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Abstract

This paper presents a robust approach to non-rigid object tracking in video
sequences. The object to track is described by a 2-dimensional point distribu-
tion model whose landmarks correspond to interest points that are automat-
ically extracted from the object and described by their geometrical position
and their local appearance. The approach is novel in that we describe the ap-
pearance locally instead of using the raw texture information. This provides
a natural way to robustly handle partial occlusions. A second contribution is
that we present a method that allows to learn the model automatically. Our
algorithms have been successfully tested on several video streams taken from
soccer games and video surveillance footage. They have been implemented
with the aim of achieving near real-time performance.

1 Introduction

Object tracking plays a crucial role in many applications such as video surveillance, sports
broadcasts, scene monitoring or medical image analysis. Most current methods are appli-
cation dependent and many of them are based on blobs [10], color histograms [13, 12],
points or contours [18], each of them having its own limitations. In this paper we present
a new model-based approach able to deal with non-rigid objects, partial occlusions and
non-static cameras. The advantage is that no background model needs to be used. We are
particularly interested in highly dynamic scenes with many interacting targets.

We use a new method describing an object by a Point Distribution Model (PDM),
using feature vectors for local appearance instead of the raw texture information. This
situates our approach somewhere between Active Shape Models (ASMs) and Active Ap-
pearance Models (AAMs) [1, 2], thus providing a natural way to robustly handle severe
partial occlusions. Another contribution is a method for automatic landmarking to con-
struct the model while at the same time tracking the object, albeit somewhat less robust
than the model-based. The user only needs to initialize the tracker in the first frame. After
a fixed number of frames the tracker can automatically switch from the learning-phase
tracking to the model-based tracking or save the model for later use.

Section 2 describes how we extract interest points and how we describe their local
appearance. Section 3 introduces the concept of PDMs and explains how they can be ex-
ploited for tracking purposes, while Section 4 shows how PDMs can be constructed from
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different instances of the same object. This requires automatic landmarking by tracking
individual interest points, as described in Section 5. The complete tracking algorithm is
detailed in Section 6 and tracking results obtained for real soccer and video surveillance
sequences are presented in Section 7.

2 Interest points and local appearance

The basic idea of local feature-based approaches is that concentrating on sparse sets of
especially salient image points both saves computation time and improves robustness.
This is particularly interesting for highly non-rigid objects, such as human bodies. We
will use the interest point detector introduced by Harris and Stephens [7], which has been
made invariant to scale changes [3] and affine transformations [11].

We use an extension to color images [6] of the scale-space gray-level Harris corner
detector used by Dufournaud et al. [3]. This color version basically takes the sum of the
autocorrelation matrices of the 3 color channels:
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wherex = (x,y), ci(x,σ) = Gi(σ)⊗ c(x) with c ∈ {r,g,b} and i ∈ {x,y}. Gi(σ) is a
Gaussian-derivative kernel andsh allows to select the scale at which to extract the corner
points, because we want to detect the same points on the object, whatever its size in the
image. Furthermore we define the cornernessK = det(M)−k · trace(M)2 with k = 0.04
as proposed initially by Harris and Stephens. In each frame, we place a rectangular region
of interest (ROI) around our object in which we select theN best points, i.e., theN points
corresponding toN highest local maxima of the cornerness function.

The visual appearance of an image neighborhood can be described by a local Taylor
series. The coefficients of this series constitute a feature vector that compactly represents
the neighborhood appearance [8, 16]. This neighborhood characterization is called the
local jet which up to ordern can be expressed for the pointx = (x,y) as follows:

Jn(x,sh,σd) = {ci1...ik(x,shσd)|k = 0, ...,n} (2)

whereci1...ik(x,shσd) represents the Gaussian color channel derivative relative to thei1...ik
variables (withi j ∈ {x,y}) andshσd the size of the Gaussian smoothing applied during
the derivative computation. Considering the local jet up to order 1, defining one local jet
per color channel and including the interest point position, we obtain the 11-dimensional
feature vector

v =
(

x y r g b rx ry gx gy bx by
)T

(3)

wherev ∈ V with V ⊂ R11. V is called the feature space. As we are using color images
and as our point descriptors vary with rotation, the first-order local jet yields enough
discriminative power to perform good point matching. A key problem in computing the
local jet is to determine the scaleshσd at which to evaluate the image derivatives. The
optimal scale of an interest point on an object depends on the global scale of the object
in the image and of course on the interest point itself. In the present work, we ignore the
second effect and define only a global scale for all points belonging to the object. This
scale is the same as that used for computing the derivatives in the auto-correlation matrix
of the corner detector.



3 Point Distribution Models

When using feature points to track non-rigid objects in video sequences, the most natural
approach is to use PDMs, ASMs or AAMs, which have been introduced by Cootes and
Taylor [1, 2]. They are statistical models of shape and/or appearance that have proven
to be powerful tools for interpreting images, particularly when combined with algorithms
for rapid matching of models to new images. The shape of an object can be interpreted
as all geometric information that remains when location, scale and rotational effects are
removed. There is a difference between ASMs that include only the positions of a set of
points (or landmarks), and AAMs that add the texture of the object to the model. Most
examples in the literature address medical imaging and face modelling, and most of the
time, the landmarks are chosen to lie on the object borders.

We introduce here a somewhat new approach to modelling the objects. Our model
can be considered as an AAM, but we don’t use raw texture information to describe the
appearance. We simplify the appearance of the object by constructing our model from a
set of feature vectors which correspond to extracted points that do not necessarily lie on
the object boundaries. Thus, each shape is represented by a vector

X =
(

vT
1 vT

2 ... vT
N

)T
(4)

that is simply a concatenation of the feature vectors at the interest points detected on the
object in a given frame. As our feature vectors are 11-dimensional, the shape vectors lie in
a 11N-dimensional space, and more precisely on a low-dimensional manifold embedded
in this high-dimensional space. The shape and the dimensionality of this manifold depend
on the nature of the object deformations. For small deformations, we can approximate this
manifold locally by a tangent hyperplane. Under a Gaussian assumption, this is equivalent
to saying that the shape vectors form a low-dimensional Gaussian cloud in shape space.

Tracking is performed by matching the model points with a set of similar feature
points extracted in each frame. This approach is robust to partial occlusions, because only
a subset of the object points need to be visible in order to constrain the model parameters.

4 Constructing a Point Distribution Model

To construct the PDM of a given object, we use a set of shapes (interest point sets) that
describe different instances of the object in question. First of all, the extracted shapes are
aligned using a common approach known asProcrustes Analysis[5]. Shapes in the image
reference frame are denoted by upper-case letters (e.g.X), while the shapes in the model
reference frame are denoted by lower-case letters (e.g.x). Let’s define the similarity
transformTtx,ty,s,α specifying the position(tx, ty), scales and orientationα of the model
instance in the image. The translation and scaling are only applied to thex andy elements
of the feature vectors, whereas the rotation must also be applied to the derivatives of the
color channels. We determine a separateT for each extracted shape such that the sum of
distances of each shape to the mean shape (∑i |xi − x|2) in the model reference frame is
minimized.

To align the shapes, interest points from different instances of the same object must
be brought into correspondence. In many applications such as medical imaging, this
landmarkingis performed by a human operator, whereas in object tracking, it is possible



to exploit the temporal coherence between object instances in consecutive frames using a
motion correspondence algorithm, as described in the next section.

As a second step, to reduce the dimensionality of the data, aPrincipal Component
Analysis(PCA) is performed on the shapes. This is done by computing the eigenvaluesλi

and the eigenvectorsφi of the covariance matrix of the dataS= 1
N ∑N

i=1(xi −x)(xi −x)T

and retaining only the eigenvectors corresponding to thet largest eigenvalues by choosing
t such that∑t

i=1 λi ≥ fvVT where fv defines the proportion of the total variance one wishes
to explain andVT is the sum of all the eigenvalues. We usefv = 0.90. This ignores the
small eigenvalues that in general correspond to noise and very small deformations. For
each shape instance, we can generate the corresponding shape parameter vector

b = ΦT(x−x) = ΦT(T−1(X)−x) (5)

whereΦ = (φ1|φ2|...|φt). Similarly, plausible shapes can be generated with

X̂ = T(x̂) = T(x+Φb) (6)

Limits of ±3
√

λi are usually applied to the parametersbi to avoid unlikely shapes.
In general, it is impossible to track all the feature points through all the frames of

the training sequence. What’s more, the correspondence algorithm described in section
5 is likely to create small gaps in the tracks due to disappearing points. This is a prob-
lem because PCA cannot handle this missing data. The gaps created by the correspon-
dence algorithm are simply filled in by linear interpolation. If the tracks don’t cover the
whole training sequence however, the missing track ends must be estimated by some other
method. The simplest method would be to replace the missing values by the mean of the
data, but this underestimates the variance of the data. Other possibilites include maxi-
mum likelihood estimation. We use the iterated PCA algorithm proposed by Rogers and
Graham [15].

5 Tracking interest points

The output of a motion correspondence algorithm is a set of tracks, where each track
ideally corresponds to a unique point on the object, specifying its position in every frame
from entry to exit in the scene. Most methods first define a motion model and then use
some optimization technique to maximize (minimize) a gain (cost) function based on that
motion model. The methods differ in the choice of their motion model, their optimization
technique, and/or their gain function, while their common property is that they use only
two frames for establishing the correspondences.

Better performance is achieved by using multiple frames to establish the correspon-
dences. Methods such as the Joint Probabilistic Data-Association Filter [4] and Multiple
Hypothesis Tracking [14] suffer from several drawbacks, justifying our choice of a new
algorithm proposed by Shafique and Shah [17], in which thek-frame correspondence
problem is formulated as a graph theoretical problem.

At time t, we consider a window of thek most recent frames. From all the detected
points in thesek frames, a weighted directed graphD is constructed, on which an opti-
mization algorithm is applied, which maximizes the gain over thek frames and is general
enough to be used for a large variety of motion models and cost functions. It is able to
handle all possible combinations of detection errors, occlusion or absence for a maximum



of k−2 frames. The optimization algorithm is equivalent to finding a maximally-weighted
path cover of the directed graphD. This can easily be performed by transformingD into
a bipartite weighted graph [17], for which a maximum-gain matching can be determined
using for example theHungarian method[9], which is O(n3) with n = kN in our case,
assuming thatN points are detected in each frame. We use the gain function

g(Xi
a,X

j
b) = 1−

dM(vi
a,v

j
b)

θ
. (7)

wheredM(vi
a,v

j
b) is the distance between feature vectorsvi

a andv j
b. All edges with nega-

tive weights are ignored, meaning that matchings with distances aboveθ are impossible.
In this way,θ acts as a threshold for the distancedM. Furthermore in our formulation we
do not use a motion model for the points.

When comparingν-dimensional data vectorsvi (our 11-dimensional feature vectors)
drawn from a Gaussian distribution, the most natural metric is the Mahalanobis distance

d2
M(v1,v2) = (v1−v2)TC−1(v1−v2) (8)

wherev1,v2 ∈V. A frequent situation is whenv2 is equal to the cluster meanv. The most
critical part in the Mahalanobis distance is the computation of the covariance matrixC.
An analytical expression is not always available which is why it must often be estimated
from the available data. The covariance matrix takes into account magnitude differences,
possible correlations between the different vector components and of course the noise
affecting them. The quality of this estimate strongly influences the results. There are
different approaches to estimation that can mainly be classified into two categories:

Window size 2, corresponding to the classical situ-
ation of the two-frame correspondence problem.

Window size 9. It is possible now to overcome gaps
in the tracks (up to a size of 7 frames in this exam-
ple), yielding much longer tracks.

Figure 1: Synthetic example for the feature point tracking algorithm for different window
sizes. 16 points rotate clockwise about the image center. The points’ local appearance is
randomly chosen (between 100 and 150 for the rgb values and between –10 and 10 for
the derivatives) and a strong Gaussian noise is added (standard deviation of 5.0 for the rgb
values and of 1.0 for the positions and the rgb derivatives). Additionally, the points may
disappear in each frame with a probability of 0.2.



1. Define one uniqueC and estimate it from all the available data. This is equivalent to
saying that all the feature vectors are drawn from one unique Gaussian distribution.
This simple solution generates non-discriminative weights and gives only a rough
model of noise. This is the approach we use for learning the model.

2. A more sophisticated way is to create a distinct covariance matrixCi for each point.
This is equivalent to saying thatk different interest points generatek Gaussian clus-
ters in feature space. In this case the covariance matrices can either be computed
analytically using an appropriate noise model, or each one can be estimated from
the feature vectors belonging to the interest point in question. We use this method
during the model-based tracking, described in the next section.

Under a Gaussian assumption, the Mahalanobis distances are drawn from aχ2
ν distri-

bution, whereν is the dimensionality of the feature space. As our feature vectors are
11-dimensional, for the rest of this paper we will be usingχ2

11. Outliers are rejected by
fixing the thresholdθ ondM.

Figure 1 demonstrates the performance of the point tracking algorithm.

6 Tracking with Point Distribution Models

Once we have learned the model, we can use it to perform tracking according to the
following algorithm which is applied to each frame:

1. In the current frame extract interest points that lie inside the ROI from the previous
frame.

2. Initialize the pose and the shape parameters with the final values obtained at the
previous frame.

3. Match every model point with the best nearby interest point in the image. As in
Section 5, we use the Mahalanobis distance and the Hungarian method to perform
the matchings. Contrary to the training phase, each model point is represented by a
Gaussian cluster, each having its own covariance matrixCi as explained in Section
5. TheCi are simply extracted from the global covariance matrixS.

4. Update the model parameters(tx, ty,s,α,b) such as to minimize|Y•−T(x•+Φ•b)|2
whereY• is a vector combining only the currently matched image feature vectors
and wherex• andΦ• contain only the rows ofx andΦ corresponding to the matched
model points.

In the first frame, the tracking algorithm is initialized manually or with pose and
shape parameters obtained in the last frame of the training sequence. Altough we use a
least-squares approach, if the model is well initialized, the algorithm is robust to outliers,
because outliers are not likely to be matched and the minimization is only performed on
the correctly matched points. As no filter is used, the best predictions of the ROI position
and the model parameters are those from the previous frame. Note that during tracking,
the matchings are not performed between different frames, but between the current frame
and the model.



7 Experimental Results

We demonstrate the performance of our tracking system on a challenging corner sequence
of a soccer game. The model construction of a soccer player from this sequence is illus-
trated in Fig. 2. Image (a) shows the initial frame in which the region of interest is selected
manually. Image (b) shows point tracks after a training sequence of 40 frames. Section
5 explained how these tracks are created. The length of the training sequence is fixed a
priori. Twenty tracks of lengths between 25 and 33 frames are retained to construct the
model. Shorter tracks are discarded. During the training sequence, the player is tracked
automatically by centering the region of interest on the center of gravity of the matched
points. Image (c) displays the positions of the points of the aligned shapes and images (d)
to (f) show the first mode of variation of a total of 10 modes retained for this particular
example. On each point is superimposed a small patch indicating its local appearance.

The sequence illustrating the tracking has a length of 400 frames. During the whole
sequence, the camera is almost static, but the tracked player undergoes various occlusions
which become very severe after frame 220. Our tracker is able to recover from each of
those occlusions, because if the current estimate of the model is not too far from the real
points, the model is attracted by them. It is important to note that our tracker continues to
follow the right player in situations where methods based on blobs, histograms or contours
would be likely to fail.

Figure 3 shows 10 key frames of the sequence. Towards the end of the sequence, the
tracker becomes unstable, meaning that it doesn’t match the target very well. The first
reason for this is that the tracked player performs an out-of-plane rotation (not learned
by our model) and the second reason is that the occlusions become too severe and the
movements very fast and chaotic. The first problem can be solved by replacing the 2-
dimensional model by a 3-dimensional one whereas the second one could be addressed
by applying an appropriate filter on the models pose and shape parameters.

From Fig.4(a), displaying the temporal evolution of the player position, it can be
stated that the extracted trajectories are very smooth, and this without any filtering of
the parameters. This is because our model-based tracker has a self-stabilizing effect, due
to the simultaneous tracking of many different points on the object. The model scale is
shown on Fig.4(b). Its mean value decreases slighty towards the end of the sequence,
because the player walks away from the camera. The scale increases strongly during the

Figure 2: Creating the model (from left to right): (a) the initial frame, (b) the last frame of
the training sequence with the point tracks, (c) the aligned shapes, (d)–(f) the first mode
of variation where a small patch indicates the local appearance of each point.
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Figure 3: Tracking a soccer player. The images correspond from left to right and from top
to bottom to every 40th frame of a 400 frame sequence. In each image, the red patches
indicate the position of the model points, the white patches indicate the currently extracted
points and the green rectangle represents the current region of interest.

partial occlusion around frame number 100, because some model points are matched with
the occluding players, as they are very similar both in pose and appearance. This effect
is generally not seen if the occluding objects are different. Tests on other sequences have
shown that the object scale can be correctly estimated even if it is partially occluded.
Currently the scale of the corner detectorsh is not linked to the model scales. Doing so
would probably further improve the tracking results. Figure 4(c) demonstrates thatα is
close to 0 all over the sequence, except during the full occlusions. In particular cases, such
as walking or running people, the tracking performance can be improved by constraining
α to a value close to 0. From Fig. 4(d) it can be seen that the incorrect values ofs andα

are correlated with low numbers of matches. As the model has 4 pose parameters andt
shape parameters, yielding a total oft +4 degrees of freedom, we require at least(t +4)/2
matches (7 in our case) in order to constrain the model.

Figure 5 contains another tracking example taken from the first 2001 PETS sequence.
It demonstrates that the tracker can be used for any kinds of objects, such as cars for
example. During the occlusion by the car, the occluded points of the person are correctly
predicted by the model.

Our implementation of the tracking algorithm reaches a processing speed of 6 to 8
frames/second on a standard 1.7 GHz computer, depending on the size of the region of
interest. Optimizing the code should allow for real-time performance.



Figure 4: Evolution of the different parameters over the whole sequence. Top left: Player
position (x, y, t). Top right: Scales(t). Bottom left: Angleα(t). Bottom right: Number
of matched model points.

8 Conclusions and future work

We have introduced a new tracking approach based on a model that lies somewhere be-
tween ASMs and AAMs, because it contains only local appearance information. The
proposed approach is particularly robust to partial occlusions and insensitive to camera
motions and scale changes. No background modelling is required. The model is learned
automatically by tracking individual interest points during the training phase. User inter-
action is only required at initialization. Our method suffers from some limitations that we
are trying to overcome in our future research:

• Our current system uses only a 2-dimensional model of the objects. For that reason
it is unable to cope with objects turning around (rotation axis parallel to the image
plane). We are currently extending our model to the general 3D case.

• At the moment, no filtering is used to predict the pose parameters. Our research fo-
cuses on filtering combined with matrix perturbation theory to correctly model the
process and measurement covariances. Filtering will make the model stable enough
so that we can link the corner detector scale to the model scale, thus eliminating the
constraint of a roughly constant target size.
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