure, assuming affine viewing conditions [2, 1, 12, 3]. The model used to express the
deformations is point-wise and the 3D shape of any specific configuration S is approxi-
mated by a linear combination of a set of d basis shapes Sk which represent the principal
modes of deformation of the object:

d
S= Zlksk S,8¢ € g3xn ke O 3)
k=1

where each basis shape Sy is a 3 x n matrix which contains the 3D locations of n object
points for that particular mode of deformation. The shape is then projected onto an image



frame i giving N image points:

[ X1 o Xin ] =R, (kinksk) 4)

where 2D and 3D points are expressed in non-homogeneous coordinates referred to the
centroid of the object and R; is the 2 x 3 orthographic camera matrix for a specific frame
i. If all n points are tracked in mimage frames we may construct the 2m x N measurement
matrix W whose rank is constrained to be at most 3d, where d is the number of deforma-
tions. This rank constraint can be exploited to factorize the measurement matrix to obtain
the 3D pose, configuration coefficients and a pre-specified number of 3D basis shapes. A
summary of existing methods was given in section 1.

3 Our Pergpective Factorization Framewor k

If we now assume a perspective projection model for the camera, the 3D shape will be
projected onto image frame i according to the following equation:

d
[ AitXi1 ... AinXin } =Pj <Z |iksk> Sk € g4xn lix € O. (®))
k=1

Here, Ajj are the projective depths, X;j are the image coordinates of the n 3D points ex-
pressed in homogeneous coordinates, P; is the 3 x 4 perspective projection matrix corre-
sponding to frame i and each Sk = [Sk; ... Skn| is now a 4 X N matrix which contains the
3D locations in homogeneous coordinates of n object points for the ki mode of deforma-
tion. We can now write the equation for the perspective camera case as:

AMiXi1 .- AnXin [11P1 ... lgPi S
W= L= : : (6)

)\m]Xm] e )\mann Imlpm e In‘[jpm Sd
Clearly, the rank of the measurement matrix is at most 4d for the projective case. If the
projective depths Ajj; were known the measurement matrix could be decomposed into the

motion and shape matrices using SVD. However, our strategy is to compute the projective
depths and the 3D shape and motion simultaneously.

3.1 Estimating Projective Depthsand Non-rigid 3D Structure

In order to estimate projective depths Ajj we propose to minimize the following cost func-
tion:

mn B d r R 2
min \ﬁjH)\inij —B ikSij (7
f’éi?\i,Jzzl kZl

which expresses the SVD reprojection error for each point in each view weighted by a
factor yij = 1/(Aij)?. The purpose of this factor is simply to approximate the residual for
each point to the 2D image reprojection error || Xij — Xij [|*. (See [14, 10] for details).



Since this is a non-linear minimization on B, §, L and A it can be expressed as four
different WLS problems where B, §, £ and A are evaluated one by one iteratively while
keeping the others unchanged. Appendix A details how we rearrange the general ex-
pression defined in equation (6) to solve these minimizations in a least-squares sense.
Note that our work can be seen either as an extension of Tang and Hung’s projective
factorization [10] to the non-rigid case or as an extension of Torresani et. al’s non-rigid
factorization [12] to the projective case.

In order to ensure good numerical conditioning we work with normalized image coor-
dinates as described in [5]. In terms of the initialization, if initial guesses for Pand§ are
not provided, they are initialized by the rank 4 approximation of {A;jjX;j}. The depths Aj;
are initialized to 1 and the configuration weights can be initialized to small values, oth-
erwise the weight associated to the rigid component can be estimated by an initial rigid
factorization.

4 Experimental Results
4.1 Synthetic data

The synthetic 3D data consisted of a set of 40 random points sampled inside a cube of
size 50 x 50 x 50 units. We used two configurations of the 3D data points: one in which
30 points remained rigid throughout the sequence (including the 8 vertices of the cube)
and 10 were deforming and the second one in which only the 8 vertices of the cube were
rigid while the remaining 32 points deformed. Our aim is to show the performance of
our approach under different degrees of non-rigidity. The deformations for the non-rigid
points were generated using random basis shapes as well as random deformation weights.
The first basis shape had the largest weight equal to 1. Different number of basis shapes
(d =2, 3, 4 and 5) were used to show the performance of the algorithm with respect to
the number of basis shapes. The data was then rotated and translated over 20 frames. The
overall maximum rotation about any axis was 90 degrees.

The 3D data was then projected onto the images using 4 different camera setups vary-
ing the distance of the object to the camera and the focal length to achieve increasing
levels of perspective distortion (Setup 1: z=250, f=1000; Setup 2: z=200, f=1000; Setup
3: z=150, f=800; Setup 4: z=100, f=500). Figure 1 shows an example of a 3D shape
and 3 different perspective views of the synthetic scene using Setup 3. We show results
for increasing levels of Gaussian noise where 0 varied from O to 2 pixels with 0.5 pixels
increments.

Figure 2 shows the r.m.s. 2D reprojection errors expressed in pixels for both configu-
rations of 3D points and for the 4 camera setups with different number of basis shapes and
varying levels of noise. Note that the plots show the mean values corresponding to 5 trials
for each level of noise. Figure 2 also illustrates the 3D reconstruction errors expressed in
percentage relative to the scene size which we defined as the maximum of the X, y and z
coordinates. The 3D error was computed after aligning the projective reconstruction with
the Euclidean 3D model.

The algorithm appears to perform well in the presence of image noise. Note that the
3D reconstruction error is well below 4% even for large perspective distortions (Setups
3 and 4) and for large levels of image noise. The 2D error is also small and it appears
to be of the same order as the image noise. Note also that when the number of basis
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Figure 1: Synthetic sequence. (a) Example of ground truth of the 3D shape. (b)-(d)
Different views of the sequence for z=150 and f=800. These images show the strong
perspective effects present in the 2D data.

shapes increases the 2D error decreases but the 3D error increases. The algorithm usually
converges within around one hundred iterations.

To illustrate the performance of our method, in Figure 3 we compare the recovered
reconstruction with one obtained using an orthographic non-rigid factorization method
which uses bundle-adjustment to recover 3D non-rigid shape and motion. As expected,
the results obtained with the affine factorization are unsatisfactory as it fails to model
the strong perspective distortions. Note that the projective shape was aligned with the
Euclidean 3D model while the affine reconstruction was upgraded to euclidean using
orthonormality constraints on the camera matrices.

4.2 Real data

In this experiment we use real 3D data of a human face undergoing rigid motion while
performing different facial expressions. The 3D data was captured using a VICON motion
capture system by tracking the subject wearing 37 markers on the face. The 3D points
were then projected synthetically onto an image sequence 931 frames long. The size of
the face model was 169 x 193 x 102 units, and the camera setup was such that the subject
was at a distance of 300 units from the camera and the focal length was 600 units so the
perspective effects were significant.

Figure 4 shows front, side and top views of the ground truth and 3D reconstructions
obtained using our projective method for frames 1, 501, 821 and 930. To estimate the
quality of the projective reconstruction, we aligned it with the Euclidean model of the
scene. The number of basis shapes was set to d = 6. The average 2D reprojection error
was 0.49 pixels while the absolute 3D error was 2.71 units. Note that the reconstructed
3D model has a natural looking shape and the deformations model faithfully the different
expressions. However, some extreme deformations are not well recovered. See for exam-
ple the reconstruction of the open mouth in frame 930. In that case the shape of the mouth
is close to the ground truth in the frontal view, but the depth is not recovered accurately.
We repeated the experiment using the same configuration but introducing an error of 0.5
pixels in the original sequence. In that case the 2D reprojection error was 0.79 pixels
while the 3D reconstruction error was 4.6 units.
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Figure 2: 2D error and 3D error curves for each camera setup. Each plot shows the
results obtained using our projective WLS over the sequences with (30/10) and (8/32)
rigid/non-rigid points respectively. Each plot also show the results of the experiments
using different number of basis shapes (2, 3, 4 and 5).
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Figure 3: Example of shape reconstruction. (a) Ground truth. (b) Reconstruction using
the projective method. (c) Reconstruction using the orthographic method.

5 Conclusions

In this paper we have proposed a non-rigid factorization method able to recover camera
motion and non-rigid structure from a sequence of images under strong perspective distor-
tions. The recovery of projective depths, camera motion and non-rigid 3D shape has been
achieved minimizing the 2D reprojection error using an alternate least squares scheme for
the minimization. Our results on synthetic and real data have proved the performance of
our method even for cases with significant deformation and strong perspective effects. A
further nonlinear optimization step by using bundle adjustment could be used in order to
refine the final motion and structure estimates. Furthermore, handling missing data could
be treated simply by deleting the equations referring to the missing points.
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A Solvingthe WL S Minimizations

In this appendix we show different ways to rearrange equation (6) in order to solve the 4
WLS minimization problems described in section 3.1.

e We solve for each Sj (the shape bases associated with each 3D point j) using:

AjXij [11P1 -+ |LigPy
A N AT ®)
)\mjxmj ImiPm - IngPm

e Solving for P; is straightforward rewriting equation (6) as:

d
AijXij =Pi Yy liSkj )
&
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Figure 4: Front, side and top views of the ground truth and reconstructed face. Recon-
structions are shown for frames 1, 501, 821 and 930.

e The following rearrangement of equation (6) allows the recovery of the configura-
tion weights in a least-squares sense:

Ai1Xi1 PiSi1 -+ PiSai li1
: = : : : 10)
AinXin PiSin -+ PiSdn lig

e Solving for Ajj is a straightforward minimization solved in a least-squares sense
directly from equation (6).



