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Abstract

This paper presents a method for fitting constrained models in multiple aerial
images for building reconstruction applications. Compared to previous works,
geometrical constraints are automatically inferred and enforced on the initial
approximate model of building and the final constrained model is inherently
compliant with the detected constraints through an implicit parameterization.
Fitting models in images is performed through automatic matching between
model edges and segments detected in the images. An iterative minimization
enables to search for tleenstrainednodel that minimizes the distance with
this image information. Results show that both the introduction of constraints
on the model and the use of image information allow a significant gain in the
precision of the reconstruction.

1 Introduction

1.1 Context

In the context of urban environments reconstruction from images, taking into account
geometrical properties such as planarity, orthogonality, symmetry or horizontal lines is
a necessary step to improve the quality of reconstruction [15], to ensure topological and
geometrical coherence and to allow visual realism. The application described in this ar-
ticle is part of a global project [19] aiming at automatic building reconstruction from
multiple calibrated aerial images (calibration will be assumed to be known in this arti-
cle). Integration of constraints in this scheme has already shown advantages to select the
best representation among a set of possible models of buildings. This article focuses on
fitting the constrained reconstruction in images once topology is known by integrating
constraints directly inferred on the model and performing matching betmeeleledges
andimagesegments.

1.2 Related Work

For man-made environments reconstruction applications, various approaches try to take
benefit of geometrical constraints to fit 3D models in images. Some authors use model-
based techniques where objects are decomposed into known base primitives grouped to-
gether to build more complex shapes [5, 17, 21, 8, 13, 14]. As models become more
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complex, constraints enforcing is difficult because of redundant constraints and over-
constraints that are not handled in the geometrical definition of the model. More gen-
eral approaches use constraints-based techniques [15, 16, 11, 4, 20, 1] but, due to the
complexity of the problem, they all rely on user intervention for topologaral geomet-

rical description of the structures, which is very time-consuming and often redhibitory for
important areas reconstruction.

In this article, we present an automated solution that avoids user intervention to fit an
approximate 3D model in images with constraints enforcing. Whatever the strategy is,
constraints such as planarity, orthogonality, parallelism, symmetry, horizontality of some
edges can be inferred from the building, eitlepriori using a basis of models synthe-
sizing the knowledge, a posterioriby looking for approximative constraints verified by
the sets of primitives. On the contrary to systems where constraints are embedded in the
Least Square minimization process [20, 1, 15], we use an implicit and automatic model-
ing of the constrained scene before performing minimization as in [4, 11]. Therefore, we
ensure that reconstruction is inherently compliant with the constraints. The method for
matching a 3D model with image data is derived from the local search strategy described
by [2]. More bibliographic references describing other strategies such as key features
search, geometric hashing, or tree search transform can be found in this article. However
local search strategy reveals to be well adapted to our context since images are already
calibrated and an approximate position of the 3D model is known.

1.3 General Scheme
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Figure 1: General scheme for the fitting of a constrained 3D model
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The application presented is dedicated to automatic building reconstruction. There-
fore we focus on constraints recurrent in these environment: parallelisms, orthogonality,
horizontal edges, vertical symmetry. The scheme of the resolution of the problem is sum-
marized in figure 1. First, edges of the 3D model are projected in each image. Then,
segments are extracted from images. Thesmesegments are matched with the pro-
jected edgesnfodeledges). These matched segments are eventually used to compute a
set of main axes. These steps are described in section 2.

At the same time, constraints inferring is performed through a procedure recalled in
section 3 for readability and detailed in [18]. Enforcing constraints on the model is done
through implicit parameterization as described in [11]. Finally, fitting this constrained
model on the axes extracted from images is performed as described in section 4.



2 Model-Image Matching
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Figure 2: Image information extraction. For clarity, only a few matches are visualized in
(c) (modeledges are in white, match@dagesegments in black)

The edged; of the initial 3D model are projected in each imagkeading to the sets
of 2D edges{M } (figure 2.a). Conversely, using classical gradient filters and polygoniza-

tion methods [6 9], a set of segmer{@} are detected in each image (figure 2.b). For
each projected edg\a' the goal is to find a set of matching segmeﬁbm {%} This is
achieved through a procedure derived from Beveridge’s approach [3], which consists in
minimizing a matching energy characteristic of the distance between edges and matched
segments.

For each matching hypothesis betwedh and S, m' (resps,) denotes the vector
represented bM (respSL) x) defines the distance of a poitvith regard to the line
supportingv! i and%(M' S<) deflnes the fraction dT/I; overlapped b)S{< when projected
on M] For eacrmodeledgeMi-, we define three energy terms:
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The first term is related to the geometrical distance betvm}eand S, the second
term defines their direction discrepancy and the third term is related to the oveM%p of

by SL These energies are normalized to be 1 when the edges are at an average squared
distance ofé for Eg, the edges directions form an angleafor Ey, andM' is totally

overlapped byg, for Er. The best matching sezt/' of §, is then defined as the set of
segments that minimizes the global energy:
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Since, with the provisions taken, this energy is separab®, iits minimization is trivial:
a segmentg, is added to;z%j' only if this add makes the global energy decrease thus if



the corresponding energy term is negative. In caseitmagesegments overlap when
projected ori\/l}, only the one that has the lowest matching energy is kept. In this case,
we may indeed assume that one of the two segments is not a correct matching hypothesis.
Some examples of matches obtained through this method are shown in figure 2.c

In the following, we will try to minimize the squared distance between eactel
edgeM} and the matcheiinagesegments in the s&tfj‘. It can be easily proved that this

problem reduces to minimizing the distance betwirand the principal axis?} of
(figure 2.d)..9} is defined as the line supplying the best approximation for a set of given
segments. Using a canonical representation of a lir @3 = —xsin(6;) +ycog6;) —

pj = 0, it boils down to the search of parametéfsandp; minimizing the criteria:
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Wherea, andbj, are extremities of,. We refer the reader to [7] for the solution to this
classical problem.

Because the energies are separable, this method is much faster and simpler to imple-
ment than a simulated annealing or a genetic algorithm running on all possible matchings
as Beveridge proposes in [3]. In practice, the results of the matching process are very
satisfying, except when the model is too far from the reference, or when there is a very
important image segment close to the correct image segment (shadows can so easily dis-
turb the matching steps).

3 Constraints Inferring and Enforcing

3.1 Constraints Inferring

This section briefly recalls the procedures used to infer the constraints from an approx-
imate 3D model. The reader can refer to [18] for more details. As stated previously,
the algorithm assumes an initial approximate 3D model that may come from automatic
algorithms [19] andwvhich topological relationsre known. In a first step, approximate
plane normals of the different facets are clustered, leading to a restricted set of directions
v. The vertical normal is added to these directions because of its obvious importance in
man-made scene. Each facet of the model is then linked to a direction, which will be
useful to build the constrained system.

Constraints between plane normals have to be determined on this reduced set of di-
rections. To achieve this, a so called constraints graph is deduced from these clusters.
In this unoriented graph, each direction is a node and constraints are represented as arcs.
Several types of valued arcs are indeed added between two wodedv; whenever a
condition oforthogonality vertical symmetnyor horizontal lineis approximatively ver-
ified according to an angular threshold. Whereas the clustering step was performed to
handle parallelism properties and horizontal planes, the constraints graph integrates all
the other geometrical constraints that will be applied on the model.



One of the difficulties of methods performing an implicit parameterization of the
model as done in section 3 [4, 11] is that directions must be computed sequentially so
that they can be deduced from some previous ones in the sequence and some constraint
rules. As shown in [4], it is equivalent to orient the constraints grapile ensuring
that no over-constraint occurg.he algorithm described in detail in [18] explicitly builds
this sequence of directions by iteratively integrating the directions (including the vertical
direction) in the sequence and orienting the constraints of the arcs graph. During this pro-
cess, some constraints may disappear because of some possible cases of over-constraints
but heuristic procedures try to maximize the number of constraints kept in the final model.
The dependences graph is the result of the orientation of the constraints graph.
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Figure 3: Approximate 3D building (a) and its schematic representation with directions
(letters) annotated on facets (b) where black circles are initial approximate points that do
not verify constraints and vertical planes making up the border are inferred from them. (c)
shows the result of clustering. (d) and (e) depict constraints graph and dependences graph
respectively. Each arc represents a constraint between two directiatefines the verti-

cal direction, L, = and A symbolize orthogonality, horizontal edge and vertical symmetry
constraints respectively. Grey arcs are constraints suppressed from the graph (see text for
details). The sequence of directions of this dependences grdph5s4,2,6,3,1) and
renumbering can be performed.

From the previous procedure, each direction may thus be numbered so that they can be
computed sequentially, each one being defined by the previous ones and some constraints
applied on it given by edges of the dependences graph. Whenever a dingdgomot
completely constrained by previous directions in the sequence (for instance perpendicular
directions that depend on only one other direction), one assumes that it depends on some
parameter®;. Then rules recalled in [18] enable to sequentially compute each direction
from these parameters and directions of dependences sgeibiaietrical constraints im-
posed to them are verifiedt can also be shown that derivativeés; /d 6y can easily be
deduced. They will be of use in the iterative minimization.

3.2 Geometrical Parameterization

This section mostly recalls principles of the method depicted in [10] and [18] As explained
above, each direction is computed from some paraméterg6] ,...,05]T. Each pair



of points of one facet belong to the same plane which normal is linked to diregtibn
their coordinateXm, Xy, verify the planarity constraint:

VI (Xm—Xn) =0 (4)

Concatenating all the equations for all facets leadB(61,05,...,0p)X = O where
X =[XT,...,X[]" holds all the points coordinates aB@®1,0>,...,0p) aP x N matrix,
holds the geometrical constraints. [10] shows thafraplicit parameterizatiorof the
pointsX is then given by:

X=U(01,0,...,0p)V (5)

with V € RM and whereJ(01,05,...,0p) is a N x M matrix which columns form an
orthonormal basis of the nullspace Bf ThusX implicitly verifies all the geometrical
constraints and/ holds the implicit parameters of the shafigy sequential construction,
the plane normals verify the geometrical constraints anddhysvaluefor V gives a so-
lution for the constrained system. Consequemflyis the number of degrees of freedom
of X.
The unknowns@ andV are collected in a single vect® = [0, V]. [10] shows also pro-
cedures to ensure that this expression is differentiable and%é&®) can be computed
using the partial derivatives of directions and chain rule.

Some over-constraints may occur during this geometrical parameterization. However,
these situations are easily detected and can be dealt with by iteratively removing con-
straints until no more degeneracies or over-constraints occur [18].

4 Fitting the Constrained Model

4.1 Problem Statement

For eachmodeledgeM!, section 2 explains how to extract a main a@iipfrom the image
i. 2; is defined by its unit normal vectar; and its distance to the origjm . Moreover,
the parameterization done in the previous section provides a funt®n giving the 3D
coordinates of all the vertices of the model according to a set of vari@bte$6,V]. We
are now going to explain how we fit this constrained model on the main@]!xis

The goal is to minimize the distance between the projecﬂmpef each edgév; of
the constrained model and the corresponding @fim each image:

Q%@ =3 [, ()7ox Q

where:

d} (x) = —xsin(6}) +ycog8}) — p} = nl.x — p; 7)
is the distance from point to the axis@}. From the computations made in identity 3, it
can be shown thae depends only on the extremities kff;, which are the vertices of
the 3D model projected in each image. The projection matrices are assumed to be known
for all images and the 3D coordinates of the vertices are contain¥d@,). It proves
thus thatQg depends only o®. Let us remark that ifczfj' is empty (noimagesegment
matches the edge; is not defined and the corresponding term is simply omitted in the
sum.



4.2 Numerical Scheme

As in [10] a Levenberg Marquardt (LVM) method is used to minimize the equation (6).
To have a well conditioned numerical scheme, normalization of points coordinates is
performed in 2D and 3D as advised in [12]. For simplicity, notations are not changed in
the following.

From the identities (3) and (7), equation (6) can be rewritten with matrix notations:

Qe(®)= 3 SIINX ~ b ®

wherex' contains the coordinates of edge extremitieMafwhich are the coordinates of
the model vertices projected in imag&l' depends on the normaté to the axisZ, and
b'onpl.

The minimization of (8) by LVM will require to compute its derivatives:

O0Qe(@) =3 D%HNixi (X'(@)—b'||? = Z(Nixi —b")TN'OX OX(©) (9)

0OX can be computed as explained in se‘ction[IB(i is deduced from the classical
projection formula linkingX and its projectior' in imagei:

S HECH I

where 2! is the projection matrix (assumed to be known) of imagé&he derivation
yields:

Al (AIX+B)HC
s ?
LVM can now be run to fit the constrained model on the axes, therefore find th®lest
minimize (8). Results obtained are shown and commented in the next section.

Ox'(X) s=C'X+D' (11)

5 Results

5.1 General Protocol

An example of results is presented in figure 4. In the following benchmarks performed
for simulation purpose, we use a series of images such as (a) and a hand input reference
(b) assumed to be perfect. An initimlodel(c), imperfect by definition is supposed to
come from a general but imprecise reconstruction process. In our case, it is derived from
the reference (b) by adding noise. Finally, (d) shows the application of constraints on
the building without image fitting [18], and (e) the fitting of the constrained model using
image information.

5.2 Evaluation

The validity of our approach has been assessed though several benchmarks. The efficiency
is measured by comparing the result of the fitting with the reference. The distance between
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Figure 4: Result of a fitting process
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Figure 5: Distance to the reference

the models is computed by averaging the distances between the projection of the vertices
of the model and those of the reference. The benchmark was done on 25 buildings, with
a variance for the noise varying from 0 to 1 meter. Moreover, we ran 15 tests for each
building and each value for the noise variance. Finally, the tests consisted in simply
applying the constraints to the model, then applying the fitting, then making a second
pass. The idea underlying this second pass is that the matching process will be more
efficient and have less errors if the model has already been fitted once, so that a second
iteration, relying on a more precise matching will enhance the quality.

In the case of a priori constraints, the figure 5 (a) shows a significant improvement in
comparison to the mere application of constraints, in particular for moderate values for the
noise. In the case of a posteriori constraints, the figure 5 (b) still shows a improvement
through our method, even if less significant. This comes from the fact that the non-
detection of constraints, and especially the detection of wrong constraints penalizes a lot
the process, as this will prevent the constrained building from conforming to the image.
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Figure 6: Other examples of fitting results: model is in black, result of the fitting in white

6 Conclusion

The method presented in this paper automatically fits a constrained 3D model in images.
Constraints are directly inferred from an initial approximate model and the constrained
result is compliant with the provided constraints through implicit parameterization. In the
algorithm depicted here, the model is fitted using images information, and results show
the significant gain in precision obtained compared with the sole application of constraints
on the model.

Several important theoretical problems remain unsolved, especially in the construc-
tion of constrained models. A better formalization of the constraints seems necessary to
avoid the arbitrary suppression of constraints during the constraint graph orientation as it
is done for the moment. This could also lead to a prediction of the degenerescency of the
constrained model during its construction, and to ensure the creation of non-degenerated
constrained models without heuristic procedures.
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