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Jǐrı́ Hladůvka and Katja B̈uhler
VRVis Research Center for Virtual Reality and Visualization

Donau-City-Strasse 1, A-1220 Vienna, Austria
{Hladuvka|Buehler}@VRVis.at

Abstract

The major problem when building shape models by minimising the descrip-
tion length (DL) is the computationally demanding optimisation in a high-
dimensional space.

To speed up the convergence when dealing withdiscretisedcontours, Er-
icsson andÅström [6] have shown how toapproximateand how to exploit
the gradient of the DL.

We derive the gradient of the DL fordifferentiabletraining sets. Addi-
tionally, we propose a class of polynomial reparameterisations that allows us
to avoid numerical approximation of the functions and integrals involved in
computation of the model and of its DL’s gradient, making the whole process
exactand more efficient.

1 Introduction

Deformable models find a variety of applications including segmentation and morpho-
logical analysis. An outstanding class of deformable shape models are statistical models
which attempt to capture patterns of variability found in a class of objects [5].

A major requirement for building of such models is correspondence between the train-
ing boundaries. There are various attempts to automate search for the correspondence.
Recently, algorithms based on minimising the description length of the outcoming model
have established themselves as a gold standard in building of optimal shapes.

When establishing dense point correspondence onns discretisedboundaries, positions
of np points on each boundary are altered until an objective function based on the model’s
description length (DL) is minimised.

If the training shapes are defined asparametric curves[13, 2], we are interested in
correspondence of their parameters rather than in resampling [5]. Each shapeSi is repa-
rameterised by a diffeomorphismRwi of the unit interval and the task is to manipulate the
entire set{Rwi}

ns
i=1 of reparameterisations until the description length is minimised.

Additionally to work of Davies [5] we assume the training boundaries to be differ-
entiable. (If they are not, one can consider, e.g., yet another MDL-based algorithm of
Cham and Cipolla [2] to achieve that.) To speed up the optimisation by gradient-based
techniques, we derive the gradient of DL and propose a class of reparameterisations for
its efficient computation.
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In the next section we recall the continuous MDL models. From section3 onwards we
will assume that the training boundaries are differentiable. We introduce an expression
to compute the Jacobian of eigenvalues of positive (semi)definite matrices and give a
set of expressions to compute theexactgradient of the description length. In section
4 we propose a class of polynomial reparameterisations that allow ananalytic and an
efficientcomputation of integrals involved in the model and its gradient. In section5 we
summarize our concepts in two routines. We conclude in section6 showing performance
of our algorithm on two standard training sets.

2 Continuous MDL Models Revisited

In continuous models, the training boundaries{Si}ns
i=1 are assumed to beD-dimensional

parametric curves defined on the unit interval:

Si : [0,1]→ RD, Si(u) = (Sx1
i (u),Sx2

i (u), . . . ,SxD
i (u))T , u∈ [0,1] (1)

Such curves form an infinite dimensional vector space with the inner product:

Si ·Sj =
∫ 1

0

D

∑
d=1

Sxd
i Sxd

j du (2)

Let Rwi be a diffeomorphism of the unit interval determined bynw weights
wi = (wi1,wi2, . . . ,winw)T :

Rwi(t) : [0,1]→ [0,1] (3)

R′wi
(t) > 0 ∀t ∈ (0,1)

Let W be annw× ns matrix of weights for all shapes. Manipulating its elements will
change the parameterisations of the training shapes. This will have impact on their cor-
respondences, and consequently on their mean, variances and the outcoming statistical
shape model.

In order to assess the quality of the outcoming model, its description length is ad-
dressed. The computation requires spectral decomposition of the training data covari-
ance. As the covariance matrix of continuous shape data would be infinitely large, the
spectral decomposition of a ’dual’, real, symmetric, positively definitens×ns matrixC is
proposed instead [5]. The elementsci j of C areinner (rather than outer) products of the
i-th and thej-th variancesVi(t) andVj(t). Every elementci j is thus influenced by allns

reparameterised shapesSi(Rwi ) and by their continuous mean̄S. Formally:

S̄(t) =
1
ns

ns

∑
i=1

Si(Rwi (t)) (4)

Vi(t) = Si(Rwi (t))− S̄(t) (5)

ci j = c ji = Vi ·Vj =
∫ 1

0

D

∑
d=1

Vxd
i (t)Vxd

j (t)dt (6)

=
∫ 1

0

D

∑
d=1

(
Sxd

i (Rwi (t))− S̄xd(t)
)(

Sxd
j (Rw j (t))− S̄xd(t)

)
dt



Since the training shapesSi are fixed, the elementsci j only depend on the weights. The
matrixC can therefore be seen as a function ofW:

C = C(W), C : Rnsnw→ Rn2
s (7)

OnceC is computed, its spectral decompositionC = ELET is performed, yieldingns

nonnegative eigenvaluesλ1,≥ . . . ≥ λns = 0 on the diagonal ofL , andns orthonormal
eigenvectors{ei}ns

i=1 = E. Vector λ = (λ1, . . . ,λns)
T of the ordered eigenvalues can be

seen as a function of matrixC:

λ = Λ(C), Λ : Rn2
s → Rns (8)

To approximate the description length of the model using eigenvaluesλ 1, several
objective functions have been proposed [7, 9, 5, 4, 14, 15]. In general, such an objective
function is a real function of thens eigenvalues:

O = O(λ ), O : Rns→ R (9)

As an example we recall the recently introduced differentiable objective function of Thod-
berg [14] due to a threshold varianceλc > 0 that reflects the granularity of the training
set:

O(λ1, . . . ,λns) = ∑
λi≥λc

(1+ log(λi/λc))+ ∑
λi<λc

λi/λc (10)

Composition of the functionsO, Λ, andC yields the description lengthDL of the model,
that assesses its quality, hence the underlying correspondence of boundaries:

DL = DL(W) = O◦Λ◦C(W), DL : Rnsnw→ R (11)

To find the optimal model (i.e. the optimal correspondence of the training set), the de-
scription lengthDL has to be minimised with respect to the weightsW. To find the global
minimum ofDL in thisnwns–dimensional space is a computationally demanding task and
a significant effort has been spent for its efficient completion [5, 14, 6].

3 Gradient of DL for Differentiable Shapes

Whenever it is possible to compute the gradient of function to be minimised, it is worth
considering a gradient–based search technique. Assuming that the training shapesSi(u)
are differentiable inu and that the functionsRws are differentiable inwsk, all of the func-
tionsO, Λ, C, and thereforeDL are differentiable and the gradient∇DL exists.

As the DL is a composition of differentiable functions, its gradient∇DL can be
computed by applying the generalized chain rule in multidimensions. Differentiation of
Eq. (11) yields a product of three Jacobian matrices of dimensions(1×ns), (ns×n2

s), and
(n2

s×nsnw):
∇DL = JO ·JΛ ·JC (12)

Let us have a closer look at the Jacobians:
1In this work we do not address the full and a more complex DL based on the projection of the training set

to eigenvectors [5].



The 1× ns Jacobian of O : The Jacobian of the objective function (10) is computed
easily:

∂O
∂λs

=
{

1/λs if λs≥ λc

1/c if λs < λc
s= 1, . . . ,ns (13)

The ns×n2
s Jacobian ofΛ : As C is positive semidefinite, all its eigenvalues are non-

negative and its spectral decompositionC = ELET is a special case of the singular value
decomposition (SVD). The rate of the change of the SVD’s diagonal matrixL with re-
spect to elements ofC was derived by Papadopoulo and Lourakis [11]. We point out that
their theorem can be applied directly to eigenvalues of positive (semi)definite matrices:

∂λs

∂ci j
= eisejs i, j,s= 1, . . . ,ns (14)

It should be noted that we are applying the Jacobian of SVD in a different way and for a
different matrix than Ericsson and̊Aström [6] who did it for rectangular variance matrices
of discretised training sets.

The n2
s×nsnw Jacobian ofC : What remains to find is how the elements of the matrix

C change with thek-th weight of thes-th shape reparameterisation, i.e., how the terms
∂ci j /∂wsk look like for i, j,s= 1. . .ns, k = 1. . .nw. Differentiation of (6) yields:

∂ci j

∂wsk
=

∂

∂wsk

∫ 1

0

D

∑
d=1

(
Sxd

i (Rwi )− S̄xd

)(
Sxd

j (Rw j )− S̄xd

)
dt

=
∫ 1

0

∂

∂wsk

D

∑
d=1

(
Sxd

i (Rwi )− S̄xd

)(
Sxd

j (Rw j )− S̄xd

)
dt

=
1
ns

∫ 1

0

D

∑
d=1

dSxd
s

dRws

∂Rws

∂wsk

(
(δisns−1) Vxd

j +(δ jsns−1) Vxd
i

)
dt (15)

whereδis andδ js denote the Kroneker symbol.

4 Polynomial Reparameterisations

The way how the integrals (6) and (15) may be computed strongly depends on the form
of reparameterisation functionsRws.

Davieset al. proposed parameterisations by taking an integral of a weighted sum
of Gauss [3] or Cauchy [5] kernels of different positions, widths and heights. These
functions involve the function Erf(t) or ArcTan(t) and, when back-substituted into (6) and
(15), force the integrals to be approximated numerically, because the primitive functions
can not be found.

Assuming that the differentiable training shapes are polynomial functions (e.g. splines
[2, 8]), we propose polynomial reparameterisations. If bothSi andRws are polynomials,
all the differentiation, composition and multiplication terms in Eqs. (6), (15) are polyno-
mials. The integrands as well as their primitive functions are therefore polynomials, too.
The integrations decimate thus to evaluations of these polynomials in integration limits
that can be computed exactly and, employing Horner’s rule [12], efficiently.
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Figure 1: Bernstein polynomials (top row) of degrees 2, 4, and 8 and their normalized
polynomial integrals of degree 3, 5, and 9 (bottom row).

The purpose of this section is to constructpolynomialreparameterisationsRws and their
derivatives, given thenw weightswsp.

Inspired by work of Davies and collaborators [3, 5] we intend to take an integral of
a positive function on (0,1). Instead integrating a combination of distribution functions
(such as Gauss or Cauchy kernels), we propose to take an integral of a linear combination
of Bernstein basis polynomials restricted to the unit interval (Fig.1).

Thek-th Bernstein polynomial of degreen is defined as:

bn
k(t) =

(
n
k

)
tk (1− t)n−k n≥ 0 k = 0, . . . ,n (16)

On interval[0,1] these basis polynomials are non-negative, attain their maximum att =
k/n, and sum up to 1.

Let us consider a linear combination of Bernstein polynomials with nonnegative weights
wsk:

rws(t) =
1

∑nw
p=1wsp

nw

∑
p=1

wsp bnw−1
p−1 (t) wsp≥ 0 ws 6= 0 (17)

Being restricted to open interval(0,1), rws(t) is a positive polynomial of degreenw−1. Its
integral is therefore a monotonically increasing polynomial of degreenw and (discarding
the integration constant) can easily be shown to map the unit interval to[0,1/nw]. Its
multiplication bynw yields therefore the desired diffeomorphism of[0,1].



We define the reparameterisation of the unit interval due tonw nonnegative weightsws as
follows:

Rws(t)
de f.
= nw

∫
rws(t)dt = nw

∫
1

∑nw
p=1wsp

nw

∑
p=1

wsp bnw−1
p−1 (t) dt

=
1

∑nw
p=1wsp

nw

∑
p=1

wsp

∫
nw bnw−1

p−1 (t) dt

=
1

∑nw
p=1wsp

nw

∑
p=1

wsp Bnw
p (t) (18)

where thenw polynomialsBnw
p of degreenw (Fig. 1) can be precomputed using the fol-

lowing closed form:

Bnw
p (t) =

nw

∑
d=1

(−1)d+p
(

d−1
d− p

)(
nw

d

)
td p = 1. . .nw (19)

As B′1(0) = B′nw
(1), the concept can easily be extended to a differentiable parameterisa-

tion of closed boundaries keepingw1 = wnw and ’gluing’ the ends together. An identity
reparameterisation is obtained settingws1 = ws2 = . . . = wsnw > 0 (Fig. 2). Looking back
at Figure1 it can also be seen that our parameterisations are naturally suited for a hierar-
chical refinement of the reparameterisation. At levelL > 1, the maxima of polynomials
b2L

k are distributed evenly on [0,1] and are placed right in between the maxima ofb2L−1

k .
Differentiation ofRws(t) with respect to thek− th parameterwsk yields again annw-th

degree polynomial int:

∂Rws(t)
∂wsk

=
1

(∑nw
p=1wsp)2

nw

∑
p=1

wsp(B
nw
k (t)−Bnw

p (t)) k = 1, . . . ,nw (20)

Substitution of the termsRws and ∂Rws/∂wsk back into Eqs. (6) and (15) leads to the
desired integration of polynomials.

Figure 2: Example reparameterisations by 9 weights. The more the
weights are similar the more the reparameterisations approach the iden-
tity. The weight vectors from left to right: w = (0,3000,0,0,0,0,0,6000,0)T ,
w = (0.899, 0.006, 0.139, 0.580, 0.166, 0.855, 0.125, 0.117, 0.640)T , and
w = (α,α,α,α,α,α,α,α,α)T ,α > 0.



5 Implementation

When running steepest descent or conjugate-gradient optimisation, sequences of minimi-
sation along a line in directions opposite to gradient are performed. While necessary when
line minimisation reaches minimum, gradients are not necessarily needed when perform-
ing the line minimisation itself. Even though that the gradient calls occurred by only 4–6
% of theDL calls it should be taken into consideration that the gradient calls are more
expensive – its computations requires eigenvectors, computation of moderate matrices,
and their multiplication. Therefore we suggest to have separate routines and avoid the
gradient calls for line minimisation. The two separate routines are outlined in Algorithms
1 and 2.

Algorithm 1 Computation of the DL inW0

ConstructRws . Eq. (18)
C0←C(W0) . Eq. (6)
λ0 ← Λ(C0) . getonlyeigenvalues ofC0

DL←O(λ0) . Eq. (10)
return DL

Algorithm 2 Computation of the∇DL in W0

ConstructRws . Eq. (18)
C0←C(W0) . Eq. (6)
C0 → ELET . getbotheigenvaluesandeigenvectors ofC0

C0
′← JC(W0) . Eq. (15)

λ0
′ ← JΛ(C0) . Eq. (14)

O0
′← JO(λ0) . Eq. (13)

∇DL←O0
′λ0
′C0

′ . Eq. (12)
return ∇DL

As the search space might potentially contain many local minima, we propose, in-
spired by work of Kuet al. [10], to roughly bracket the global minimum by genetic algo-
rithm prior to an optimisation by a local search technique.

6 Results

The quality of models based on objective function (10) in terms of one-leave-out tests,
generalisation ability, specificity, and compactness has been proven elsewhere [14, 6]
and we do not include such an evaluation in the results. Instead we concentrate on the
improvement in performance achieved by our concepts.

We implemented the computation in C++, used GALib [1] for genetic algorithm and
compared the conjugate-gradients versus (the gradientless) Nelder-Mead simplex routines
of Numerical Recipes [12] in number ofDL calls. Such a comparision is legitimate since
the number of∇DL calls contributed by only 4–6 % of theDL calls on average and did
not affect the overall performance significantly.



We demonstrate the functionality and the performance of our concepts on two well-
known training sets:

Synthetic Bump Similarly to Davies we have used (the hard to optimise) synthetic
bump as a proof of concept. The training set consists of 10 bumps of different positions.
Bumps were modeled by 6 polynomial segments in tension [8]. To model the corners by
differentiable functions, high node tension factors have been set.

The only mode of variation (Fig.3) has been correctly found already by quadratic
reparameterisations (nw = 2). Performance comparison of conjugate-gradient versus Nelder-
Mead simplex search in terms of number ofDL calls is summarized in Figure4.

m= 1

m= 2m= 3m= 4

−3
√

λm <—————————————————————————> +3
√

λm

Figure 3: Synthetic bump. The only mode of variation.

Figure 4: Performance chart for the training set of bumps.

Hands This training set consists of 16 hands modeled using splines in tensions [8]. To
approach the polygonal shape that appears frequently in the literature, the node tensions
were set 1000-times higher than the segment tensions. All of the splines consist of 56 seg-
ments. Figure5 shows the first four modes of variation found by 4-th degree polynomial
reparameterisations (nw = 4). Performance of conjugate-gradient versus Nelder-Mead
simplex search in terms of number ofDL computations is summarized in Figure6.
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Figure 5: Hand. The first 4 modes of variation.

Figure 6: Performance chart for the training set of hands.

7 Conclusion and Future Work

We have derived the gradient of the description length for training shapes with differ-
entiable boundaries. The most critical part in this derivation was the Jacobi matrix of
eigenvalues. Inspired by previous work [11, 6] we have shown how this can be carried
out trivially for positive definite matrices that are involved in computation.

Furthermore, we have proposed a class of reparameterisation functions that allow an
exact and an efficient computation of both the model and the gradient of its description
length.



Newly introduced concepts have been tested on 2 standard training sets and the per-
formance tests indicate a potential for practical applications.

In the near future we would like to extend the polynomial reparameterisations to
boundaries of 3D objects.
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