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Abstract

A new method for the non-iterative computation of a homography matrix is
described. Rearrangement of the equations leads to a block partitioned sparse
matrix, facilitating a residualization based on orthogonal matrix projections.
This improves the handling of the error structure of the linear system of equa-
tions. The vanishing line is treated as the principal component in the estima-
tion process. This estimate is more robust, since the position of the vanishing
line depends only on the relative position and orientation of the camera to the
observed plane, and is invariant to the structure of the points observed on the
plane. A flop-count indicates that the new method is 11 times faster for four
point correspondences, and converges to a factor of 5 for a large number of
points.
Furthermore, a new non-iterative method of treating error in both images is
derived. Combining the forward H and reverse G projections in a suitable
manner eliminates the systematic bias of the estimation, and the first order
error: a strict bound on the error reduction is derived. This can be achieved
faster than a classical DLT due to the improved numerical efficiency. Results
of Monte-Carlo simulations are presented to verify the performance.

1 Introduction

One procedure for the non-iterative computation of a homography, termed the direct lin-
ear transformation (DLT) is outlined in [6], and is common to much of the literature [9, 2].
The estimation is made by means of a total-least-squares (TLS) solution of a linear sys-
tem of equations. This approach does not make much sense, as the error structure of the
linear equations is not appropriate for TLS [3]. Mühlich et al. [7] attempt to overcome
this through equilibration of the errors in variables. They propose to equilibrate only the
Euclidean coordinates from one image in the estimation matrix. A proper equilibration
should leave all columns with the same variance, and thus all columns must be appropri-
ately equilibrated. The mixed columns of ones and zeros, have a variance when numeri-
cally computed, however, the columns are actually statistically invariant. The problem of
poor error structure therefore remains.
We derive a methodology for the estimation of a homography matrix, based on the er-
ror structure of the estimation matrix. We quantitatively discuss the improvement in ef-
ficiency, and confirm the improvement in the estimation through numerical tests. The
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proposed treatment is in fact general, and applies equally well to three-dimensional ho-
mographies, the estimation of a camera calibration matrix, amongst other problems with
sparse block partitioned matrices such as coupled geometric objects [8].

2 Preliminaries

2.1 Derivation of the DLT Estimation

In two dimensions, the homography is a 3× 3 matrix which maps homogeneous points
as,

p′ = Hp specifically,
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 . (1)

A ubiquitous problem in computer vision is to estimate the homography matrix from a
set of point correspondences. Of particular interest is the case where the point correspon-
dences are between two images of the same plane. A linear algorithm can be derived by
expanding Equation (1) for a given point correspondence, and normalizing with respect
to the homogeneous component to yield,

x′i =
h1xi +h2yi +h3

h7xi +h8yi +h9
and y′i =

h4xi +h5yi +h6

h7xi +h8yi +h9
. (2)

In this case, the point correspondences are assumed to be image coordinates, hence the
“measured” homogeneous components are wi = w′i = 1. Rearranging the two equations
leads to two equations that are linear in the elements of the homography, H, i.e.

[

xi yi 1 0 0 0 −x′ixi −x′iyi −x′i
]

h = 0, (3)
[

0 0 0 xi yi 1 −y′ixi −y′iyi −y′i
]

h = 0, (4)

hence, one point correspondence yields two equations. It is well known [6, 2, 7] that at
least four point correspondences are required for a rank deficient 8× 9 matrix, which is
sufficient to solve for the nine parameters. For more than four point correspondences,
a least-squares estimate must be made for the parameters. This methodology does not
consider three issues critical to least-squares analysis: The uncertainty in measurements
varies from column to column; the columns of constants that are statistically invariant;
and the sparse nature of the system of equations. This leads to systematic errors in the
least-squares technique which can be easily avoided.

2.2 The Generalized EYM Theorem

The EYM matrix approximation is generalized [3] for a matrix partitioned as,

A=
[

Ai A j
]

, (5)

where rankA j = l. If the matrix Ai is projected onto the orthogonal complement of A j,
i.e. the space orthogonal to the column space of A j, then the resulting matrix, A⊥i is or-
thogonal to A j. The matrix A⊥i is thus the only portion of the matrix Ai which contributes



to the rank of the overall matrix A greater than that of the sub-matrix A j. Consequently,
we perform the EYM approximation on A⊥i such that,

Âi = Hr−l

(

A
⊥
i

)

, (6)

where Hr−l is an operator performing the rank r− l EYM approximation, and recompose
the rank r matrix Â as

Â=
[

Âi A j
]

. (7)

2.3 Data Preparation

It can be shown that the DLT algorithm is not invariant to arbitrary transformations of the
data. This setback is overcome by normalization as described in [5, 1]. For each of the
data sets, the centroid is subtracted, and the data is scaled such that the root-mean-square
distance of the points to the origin is

√
2. The algorithm derived here assumes that this

normalization has been performed, and the data sets are in fact mean-free.

3 Sparse Linear Systems and Orthogonalization

The approach we take here is to stack all the equations from Equation (3), then stack all
the equations from Equation (4) below. This results in a system of equations which is
clearly sparse in nature1, i.e.

Ah =

[

P 0 X′P
0 P Y′P

]

h = r, (8)

where r is the vector of algebraic residuals, i.e. the so-called algebraic distances. This
arrangement is often overlooked in the literature, but as will be seen, holds several advan-
tages over the standard methodology. In this case, the matrices are defined as

P,
[

P̂ 1
]

with P̂,







x1 y1
...

...
xm ym






, (9)

as well as

X
′ , diag

(

−x′1, . . . ,−x′m
)

and Y
′ , diag

(

−y′1, . . . ,−y′m
)

, (10)

for ease of manipulation only; coding of the algorithm can be done more efficiently. When
an exact solution, r = 0, is not possible, the solution vector h is given as the right singular
vector corresponding to the smallest singular value of the matrix A, and is the least-
squares solution minimizing rTr. Consider the definition of numerical rank, that is, r,
such that

σ1 ≥ . . .≥ σr ≥ ε ≥ σr+1 ≥ . . .≥ σn ≥ 0, (11)

where σi are singular values and ε is the floating-point relative accuracy. The singular
values and singular vectors are therefore directly related to the rank of the matrix in ques-
tion. The sparse nature of the matrix A gives us much more insight into this problem. Let

1Specifically, one third of matrix A is null



Ai− j denote a sub-matrix of A consisting of columns i through j. Consider the submatrix
A1−6, that is, the first six columns of the matrix A,

A1−6 =

[

P 0

0 P

]

. (12)

Clearly, we have, A1−3 ⊥A4−6, due to the zero sub-matrices. Furthermore, as per Section
2.3, it is assumed the data has undergone a normalization procedure, and is hence mean-
free, that is, P̂⊥ 1. Consequently, we can say that

A1−2 ⊥ A3 ⊥ A4−5 ⊥ A6. (13)

Since A1−2 is simply a permutation of the matrix A4−5, we therefore have a simplified
expression for the rank of the matrix A1−6, that is,

rankA1−6 = 2rank P̂+2. (14)

The matrix P̂ is rank two as long as the points are not all collinear through the origin.
Assuming that we have four point correspondences appropriate for computing a homog-
raphy, then we can say that rankA1−6 = 6. As we are looking for rank deficiency, the
matrix A1−6 is not appropriate as a principal component in the analysis. The expression
for the rank of matrix A, given four appropriate point correspondences, is therefore

rankA= rankA⊥7−9 +6, (15)

where A⊥7−9 is the projection of the matrix A7−9 onto the orthogonal complement of A1−6.
Once again due to the sparse nature of matrixA, this orthogonal projection has a simplified
form.

4 Partitioned Orthogonalization

4.1 Uncertainty in Measurements

To take full advantage of the sparse nature of A, we rewrite the system of equations as,

A1−6h1−6 +A7−9h7−9 = r, (16)

or,
[

P̂ 1 0 0
0 0 P̂ 1

]

h1−6 +

[

X′P̂ X′1
Y′P̂ Y′1

]

h7−9 = r. (17)

Before proceeding with the orthogonalization, it is appropriate to discuss the elements of
the matrix A in terms of measurements. The columns of ones are statistically invariant,
that is, they are not actually measured values and do not contain any uncertainty in their
values and hence have zero variance. Furthermore, they cannot be mean-free, and hence
cause an unnecessary and erroneous bias to the TLS estimation. The columns which
contain the matrix P̂ are measurements of the order of pixels in an image, and therefore
contain a degree of uncertainty. And finally, the columns containing the matrix multiplica-
tions by X′ and Y′ represent the multiplication of two values both containing uncertainty,
and therefore due to error propagation, they contain a higher degree of uncertainty. In the
case of calibration, X′ and Y′ do not contain errors, which introduces additional invari-
ance. On the whole, the matrix A derived by the DLT does not have an error structure
suitable for TLS estimation.



4.2 Orthogonal Projections

The projection onto the orthogonal complement of a column of ones is equivalent to
subtracting the mean values from the columns of the matrix. In this case, the only columns
which are not mean-free are the first two in A7−9. The system of equations is reduced to,

[

P̂ 0

0 P̂

]









h1

h2

h4

h5









+

[

X′P̂−1X′P̂ X′1

Y′P̂−1Y′P̂ Y′1

]





h7

h8

h9



= r′ (18)

with the corresponding values,

h3 =−X′P̂
[

h7

h8

]

and h6 =−Y′P̂
[

h7

h8

]

. (19)

The notation used above denotes 1×2 matrices of second moments, i.e.

X′P̂=− 1
m

[

∑m
i=1 x′ixi ∑m

i=1 x′iyi
]

and Y′P̂=− 1
m

[

∑m
i=1 y′ixi ∑m

i=1 y′iyi
]

. (20)

The projection onto the orthogonal complement is completed by orthogonalizing the ma-
trix with respect to the block diagonal matrix containing P̂ and zero matrices 0. The
reduced system is,

A
⊥
7−9h7−9 =

[

X′P̂−1X′P̂− P̂P̂+X′P̂ X′1− P̂P̂+X′1

Y′P̂−1Y′P̂− P̂P̂+Y′P̂ Y′1− P̂P̂+Y′1

]





h7

h8

h9



= r′′, (21)

where P̂+ denotes the pseudo-inverse of the matrix P̂ given by P̂+ =
(

P̂TP̂

)−1
P̂T. The

relations for the eliminated coefficients are

[

h1

h2

]

=−P̂+
X
′
P
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h9



 and

[

h4

h5

]

=−P̂+
Y
′
P
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 . (22)

5 Constrained Minimization

Through the orthogonalization procedure, we have reduced the linear system to a function
of only h7, h8, and h9, i.e.

A
⊥
7−9h7−9 = r′′, (23)

with backsubstitution relations for h1 through h6 given by Equations (19) and (22). To best
approximate the null-space in terms of 2-norm distance, we take the minimizing solution
to be the right singular vector of A⊥7−9 corresponding to the smallest singular value2. This
implicitly imposes the constraint,

h2
7 +h2

8 +h2
9 = 1. (24)

2At this point, the matrix A
⊥
7−9 should be equilibrated w.r.t. column variances, but due to space limitations

this is not elaborated upon here; see [3].



The significance of this constraint is shown by reexamining Equation (1) where we have,

w′ = h7x+h8y+h9w. (25)

For points [x y 1]T mapping to a point with w′ = 0, we correspondingly have

h7x+h8y+h9 = 0, (26)

which is the equation of the vanishing line of the original image. The vanishing line is
therefore treated as the principal component in the analysis. The position of the vanishing
line depends on the position of the plane in question with respect to the camera plane, and
not on the selection of points on that plane. This invariant nature of the vanishing line
is further argument to treat it as the principal component, in addition to the fact that its
coefficients in A7−9 comprise the greatest uncertainty.
Further constraints are imposed by the backsubstitution relations of Equations (19) and
(22). These are based on pseudo-inverses, and are hence least-squares solutions for the
coefficients h1 through h6 based on the estimate of h7, h8, and h9.

6 Computational Efficiency

The above procedure may seem very complicated, indeed the derivation is rather involved.
The computational efficiency, however, is significantly better than that of the DLT. The
proposed algorithm reduces the 2m×9 linear system of the DLT to a 2m×3 linear system.
As both algorithms require singular value decomposition, we discuss algorithm efficiency
in terms of flop-counts [4]. The new algorithm requires additional matrix computations
due to the orthogonalization procedure; a tally for both algorithms is given in Table 1.
Whereas both algorithms require a singular value decomposition, neither requires the in-
formation in the matrixU. We compare for two cases, one whereU, S, and V are provided,
and one where only S and V are provided, as the latter algorithm is more efficient, but not
included in the MATLABr package. The DLT algorithm has a large offset of 5832 flops;

Table 1: Flop-Counts for the Standard and Proposed Methods
Method U, S, and V S, and V
DLT 2272m+5832 652m+5832
Proposed Method 302m+241 122m+241

the proposed algorithm thus requires a factor of 11 times fewer flops for the minimum of
four point correspondences. This converges to a factor of 5 improvement for arbitrarily
large amounts of points.

7 Error in Both Images

One setback of the DLT, as well as the algorithm proposed here, is that they are biased
to one set of points. If this were not the case, we might swap the places of points p
and p′, compute the new transformation G, which maps points as p = Gp′, and G would
be precisely the inverse of matrix H, i.e. HG = I. Unfortunately, this is not the case.



The proposed algorithm is efficient enough that both projections can be computed more
efficiently than one with the DLT. In this case, we have H and G such that,

HG= I+∆, (27)

where the error matrix ∆ is the deviation of the above computation from the identity
matrix I. We propose an interpolation scheme to minimize this error, where

H = µH+λεG−1 (28)

G = µH−1 +λεG, (29)

and ε = sign(det(HG)) is necessary due to scaling3. The new error term is found by
expanding the assumed solutions, i.e.

HG =
(

µH+λεG−1)(µH−1 +λεG
)

=
(

µ2 +λ 2ε2)
I+ µλε

(

HG+(HG)−1
)

. (30)

But we have that HG= I+∆, and consequently the required inverse has the form,

(HG)−1 = I−∆(I+∆)−1
. (31)

The expression in Equation (30) simplifies to

HG= (µ +λε)2
I+ µλε

(

∆−∆(I+∆)−1
)

. (32)

The question arises, to what degree does this interpolation annihilate the error in the
approximation? The new error term can be considered to be

E, µλε
(

∆−∆(I+∆)−1
)

. (33)

If we set a bound on the initial error in terms of an arbitrary p-norm, then we can quantify
the new error in terms of the original error. A more than reasonable bound is ‖∆‖p <

1, considering that is generally the order of the estimation itself, H or G. Under this
assumption [4], we can say that, (I+∆)−1 = ∑∞

k=0∆
k. Consequently, the error term is,

E = µλε

(

∆−∆
(

I+
∞

∑
k=1

∆
k

))

(34)

= ±µλ∆
∞

∑
k=1

∆
k =±µλ

∞

∑
k=2

∆
k
, (35)

which essentially says that we have annihilated the first order error term. That is, if the
second order terms can be neglected, then the error is negligible. A more quantitative
assessment can be given in terms of bounds on the p-norm of the error term,

‖E‖p = |µλε|
∥

∥

∥
∆

(

I− (I+∆)−1
)∥

∥

∥

p
≤ |µλ |‖∆‖p

∥

∥

∥
I− (I+∆)−1

∥

∥

∥

p
(36)

≤ |µλ |
‖∆‖2

p

1−‖∆‖p
. (37)

3Due to homogeneous scaling the identity matrix of Equation (27) may in fact be a negative multiple, thus
ε =±1.



We are therefore interested in the range where the original error is larger than the upper
bound of the error after interpolation, i.e. when

‖∆‖p ≥ |µλ |
‖∆‖2

p

1−‖∆‖p
. (38)

Noting that matrix norms must be positive, this relation holds for ‖∆‖p in the range,

0≤ ‖∆‖p ≤
1

1+ |µλ | . (39)

If we constrain the coefficients µ and λ such that µ +λ = 1 making the coefficient of the
identity matrix in Equation (32) equal to 1, then product µλ reaches a maximum value of
1
4 over 0≤ µ ≤ 1. In this case, E=± 1

4 ∑∞
k=2∆

k, and the error is guaranteed to be reduced
over the range

0≤ ‖∆‖p ≤
4
5
. (40)

Furthermore, the range over which the error is reduced by at least an order of magnitude,
i.e. ‖E‖p ≤ 10−1 ‖∆‖p, is found to be,

0≤ ‖∆‖p ≤
2
7
≈ 0.2857. (41)

As for selecting the parameters µ and λ , the choice of µ = λ = 1
2 appears to be ideal, as

it weights the error in both images equally. The geometric significance of this is shown,
as the matrix H maps the point p to the point p′ as,

p′ =
1
2

(

Hp+ εG−1p
)

, (42)

which is the centroid of the two points transformed by H and G−1 individually.

8 Numerical Testing

We compared the DLT with the proposed algorithm through a Monte-Carlo simulation of
the uncertainty of a reprojected point. The testing was performed on an image of a tiled
floor and the ideal (error-free) floor plan in Figure 1. The point correspondences were
determined manually, as precisely as possible (48 tile corner points). Gaussian noise
with a standard deviation of one pixel was added to the corner points used to compute
the homographies. The positions of three people (P1, P2, and P3) were mapped to the
ideal frame, and back projected to the image using the estimated forward and back pro-
jections. The centroid of these three points was used to determine the statistical variance.
A Monte-Carlo simulation of 1000 iterations is shown in Figure 2. The results show that
the reprojection uncertainty of the proposed algorithm is considerably more compact than
that of the DLT.
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Figure 1: (Left) The image of a tiled floor with 48 corner points identified and (Right)
the data rectified to an ideal model. Points P1, P2, and P3 are the positions of the three
foremost people.
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Figure 2: The scatters from a Monte-Carlo simulation of reprojection covariance for the
DLT (Left) and the new method (Right). The ellipses represent two-standard-deviation
confidence envelopes. The interpolation scheme was not used in this test.
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Figure 3: (Left) The vanishing point predicted by the tiled floor and the two vanishing
lines predicted by the DLT (−·) and the new algorithm (−). (Right) The vanishing lines
predicted by the DLT (−·) and the interpolation scheme (−).



Figure 2 shows clearly anisotropic error behaviour for both algorithms, whereby the stan-
dard deviation along the semi-minor axis is significantly reduced with the new algorithm.
Furthermore, the estimation bias, i.e. the distance of the vanishing point to the vanishing
line, is considerably reduced by the new algorithm; see Figure 3.

9 Conclusions

A new non-iterative method for the computation of a homography matrix from four or
more point correspondences has been derived. In comparison to the standard DLT, the
method was shown to be at least a factor of 5 times more efficient, and the uncertainty of
error-prone reprojected points was shown to be considerably more compact. The factor
of 11 improvement in efficiency for four point correspondences makes it more appro-
priate than the DLT for use in RANSAC homography estimation. The method derived
is in fact general, and can, for example, be applied to the similarly sparse problems of
three-dimensional homographies, and camera calibration, or problems with similar error
structure, such as estimating the fundamental matrix.
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