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Abstract

To solve theSmall Sample Size(SSS) problem, the recent linear discriminant
analysis using the 2D matrix-based data representation model has demon-
strated its superiority over that using the conventional vector-based data rep-
resentation model in face recognition [7]. But the explicit reason why the
matrix-based model is better than vectorized model has not been given un-
til now. In this paper, a framework of Generalized 2D Fisher Discriminant
Analysis (G2DFDA) is proposed. Three contributions are included in this
framework: 1) the essence of these ’2D’ methods is analyzed and their re-
lationships with conventional ’1D’ methods are given, 2) a Bilateral and 3)
a Kernel-based 2D Fisher Discriminant Analysis methods are proposed. Ex-
tensive experiment results show its excellent performance.

1 Introduction

Fisher Linear Discriminant (FLD), sometimes known as Linear Discriminant Analysis
(LDA), has been widely used in pattern recognition [1] and image retrieval [13] for feature
extraction. The objective of FLD is to find the optimal projection which maximizes the
between-class scatter and meantime minimizes the within-class scatter of the projected
samples. However, the within-class covariance is always singular due to the SSS problem
[3], making the direct implementation of the classical FLD impossible.

To overcome the limitation of the SSS problem in LDA, a few techniques have been
proposed such as the pseudo-inverse LDA [11], two-stage LDA [1, 13], regularized LDA
[10] and generalized SVD based LDA [4, 16]. Among these approaches, the two-stage
LDA has received much more attention than the other LDA extensions. In this method, an
intermediate Principal Component Analysis (PCA) step is implemented before the LDA
step. The high dimensional data are projected to a low dimensional subspace and then
LDA is performed in this space. Although the scatter matrix in question can be of full-
rank after the PCA step, the removed subspace contains some useful information, and this
removal will result in a loss of discriminative information. To solve the same problem
in the two-stage LDA, Direct-LDA (D-LDA) [17], Null-space based LDA (N-LDA) [5]
and Discriminant Common Vector based LDA (DCV) [2] have been proposed.
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However, all the above LDA techniques adopt the vector-based data representation
model. The resulting feature vectors usually have a high dimensionality. The between-
class covariance matrix,Sb, and the within-class covariance matrix,Sw, are generally
singular due to the small number of training samples. Recently, inspired by the Two-
Dimensional Principal Component Analysis (2DPCA) [14] and its generalized version
[6]. The Two-Dimensional Fisher Discriminant Analysis (2DFDA) [7] has been proposed
and achieved more promising results than conventional LDA-based methods. The Fisher’s
criterion is adopt in 2DFDA to find the optimal discriminative projection axes. TheSb
andSw in 2DFDA are generally not singular.

However, there exist several points that deserve to be further investigated. Firstly, the
essence of 2DFDA has not been given explicitly to explain the reason why 2DFDA is
better than conventional LDA. Secondly, 2DFDA is a method of extracting the optimal
discriminant directions via a unilaterally left-multiplying operation. However, it can be
found that in the left-multiplying U2DFDA, the computations ofSb andSw solely em-
phasize the dependency (correlation) among the columns of the image matrices while
neglects that among the rows. Thirdly, 2DFDA is a linear method, which neglects the
higher-order statistics among the row/column vectors of the images. It is well known
that the object/face appearances lie in a nonlinear low-dimensional manifold when there
exist pose or/and illumination variations [8]. 2DFDA cannot effectively model such a
nonlinearity, and this prevents it from higher recognition rate. Accordingly, a framework
of generalized 2DFDA (G2DFDA) is proposed in this paper to overcome the drawbacks
in the standard 2DFDA. Firstly, the essence of the 2DFDA is given. Secondly, a bilateral
2DFDA is proposed to consider both the correlation among the rows/columns of the im-
age matrices. Thirdly, with the inspiration of the current kernel subspace representations,
such as Kernel PCA (KPCA) [12], Kernel 2DPCA [6], Kernel FDA (KFDA) [15] and
Kernel Direct Discriminant Analysis (KDDA) [9], a Kernel-based 2DFDA (K2DFDA) is
investigated.

The rest parts of this paper are as follows: section 2 reviews the original 2DFDA
[7] algorithms and give the essence of 2DFDA. The Bilateral 2DFDA and Kernel-based
2DFDA are proposed in Section 3 and 4. Experimental results in face recognition and
discussions are presented in section 5. Conclusions are given in the last section.

2 2D Fisher Discriminant Analysis

Let W = [w1,w2, ...,wd] denote anm×d matrix, wherewi is a column vector. The idea
is to project imageX, anm×n matrix, ontoW by Y = WTX. Thus, we obtain ad×n
feature matrixY for X. The discriminatory power ofW can be measured by

J(W) =
det(PSb)
det(PSw)

=
det(WTSbW)
det(WTSwW)

(1)

wherePSb andPSw are the between- and within-class covariance of the projected samples
respectively.Sb=∑L

i=1Li(M i −M) (M i −M)T andSw=∑L
i=1 ∑Li

j=1
(X j

i
−M i) (X j

i
−M i)

T .

The vectors inW that maximize Eq.1 are called the optimal discriminating projec-
tion axes. Because the covariance matrices in 2DFDA are not singular anymore [7], the
solution to Eq.1 can be obtained by solving a generalized eigenvalue problem.



2.1 The Essence of 2DFDA

Since the projection is a left-multiplying unilateral operation, the 2DFDA in this way
is called Left-multiplying Unilateral 2D Fisher Discriminant Analysis (LU2DFDA). We
notice that the covariance matrices in the LU2DFDA appears to be physically meaningful
in the matrix space rather than in the vector space. However, Theorem 1 will give another
perspective to make the LU2DFDA physically meaningful even in vector space.
Theorem 1: The LU2DFDA performed on the image matrices is essentially the conven-
tional LDA method performed on the columns of the image matrices if each column is
viewed as a computational unit.
Proof : Another form ofSw can be written asSw = ΦSwΦT

Sw. ΦSw= [φSw
1 ,φSw

2 , · · · ,φSw
L ],

andφSw
i = [(X1

i −M i), · · · ,(XLi
i
−M i)]=[((X1

i (:,1)−M i(:,1)), · · · ,((X1
i (:,n)−M i(:,n)))

, · · · ,((XLi
i

(:,1)−M i(:,1)), · · · ,(XLi
i

(:,n)−M i(:,n)))], whereX j
i

is the j-th training sam-
ple in thei-th class, andA(:, i) is thei-th column of matrixA. Therefore,Sw is constructed
directly by the columns of the centered training image matrices. Similarly,Sb is also con-
structed using the columns.

Therefore, the LU2DFDA performed on the image matrices can be viewed as the
conventional FLD performed on the columns of all the training samples.

Hence, the optimal projection vectorsWopt can be obtained by directly solving the
following generalized eigen-value problem.

S−1
w SbWopt = ΛWopt (2)

whereΛ is the diagonal matrix whose diagonal elements are eigenvalues ofS−1
w Sb.

Like 2DPCA [14], the nearest-neighborhood classifier method is adopted for classi-
fication. In conventional LDA based methods, the feature dimension for classification is
fixed to (C− 1), whereC is the number of classes. However, in 2DFDA, the optimal
number ofFisher feature vector, d, is not fixed. Since theSw is invertible,d can be at
most equal to the image’s height. However, the optimald for classification is database-
dependent, i.e., the optimald is different for different databases. In our experiments, we
will discuss the optimal dimensions for different databases.

3 Bilateral 2DFDA

The above section describes a method of extracting the optimal discriminant directions
via a left-multiplying U2DFDA. What if the projection is a right-multiplying operation?
That is,

Y = XW (3)

In fact, it is trivial to check that the right-multiplying U2DFDA can be converted
into left-multiplying U2DFDA by transposing the image matrix. Therefore, the right-
multiplying Fisher feature matrixYr = XW r andWr can be obtained using Eq.2, where
Sb=∑L

i=1Li(M i −M)T (M i −M) andSw=∑L
i=1 ∑Li

j=1
(X j

i
−M i)

T (X j
i
−M i).

Will the left- and right-multiplying U2DFDA achieve the same recognition rate or
will they recognize the same batch of face images? Our experimental results show that
sometimes they have the same recognition rate, but most of the time, their performance
is different. The reason is that the calculations ofSb andSw are different in the left- and



right-multiplying U2DFDA. It can also be found that either in left-multiplying U2DFDA
or right-multiplying U2DFDA, the calculations ofSb andSw solely emphasize the depen-
dency among the row or column vectors of the image matrix and neglects the other one.
Therefore, it may lose some information which is helpful for discrimination. Considering
this, a bilateral-projection scheme which is called Bilateral 2D Fisher Discriminant Anal-
ysis (B2DFDA) is proposed by combiningY l = WT

l X andYr = XW r , whereW l = [wl
1,

wl
2, · · · ,wl

dl
], Wr = [wr

1,w
r
2, · · · ,zwr

dr
] are the left- and right-multiplying optimal projec-

tion vectors respectively,dl is the number of left-multiplying projection directions and it
can be equal to the image’s height at most.dr is the number of right-multiplying projec-
tion directions and it can be equal to the image’s width at most.

After performing the left- and right-multiplying U2DFDA,Y l andYr are obtained for
each image. They are combined together for recognition. The steps for recognition is as
follows: firstly Y l andYr are transformed into 1D vectors for each images, then PCA is
applied onto these vectors. Finally, two shorter vectors can be obtained for each image
and they are combined into one vector for classification.

4 Kernel-based 2D Fisher Discriminant Analysis

Without losing generality, we take the kernelization of LU2DFDA as an example. The
kernelization of RU2DFDA is similar to that of LU2DFDA. For the sake of simplicity, it
is assumed that all the mapped data are centered. Similar to KFDA, a nonlinear mapping
without explicit form is performed. Different from KFDA, this mapping is performed on
each row vector of all the training and test image matrices, i.e., letΦ : Rt → R f , f > t,
be a nonlinearly mapping on each row of the image, wheret is the length of the rows of
an image andf can be arbitrarily large. The dot product in the feature space ofR f can
be conveniently calculated via a pre-defined kernel function, such as the commonly used
Gaussian RBF kernel function. LetΦ(X j

i
) be the j-th mapped image of thei-th class.

Φ(X j
i
(:,k)) be thek-th column vector of it.Φ(M) is the mapped mean of all the training

samples.Φ(M i) is the mapped mean ofi-th class.
Theorem 2: The above defined kernelized 2DFDA on the images is essentially the KFDA
performed locally on the columns of all the training image matrices.
Proof: The within-class covariance matrix,SΦ

w and the between-class covariance matrix,
SΦ

b , in R f are:

SΦ
w =

L

∑
i=1

Li

∑
j=1

(Φ(X j
i )−Φ(M i))(Φ(X j

i )−Φ(M i))
T (4)

SΦ
b =

L

∑
i=1

Li(Φ(M i)−Φ(M))(Φ(M i)−Φ(M))T (5)

To perform Fisher discriminant analysis inR f , it is equivalent to maximizing:

J(~ω) =
~ωTSΦ

b ~ω
~ωTSΦ

w~ω
(6)

Because any solution~ω ∈ R f must lie in the span of the columns of all the training



samples, i.e., there exist coefficients~α = [α1,α2, ...,α(n∑L
i=1 Li)

]T such that,

~ω = [[Φ(X1
1(:,1)),Φ(X1

1(:,2)), ...,Φ(X1
1(:,n))],

, ..., [Φ(XLi
L

(:,1)),Φ(XLi
L

(:,2)), ...,Φ(XLi
L

(:,n))]]~α (7)

Therefore, the projection ofΦ(M i(:,k)), thek-th column of thei-th class mean, onto
~ω, i.e.,~ωTΦ(M i(:,k)), can be written as:

~αT




Φ(X1
1(:,1))T

Φ(X1
1(:,2))T

· · ·
Φ(XLi

L
(:,n))T




1
Li

Li

∑
j=1

Φ(M j
i )(:,k) = ~αTM k

i (8)

and the projection ofΦ(M(:,k)), thek-th column of the total class mean, onto~ω, i.e.,
~ωTΦ(M(:,k)) can be written as

~αT




Φ(X1
1(:,1))T

Φ(X1
1(:,2))T

· · ·
Φ(XLi

L
(:,n))T




1

∑L
i=1Li

L

∑
i=1

Li

∑
j=1

Φ(M j
i (:,k)) = ~αTM k (9)

Thus, the numerator of Eq.6,~ωTSΦ
b ~ω , can be converted into:

~ωT(
L

∑
i=1

Li(Φ(M i)−Φ(M))(Φ(M i)−Φ(M))T)~ω = ~ωTQQT~ω (10)

where
Q = [(

√
L1(Φ(M1)−Φ(M))), ...(

√
LL(Φ(ML)−Φ(M)))] (11)

Or it can be written in another form,

~ωTQQT~ω = ~αTKb~α (12)

whereKb = ∑L
i=1Li(Mi −M )(Mi −M )T andKb is an(n∑L

i=1Li)× (n∑L
i=1Li) matrix,

Mi = [M 1
i , ...,M n

i ] andM j
i

= [Φ(X1
1(:,1)),Φ(X1

1(:,2)), ..., Φ(XLi
L

(:,n))]TΦ(M i(:, j)).
Similarly, the denominator of Eq.6,

~ωTSΦ
w~ω = ~αTKw~α (13)

whereKw = ∑L
i=1 ∑Li

j=1
(X j

i
−Mi)(X

j
i
−Mi)

T , X j
i

= [X j
i
(:,1), ...,X j

i
(:,n)], andX j

i
(:

,k) = [Φ(X1
1(:,1)),Φ(X1

1(:,2)), ..., Φ(XLi
L

(:,n))]TΦ(X j
i
(:,k))

Thus, the maximization of Eq.6 is converted into

J(~α) =
~αTKΦ

b~α
~αTKΦ

w~α
(14)

Similar to FDA, this problem can be solved by finding the leading eigenvectors of
K−1

w Kb if the Kw is not singular. Therefore, the K2DFDA performed on 2D image matri-
ces is essentially the KFDA method performed on the columns of all the images if each
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Figure 1: Comparison between U2DFDA and B2DFDA with different number ofFisher
feature vectors. (a) and (b): Two and three training samples respectively for each subject
onORLdatabase; (c) and (d): Two and three training samples respectively for each subject
on YaleB.

column is viewed as a point in the vector space. Because the derivation above is based
on the LU2DFDA, it is called KLU2DFDA. Similarly, the K2DFDA derived based on the
RU2DFDA is called KRU2DFDA. We can also found that the KRU2DFDA is essentially
the KFDA method performed on the rows of all the images if each row is viewed as a
point in the vector space.

However, because of the intrinsic shortcoming in constructing theKw, Kw is singular.
To solve this problem, theKw is replaced byKw + λ I , whereλ is a very small number
andI is the identity matrix.

Similar to B2DFDA, a left-projection and a right-projection feature matrices can be
obtained in K2DFDA. For KLU2DFDA, we project each column of the images to get the
left-projection discriminant feature matrix for each image. For KRU2DFDA, we project
each row of the images to get the right-projection discriminant feature matrix for each
matrix. Therefore, a Kernel based B2DFDA (KB2DFDA) can be used further by com-
bining the KLU2DFDA and KRU2DFDA. In classification, the two feature matrices are
combined together for recognition via the nearest-neighborhood classifier as in B2DFDA.

5 Experimental Results and Discussions

The proposed B2DFDA and K2DFDA methods are applied to the face recognition and
are evaluated on three well-known face databases:ORL, UMIST andYaleB(Yale Face



Table 1: Performance comparison onORLdatabase
1 2 3 4 5

KPCA 69.5 82.5 88.8 92.1 94.2
LDA 75.8 87.0 90.1 91.7
KLDA 85.5 92.2 95.6 97.5
2DPCA 72.5 84.5 89.9 93.1 95
K2DPCA 74.5 86.9 92.0 94.6 96.2
N-LDA 74.3 82.9 87.0588.7
D-LDA 80.6 85.6 89.5 91.7
KDDA 85.0 88.6 92.8 96.0
U2DFDA 87.4 92.5 95.1 96.3
B2DFDA 87.7 92.7 95.2 96.8
KB2DFDA 89.9 95.0 97.2 98.5

Database B) face databases.ORL face database contains images from 40 individuals,
each providing 10 different images.UMIST face database consists of 564 images of
20 people with large pose variations. In our experiment, 360 images with 18 samples
for each subject are used to ensure that face appearance changes from profile to frontal
orientation with a step of5◦ separation (labelled from #1 to #18). Yale Face Database
B contains 5760 images of 10 subjects each seen under 576 viewing conditions (9 poses
x 64 illumination conditions). In our experiment, altogether 640 images for 10 subjects
are used (64 illumination conditions under the same frontal pose). All the images are
grayscale. The images inORL andUMIST databases are normalized to a resolution
of 56×46 pixels. The images of theYaleBdatabase are normalized to be the size of
50×40. ORL database is employed to check whether the proposed methods have good
generalization ability under the circumstances that the pose, expression, and face scale
variations exist concurrently. TheUMIST andYaleBface databases are used to examine
the performance when face orientation and illumination vary significantly respectively.

5.1 U2DFDA vs. B2DFDA

Without losing generality, the right-multiplying mode is used as an example for U2DFDA.
The maximum size of theFisher feature matrixis 56×46 for ORL database, i.e., con-
taining at most46 56-dimensionalFisher feature vectors; for Yale face database B, the
maximum size of theFisher feature matrixis 50× 40, i.e., containing at most40 50-
dimensionalFisher feature vectors. We change the number ofFisher feature vectorsfrom
1 to 46 forORLdatabase and from 1 to 40 for Yale face database B to see the effect on
performance. We focus on testing the performance of 2DFDA when there are only few
training samples for each subject, say, only 2 and 3 training samples for each subject.
Fig.1 (a) and (b) show the performance of U2DFDA onORLdatabase. The optimal num-
ber of theFisher feature vectorsin both trials is 3. Fig.1 (c) and (d) show the performance
of U2DFDA on Yale face database B. The optimal number of theFisher feature vectors
in the two trials is 31 and 27 respectively. From the experiment results, it can be seen that
the optimal number ofFisher feature vectorsfor classification in U2DFDA is different on
different database. Even on the same database, the optimal number will vary when the
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Figure 2: Performance comparison onYaleB

number of training samples for each subject is different. By fixing the optimal number of
theFisher feature vectorsof the right-multiplying U2DFDA, we change the number of the
Fisher feature vectorsof the left-multiplying U2DFDA (from 1 to 56 forORL database
and from 1 to 50 for Yale face database B) and apply B2DFDA. Fig.1 (a) and (b) show
the comparison of B2DFDA and U2DFDA onORLdatabase while Fig.1 (c) and (d) show
the comparison results on Yale face database B. From these experiments, it can be found
that B2DFDA can achieve higher recognition rate than U2DFDA, e.g., with an increase
of up to 5 percentage onYaleB. We also notice that the improvement of B2DFDA over
U2DFDA onYaleBis larger than that onORL.

5.2 Recognition performance comparison onORL, YaleBand
UMIST

To test the recognition performance with different training numbers onORLandYaleB, k
(2≤ k≤ 5) images of each subject are randomly selected for training and the remaining
(p-k, for ORL, p = 10; for YaleB, p = 64) images of each subject for testing. 50 times of
random selections are performed for eachk. The final recognition rate is the average of
all. The performance of B2DFDA and K2DFDA compared with that of the state-of-the-art
methods is listed in the Table 1 and Fig.2.

Two experiments, with small number of training samples (2 and 3), are conducted
onUMIST database. When the number of training samples for each individual is 2, we
select{#5,#14} face images of each subject for training, the remaining for test. When
the number of training samples is 3 for each subject, six groups are selected for train-
ing, i.e., 1{#1,#7,#13}, 2{#2,#8,#14}, 3{#3,#9,#15}, 4{#4,#10,#16}, 5{#5,#11,#17} and
6{#6,#12,#18}, the remaining images corresponding to each group are used to test. The
performance of the B2DFDA and K2DFDA is compared with that of the state-of-the-art
methods in the Table 2. In Fisherface [1], the size of PCA subspace is constrained to
(N−C), the classification dimension is set to be(C−1), whereN is the total number of
the training samples,C is the number of the classes. In D-LDA [17] and N-LDA [5], the



Table 2: Performance comparison onUMIST database
#5, #1, #2, #3, #4, #5, #6,
#14 #7, #8, #9, #10, #11, #12,

#13 #14 #15 #16 #17 #18
KPCA 80.9 86.0 87.0 91.0 92.0 89.3 87.3
LDA 77.5 90.0 91.3 95.0 96.3 94.3 91.7
KLDA 92.5 94.7 96.7 98.3 99.0 98.0 97.3
2DPCA 90.3 91.0 93.0 95.0 95.0 93.7 92.3
KDDA 87.8 94.0 96.0 95.7 97.3 95.7 95.7
K2DPCA 92.7 94.0 94.3 95.7 97.0 95.7 94.0
U2DFDA 89.3 93.7 96.7 96.7 96.7 95.0 94.0
B2DFDA 91.3 96.3 96.7 97.3 97.0 95.7 96.0
KB2DFDA 93.8 97.5 97.6 98.4 98.6 96.9 97.8

classification dimensions are both set to be(C−1). In 2DPCA and U2DFDA, we try to
find the optimal numbers ofEigen feature vectorandFisher feature vectorwhich give
the best classification. In B2DFDA, the numbers of the right- and left-multiplyingFisher
feature vectorare set to be equal, both being the optimal number in U2DFDA. In KLDA,
the dimension for classification is reserved to be(C−1).

The Gaussian RBF kernel is adopted in the K2DPCA [6] and K2DFDA in all the ex-
periments, the optimal results are achieved when the width,δ , of the kernel is around
2.718. Through experiments, we find that B2DFDA is better than U2DFDA, K2DFDA
achieves the best recognition performance in all the experiments. We also find that
B2DFDA is superior to the 2DPCA, K2DPCA, FDA/LDA, N-LDA, D-LDA and KDDA.
B2DFDA is even comparable to KLDA. OnORL, 2DPCA is better than KPCA, LDA,
N-LDA and D-LDA. However, onYaleB, the performance of 2DPCA is inferior to LDA-
based algorithms. This verifies what we have analyzed previously that 2DPCA is sensitive
to illumination variations.

6 Conclusions

A framework of G2DFDA is proposed to extend the original 2DFDA in three ways: firstly,
the essence of 2DFDA is clarified. Secondly, an asynchronously B2DFDA scheme is in-
troduced so that both the discriminative information encoded in rows and columns is
extracted. Thirdly, a K2DFDA scheme is proposed to remedy the shortage of 2DFDA
in exploring the higher-order statistics among the input rows/columns. Extensively ex-
perimental results shows that this generalization enhances the recognition performance
compared with the current subspace methods.
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