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Abstract

Figure-ground segmentation and recognition are two interrelated processes.
In this paper we present a method for foveated segmentation and evaluate it
in the context of a binocular real-time recognition system. Segmentation is
solved as a binary labeling problem using priors derived from the results of
a simplistic disparity method. Doing so we are able to cope with situations
when the disparity range is very wide, situations that has rarely been con-
sidered, but appear frequently for narrow-field camera sets. Segmentation
and recognition are then integrated into a system able to locate, attend to and
recognise objects in typical cluttered indoor scenes. Finally, we try to answer
two questions: is recognition really helped by segmentation and what is the
benefit of multiple cues for recognition?

1 Introduction

In an earlier report we presented a real-time vision system that is able to locate, foveate
and recognise objects in cluttered indoor scenes [1]. In this paper we take a closer look at
the problem of figure-ground segmentation and in particular its role in recognition. Unlike
most other recognition systems, our goal is not to detect objects in images, but in scenes,
which is a significantly more complicated task. A system acting in the real world needs to
actively search the scene, constantly updating the fixation point, until a conclusion can be
drawn on the existence of requested objects. Our particular system is equipped with four
different cameras, a wide field binocular set for attention and a foveal one for recognition.
A wide field is necessary for objects to be localised within reasonable time, while a high
resolution is preferable for attended objects to be successfully recognised. The problem
of combining these two requirements has previously been recognised by others and a
number of more of less complicated solutions have been proposed [13, 8, 14].

The two processes, segmentation and recognition, are closely interrelated. Given the
solution to one of the problems, the solution to the other can more easily be obtained.
Unfortunately, robust segmentation has shown to be very difficult and most state-of-the-
art recognition methods either ignore the problem [10] or perform segmentation as part of
the recognition process [16, 9]. In our system we exploit the fact that we have a binocular
setting and continuously segment the object currently in fixation. This will be explained
in detail in Section 2. We then integrate figure-ground segmentation with the recognition
system described in Section 3 and the attentional process previously presented in [1].
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Figure 1: Two foveal image pairs obtained using an active vision system.

We evaluate the complete system based, not on the performance of individual compo-
nents, but on its ability to do what it is intended for, that is finding and recognising objects
in cluttered scenes. Thus we apply a systems oriented methodology, where methods are
benchmarked based on their practical behaviours in the real world, instead of on artificial
ground truth data in isolated settings. Since the quality of a method depends on its pur-
pose, methods should be tested with the end purpose in mind. A particular segmentation
method suitable for video coding for example, does not necessarily have to be successful
if the goal is object recognition. A segmentation is rarely an end result in practical appli-
cations. In a series of experiments presented in Section 4 the benefit of segmentation for
recognition will be analysed. What we try to answer is a relevant question. Given what we
know of the limitation of current segmentation methods, does segmentation really benefit
recognition? In this respect our study is different from earlier studies.

2 Foveated segmentation

Many recognition methods perform considerably better if attended objects are segmented
from their backgrounds and surrounding objects. This is especially true for methods based
on dense statistics collected in histograms. In this section we study the segmentation
problem in the context of a binocular setting. Using an attentional system described in
[1], the camera system automatically fixates upon objects of interest, before they are
segmented and later recognised. We determine the foveated segmentation using a two-step
approach, where the first step computes a dense disparity map. However, instead of simply
thresholding this map, we statistically model the disparity results and globally solve a
binary labeling problem, one label for foreground (FG) and another one for background
(BG). Here we apply the Ising model. Since we are only interested in two labels, the
labeling problem can be exactly solved by a single graph-cut [5].

The benefit of this approach is two-fold. By explicitly modeling the disparity results
we are able to cope with a limitation that occurs in most modern disparity methods, i.e.
the fact that the disparity range treated by the method should be at least as wide as the total
range that appears in the images. For narrow field cameras this assumption can be difficult
to satisfy. In our case the range of possible disparities is wider than the image itself, if
the expected shortest distance is less than 0.8 meters. The six leftmost disparity maps in
Figure 2 illustrate results from a couple of state-of-the-art methods on the stereo pairs in
Figure 1, if disparities were falsely assumed to lie within a 48 pixel range around zero-
disparity. The methods use here were based on belief propagation [17], cooperative stereo
[19] and graph-cuts [6]. As seen in the images the number of false positives is substantial,
even if 48 pixels are significantly more than what is the case in typical benchmarks [15].

The second benefit of the presented approach is the speed. Global optimisation is done



Figure 2: Disparity maps calculated using belief propagation (left), cooperative stereo
(centre-left), graph-cuts (centre-right) and local area based correlation (right) for the im-
age pairs shown in Figure 1.

only in the second step, which is fast as only two different labels need to be considered,
the foreground and background label. The disparities themselves are less relevant. In the
first step we use a simplistic method based on area based correlation [7], which is easier to
model than more complex alternatives. Even if this results in a somewhat lower density,
the results after the second step are very similar independently on the disparity method
used. This leads to a total difference in speed of at least an order of magnitude.

2.1 Disparity modeling

The rightmost two images in Figure 2 show some results obtained with area based corre-
lation, including a left-right consistency check. The number of false positives, that appear
at points outside the range considered, is not much higher than those of the more complex
methods. To compute the final segmentation we need to model the behaviour of these
results. From the disparity method, each pointp is given a stateLp, that can be either tex-
turelessTL , mismatchMM or any disparitydk within the range of considered disparities.
An image point is textureless if the variance in the local area is insufficient. A mismatch
is indicated by a failure in the left-right consistency check performed following correla-
tions. Remaining points get states corresponding to the disparities of highest correlation
between the left and right camera images.

From these states foreground probabilities,Pr(Xp = FG | Lp), can be computed using
Bayes’ rule and the expected distributions of mismatches and textureless regions. The
prior foreground probabilityPr(FG) is given by the estimated projected size, which is
determine by the attentional system prior to fixation. For the background, disparity values
are assumed to be uniformly distributed over the whole range. The same is assumed for
foreground points, but only within a range equivalent to the expected size of the requested
object. Since the considered range is significantly narrower than the full range, most
mismatches can be expected in the background. We further expect textureless areas to be
somewhat more common in the background. For the experimental results in this paper we
use the following expected frequencies:

Pr(TL | FG) = 0.20 Pr(MM | FG) = 0.10 Pr({dk} | FG) = 0.70
Pr(TL | BG) = 0.25 Pr(MM | BG) = 0.40 Pr({dk} | BG) = 0.35



Figure 3: Patches coloured by average foreground priors (left). Foreground segments
found using graph-cuts on patches of pixels (middle) and on individual pixels (right).

Without an extensive set of ground truth examples, we cannot derive any more precise fre-
quency estimates. However, through a series of experiments with different combinations
of frequencies, we concluded that the exact values are not as important as the relative
differences between foreground and background frequencies.

2.2 Patch-wise segmentation

Since there are only two possible labels,FG andBG, we can solve the global optimisa-
tion problem using a single graph-cut. Each pixel can be represented by a node that has
one link to a source and another one to a drain, with capacities determined by the priors,
Pr(FG | Lp). Neighbouring nodes (assuming 4-neighbours) are further linked with ca-
pacities reflecting the likelihood of two neighbours belonging to different classes. It can
be shown that these capacities are given by the negative log-likelihoods of corresponding
probabilities. Typically these likelihoods are estimated from similarities between neigh-
bouring points, which in our system is done using the image brightness values,Ip. This
is reasonable, since depth discontinuities often coincide with high contrast edges.

Instead of assigning labels pixel-wise, we use image patches and assign the same label
to all pixels within a patch. Thus only one network node is needed per patch. The patches
are found using watershedding on gradient magnitudes. The scene is oversegmented, such
that all depth discontinuities hopefully coincide with some patch edge. The two leftmost
images in Figure 3 illustrate segmentations obtained using this procedure, with colouring
based on average foreground priors. As can be seen, regions end up being undetermined,
shown in grey, if they are either located outside the depth range considered or without
enough texture. The prior of a particular patch is given by the set of states,{Lp i}, that
corresponds to the image points within the boundary of the patch. Since all points belong
either to the foreground or the background, the patch prior can be written as

Pr(FG | {Lp i}) =
∏i Pr(Xp i = FG | Lp i)

∏i Pr(Xp i = FG | Lp i)+∏i Pr(Xp i = BG | Lp i)
.

We model the probability of a discontinuity between two neighbouring points,pi andp j ,



Figure 4: Typical segmentation results.

from different patches as

Pr(Xp i 6= Xp j) = exp(
a

b+
√
|Ip j − Ip i |

).

Here|Ip j − Ip i | is the gradient magnitude and,a andb are chosen so that the probability
is 10% if the gradient magnitude is zero and 80% for maximum gradients. Instead of
summing up the log-likelihoods of points along an edge between two patches, we use the
product of the length and the minimum negative log-likelihood. The reason is to prevent
discontinuities from being introduced along edges that occur as a result of shading.

The segmentation we get after applying graph cut to the images in Figure 1 can be
seen in the middle of Figure 3. A number of additional examples obtained using the same
approach are shown in Figure 4. Later in Section 3 we will see that these segmentations
will significantly improve the recognition results, compared to if no segmentation were
used at all. If we would model each pixel separately, without grouping pixels into patches,
we would get the results to the right in Figure 3. Here we see that the foreground segments
tend to expand and cover parts of the background. Since a discontinuity boundary belongs
to the occluder, the foreground will easily dominate an occluded background, if there
is not enough texture in the background to suggest otherwise. By grouping pixels into
patches these opposing interpretations are more easily resolved.

3 Multi-cue recognition

Our recognition system consists of two separate modules, one based on scale and rotation
invariant SIFT features and the other on colour histograms. Each time the attentional pro-
cess directs the cameras towards a new fixation point, the recognition system determines
whether the object that was requested can be detected in the new foveal views. The two
cues were chosen since they are more or less complementary. When objects contain a
sufficient amount of image texture, SIFT features have shown to be reliable for object
recognition [10]. On the other hand, colour histograms only work if objects contain a
small, but distinct, set of colours. In order to cope with varying illumination, we use a
colour constant model of Gevers & Smeulders [4]. These are integrated in a framework
based on a 2D support vector machine (SVM), with dimensions given by the normalised



Figure 5: Objects used for recognition experiments:Farin, GPSBox, Raisin, UncleBen,
VarmKopp, BlueCup, YellCup, FlowCup(first row); MuminCup, MyCup, Tiger, Giraffe,
MangoCan, PeachCan, BoatCan, Pripps (second row);BlueCar, DogCar, BrownCush,
FlowCush, RoundCush, Violett, YellCushandAjax (third row).

detection scores of each cue. Thus the integration of different cues is soft, in that each cue
is computed independently and only fused to deliver a final composite detection score.

Our implementation of SIFT differs slightly from the original. Instead of using dif-
ferences of Gaussians for feature detection, we use scale invariant Harris’ features [11].
When an object has been segmented from its background, as described in Section 2, fea-
tures are detected within the segmented area. Each feature is matched to those of the
object models and gives a vote to the most similar match. The total number of votes for
each model is then counted. Unlike the original version, a detection score is computed
as the quotient of votes on the requested object model and the total number of votes on
all models, leading to a detection score between zero and one. The rational behind this
approach is that only one object is assumed to be located in each segmentation. By com-
paring scores between models, instead of using an absolute measure, the scores will be
more distinct in cases when there are few extracted features due to low texturing.

Colour histograms have been applied for recognition for many years. However, it
has been questioned whether colours can ever be used for robust recognition [3]. There
are primarily two problems associated with colour histograms. The first is the lack of
robustness in cases of clutter and occlusions, which leads to a need for segmentation. The
other problem is that of colour constancy. Assume(ER,EG,EB) to be the illumination,
which is typically unknown, and let the reflectance be given by(SR,SG,SB). Then the
measured colour can be approximated as(R,G,B) = K (ERSR,EGSG,EBSB), whereK is
a factor that depends on the direction of incoming light. This factor and the luminance
component of the illumination can be canceled out through a projection,

(r,g) = (
R
B

,
G
B

) = (
ER

EB

SR

SB
,
EG

EB

SG

SB
) = (ErSr ,EgSg).

By observing that the illumination chromaticy(Er ,Eg) may be different between database
and query images, it is clear that uniformly coloured objects cannot be recognised from
measured colours alone. However, relative colours may still be robustly compared. Gev-
ers & Smeulders [4] do this by computing the fraction of neighbouring colours. Given
that (r1,g1) and(r2,g2) are the colours of two different pixels, we get an expression in-
dependent on coloured illumination,

(
r1

r2
,
g1

g2
) = (

ErSr1

ErSr2

,
EgSg1

EgSg2

) = (
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,
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). (1)



Figure 6: Some scenes used for detection experiments.

Since(Er ,Eg) can be assumed to be approximately similar for all pixels in a given image,
they are canceled out. From pairs of pixels, 2D histograms of relative colours can then
be created for database and query images. Histograms are compared with histogram in-
tersection [18], which has shown to be moderately robust to occlusions. In order to make
comparisons less sensitive to scale changes, we collect data from pairs that are separated
by four different distances, between 4 and 16 pixels. By collecting data in 8 different
directions histograms are made more or less invariant to rotations.

4 Experimental results

The goal of the system demonstrated in this paper is to automatically detect objects in
scenes, given the identify of a particular requested object. Initial hypotheses are delivered
by an attentional system that uses a wide field camera set. Each hypothesis is visited in
the order of saliency, which is calculated in relation to the hues and 3D size of the object
being requested, so that the most similar image regions are visited first. At each fixation
point, the object in fixation is segmented from its background prior to recognition in the
foveal views, using the approach presented in Section 2. We do so to get more distinct
detection scores when the scene is heavily cluttered. Since a requested object, when it is
available, is typically found within a couple of saccades, we use a limit of five saccades
before a time out is signaled. The cycle time between two saccades is currently about 2
seconds when the system is running on a 1.2 GHz Athlon CPU. Additional details on the
attentional and fixation processes can be found in [1].

There are a number of reasons why the system might fail, some of which are critical.
A notable feature of the system, however, is that similar locations may be visited more
than once. If the system fails to successfully fixate upon the requested object the first
time, a second trial may be permitted within a couple of saccades. This highlights the
importance of evaluating the system based on its performance as a whole, rather than on
the individual components. This was done by a large series of experiments using the set
of objects in Figure 5. A database of SIFT feature and colour histograms was created,
with objects viewed from 8 different directions. The experiments were performed in 26
table-top scenes similar to those in Figure 6. Note that the projective sizes of most objects
are very small in comparison to what is typically required for recognition. This was the
original reason for using two separate camera systems, a wide-field system for attention
and a foveal one for recognition.



The complete system was tested with a series of 240 search tasks, each task involving
5 saccades. In order to determine its weaknesses, we then analysed the cause of each
failure. Every object was searched for 10 times, out of which 6 involved the object ac-
tually being located in the scene. In total 32 failures were observed, 25 true and 7 false
ones. In no single search task the requested object failed to be placed in the centre of view
within the time frame of 5 saccades. However, the system failed to properly fixate upon a
requested object on 12 occasions. BesidesDogCar(see Figure 5) these failures involved
either the cushions or the cups. These objects are either textureless or have texture at too
large a scale for corner features, required by the fixation process, to be extracted. The
most difficult object turned out to beBrownCush, which is a brown uniformly coloured
deformable object. Foveated segmentation failed on 6 occasions, all involving the cush-
ions, except forYellCupthat resulted in one failure. This can be explained by the fact that
the cushions always lay flat on the table-top. Image deformations at the visible parts of
the objects are thus large, which complicates stereo matching. This might be resolved by
affine invariant matching, but only at the cost of higher computational complexity.

The false search failures, when an object was being mistaken for a requested one,
were spread among 7 different objects. On one occasion theGiraffe object was mistaken
for theTiger, which is understandable, since their colours and patterns (sic!) are similar.
The remaining errors were caused by single sporadic SIFT features being matched to the
wrong object model, in combination with similarity in colour. A conclusion we can draw
from these results is that more cues ought to be added for recognition, in particular cues
suitable for uniformly coloured objects. We currently investigate the possibility of using
contour segments for this purpose [16].

4.1 Recognition performance

We further analysed the recognition system in isolation, using those saccades in which a
physical object, known or unknown, was successfully fixated. This set constitutes 886 of
the total 1200 saccades. In the remaining cases it was hard to tell what was actually in
fixation. The foveal images were manually annotated with the identity of the segmented
objects. To this set we added an equal number of false object identities, so as to analyse
the false detection results. To the left in Figure 7 two Receiver Operating Characteristic
(ROC) curves can be seen illustrating the detection performance, with and without seg-
mentation, when only SIFT features were used. The improvement due to segmentation
and the use of a relative detection criterion is significant. However, there are still a number
of objects that cause considerable problems. In about 9% of the searches very few SIFT
features could be found. These objects are the same as those for which fixation fails, the
cushions and the uniformly coloured cups.

Similar curves for detection based on colour histograms can be seen in the middle of
the same figure. The curves show two different cases, when the segmentation mentioned
in Section 2 was applied and when a rough segmentation based on the estimated size and
position obtained from the attentional system was used instead. Without any segmentation
whatsoever, the detection scores are practically useless. From the curvature of the ROC
curves we see that SIFT features tend to be more discriminant than colour histograms,
but fail completely if too few features can be extracted. However, for larger false posi-
tive rates, colour histograms are still preferable. The most difficult objects here are the
blue ones,GPSBox, BlueCupandBlueCar. A possible explanation is that the blue colour
channel typically is noisier than the red and green ones. Obviously uniformity in colour
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Figure 7: ROC curves for SIFT based (left), colour histogram based (middle) and com-
bined (right) object detection, with (solid) and without (dashed) foveated segmentation.

does not disqualify colour histograms, even if the histograms we used only measure rel-
ative colours. It seems that, due to image noise, measurements are scattered in different
ways depending on the colour, such that an object still can be recognised.

Since the problematic objects hardly overlap between the cues, one might expect that
a combination of SIFT features and colour histograms could lead to better results. With
the two cues combined using SVM, as described in the beginning of Section 3, the ROC
curves to the right in Figure 7 were obtained. Cross validation was applied to ensure that
training and test sets were kept separated. The results are good indeed and one might
suspect that the similarity between the table-top scenes has affected the results. Never-
theless, a combination still seems to be recommended. More experiments in different
environments have to be performed to draw any quantitative conclusions.

5 Conclusions

We have in this paper studied the problem of figure-ground segmentation in the context
of a recognition system aimed for robotic tasks in the real world. In combination with
an attentional process, earlier described in [1], our system is able to locate, attend to and
recognise objects in cluttered scenes. Evaluation was done based on the performance of
the complete system, not on the individual components. The reason for doing so is that
if a single component fails, the system as a whole might still be functional. Instead of
immediately finding a requested object, it may be found within a couple of saccades. This
has led us to a methodology where methods are benchmarked with the final purpose in
mind. We have earlier applied the same approach to pose estimation and manipulation on
a robotic platform, but with another combination of wide-field and foveal cameras [2].

With a large series of on-line experiments we have shown that recognition based on
both SIFT features and colour histograms benefits from figure-ground segmentation, even
if segmentation is done automatically and sometimes fails. In our opinion this is a more
relevant result, than results assuming segmentation to be of ground truth quality, an as-
sumption hard to satisfy in practical applications. In the future we will spend more efforts
on recognition in particular. Feeding back information from recognition to segmentation
has already been tested, using the system presented in [9], but we have so far been un-
able to show any improved recognition scores due to such a feed-back. For our system to
successfully work in more general environments, recognition ought to be complemented
with additional cues, e.g. shape based cues like contour segments. Finally, learning and
adaptation should be done on all levels of the system, as well as in-between levels.
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