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Abstract

The spectrum of a graph has been widely used in graph theory to characterise
the properties of a graph and extract information from its structure. It has
been less popular as a representation for pattern matching for two reasons.
Firstly, more than one graph may share the same spectrum. It is well known,
for example, that very few trees can be uniquely specified by their spectrum.
Secondly, the spectrum may change dramatically with a small change struc-
ture. In this paper we investigate the extent to which these factors affect
graph spectra in practice, and whether they can be mitigated by choosing a
particular matrix representation of the graph.

There are a wide variety of graph matrix representations from which the
spectrum can be extracted. In this paper we analyse the adjacency matrix,
combinatorial Laplacian, normalised Laplacian and unsigned Laplacian. We
also study the use of the spectrum derived from the heat kernel matrix and
path length distribution matrix. We investigate the cospectrality of these ma-
trices over large graph sets and show that the Euclidean distance between
spectra tracks the edit distance over a wide range of edit costs, and we analyse
the stability of this relationship. We then use the spectra to match and clas-
sify the graphs and demonstrate the effect of the graph matrix formulation on
error rates.

1 Introduction
The spectrum of a graph has been widely used in graph theory to characterise the prop-
erties of a graph and extract information from its structure. They have been much less
widely employed as a graph representation for matching and comparison of graphs. There
are two main reasons for this, firstly, more than one graph may share the same spectrum.
Secondly, the spectrum may change dramatically with a small change structure. While
these factors count against the spectrum, they may or may not be a factor in practical
graph matching problems.

Graph structures have been used to represent structural and relational arrangements
of entities in many vision problems. The key problem in utilising graph representations
lies in measuring their structural similarity. Many authors have employed the concept of
graph edit distance. In recent work[14, 15, 7], we have shown how spectral features can
be found which can characterise a graph and which can be used for graph comparison.
This approach is based on spectral graph theory, which is a branch of mathematics that is
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concerned with characterising the structural properties of graphs using the eigenvectors
of the adjacency matrix or the closely related Laplacian matrix (the degree matrix mi-
nus the adjacency matrix) [2]. One of the well known successes of spectral graph theory
in computer vision is the use eigenvector methods for grouping via pairwise clustering.
Examples include Shi and Malik’s [11] iterative normalised cut method which uses the
Fiedler (i.e. second) eigenvector for image segmentation and Sarkar and Boyer’s use of
the leading eigenvector of the weighted adjacency matrix [9]. Graph spectral methods
have also been used to correspondence analysis. Kosinov and Caelli[5] have used prop-
erties of the spectral decomposition to represent graphs and Shokoufandeh et al[12] has
used eigenvalues of shock graphs to index shapes. We have previously shown[14, 15] how
permutation invariant polynomials can be used to derive features which describe graphs
and make full use of the available spectral information.

The spectrum of a graph is generally considered to be too weak to be a useful tool for
representing the graph, main due to the result of Schwenk[10] who showed that for trees
at least, a sufficiently large tree nearly always has a partner with the same spectrum. Trees
therefore cannot be uniquely defined by the spectrum. However, it is not known to what
extent this is a problem in practice. Computational simulations by Haemers et al[13] have
shown that the fraction of cospectral graphs reaches 21% at 10 vertices (for the adjacency
matrix) and is less for 11 vertices, which is the limit of their simulations. While far from
conclusive, their results suggest that it may be possible that nearly all graphs do have a
unique spectrum.

A number of alternative matrix representations have been proposed in the literature.
These include the adjacency matrix, Laplacian and normalised Laplacian. More recently,
variations of the heat kernel on the graph have also been used. The spectrum of all of
these representations may be used to characterise the graph, and each may reveal differ-
ent graph properties. Some of these representations may be more stable to perturbations
in the graph. In this paper we analyse these matrices and quantify the effect the matrix
representation has on the stability and representational power of the eigenvalues of the
graph. In section 2, we review the standard graph representations. In section 3, we inves-
tigate the cospectrality properties of these matrices. Section 4 describes how we measure
the stability and representative power of the eigenvalues. Finally, section 5 details the
experiments aimed at measuring the utility of these representations.

2 Standard Graph Representations
In this section, we review the properties of some standard graph representations and their
relationships with each other. The graphs under consideration here are undirected graphs.
Whilst we do not consider weighted graphs here, these ideas are straightforwardly ex-
tended to such graphs. We denote a graph by G = (V,E) where V is the set of nodes and
E ⊆V ×V is the set of edges. The degree of a vertex u is the number of edges leaving the
vertex u and is denoted du.



2.1 Adjacency matrix
The most basic matrix representation of a graph is using the adjacency matrix A for the
graph. This matrix is given by

A(u,v) =
{

1 if (u,v) ∈ E
0 otherwise

(1)

Clearly if the graph is undirected, the matrix A is symmetric. As a consequence, the
eigenvalues of A are real. These eigenvalues may be positive, negative or zero and the
sum of the eigenvalues is zero. The eigenvalues may be ordered by their magnitude and
collected into a vector which describes the graph spectrum.

2.2 Combinatorial Laplacian matrix
In some applications, it is useful to have a positive semidefinite matrix representation of
the graph. This may be achieved by using the Laplacian. We first construct the diagonal
degree matrix D, whose diagonal elements are given by the node degrees D(u,u) = du.
From the degree matrix and the adjacency matrix we then can construct the standard
Laplacian matrix

L = D−A (2)

i.e. the degree matrix minus the adjacency matrix. The Laplacian has at least one zero
eigenvalue, and the number of such eigenvalues is equal to the number of disjoint parts in
the graph. The signless Laplacian has all entries greater than zero and is defined to be

|L|= D+A (3)

2.3 Normalized Laplacian matrix
The normalized Laplacian matrix is defined to be the matrix

L̂ =

{1 if u = v
− 1√

dudv
if u and v are adjacent

0 otherwise
(4)

We can also write it as L̂ = D− 1
2 LD− 1

2 . As with the Laplacian of the graph, this matrix
is positive semidefinite and so has positive or zero eigenvalues. The normalisation factor
means that the largest eigenvalue is less than or equal to 2, with equality only when G is
bipartite. Again, the matrix has at least one zero eigenvalue. Hence all the eigenvalues
are in the range 0≤ λ ≤ 2.

2.4 Heat Kernel
The heat kernel is based on the diffusion of heat across the graph. It is a representa-
tion which has attracted recent interest in the literature. We are interested in the heat
equation associated with the Laplacian, i.e. ∂ht

∂ t = −Lht where ht is the heat kernel and
t is time. The solution is found by exponentiating the Laplacian eigenspectrum, i.e.



ht = Φexp[−tΛ]ΦT . The heat kernel is a |V | × |V | matrix, and for the nodes u and v
of the graph G the resulting component is

ht(u,v) =
|V |

∑
i=1

exp[−λit]φi(u)φi(v) (5)

When t tends to zero, then ht ' I − Lt, i.e. the kernel depends on the local connec-
tivity structure or topology of the graph. If, on the other hand, t is large, then ht '
exp[−tλm]φmφ T

m , where λm is the smallest non-zero eigenvalue and φm is the associated
eigenvector, i.e. the Fiedler vector. Hence, the large time behavior is governed by the
global structure of the graph. By controlling t, we can obtain representations of varying
degrees of locality.

2.5 Path Length Distribution
It is interesting to note that the heat kernel is also related to the path length distribution on
the graph. If Dk(u,v) is the number of paths of length k between nodes u and v then

ht(u,v) = exp[−t]
|V |2

∑
k=1

Dk(u,v)
tk

k!
(6)

The path length distribution is itself related to the eigenspectrum of the Laplacian. By
equating the derivatives of the spectral and the path-length forms of the heat kernel it is
straightforward to show that

Dk(u,v) =
|V |

∑
i=1

(1−λi)k
φi(u)φi(v) (7)

Hence,Dk(u,v) can be interpreted as the sum of weights of all walks of length k joining
nodes u and v.

2.6 Spectral decomposition of representation matrix
The spectrum of the graph is obtained from one of the representations given above us-
ing the eigendecomposition. Let X be the matrix representation in question. Then the
eigendecomposition is X = ΦΛΦT where Λ = diag(λ1,λ2, ...,λ|V |) is the diagonal matrix
with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the
ordered eigenvectors as columns. The spectrum is the set of eigenvalues

{λ1,λ2, ...,λ|V |}

The spectrum is particularly useful as a graph representation because it is invariant under
the similarity transform PLPT , where P is a permutation matrix. In other words, two
isomorphic graphs will have the same spectrum. As noted earlier, the converse is not true,
two nonisomorphic graphs may share the same spectrum.



3 Cospectrality of graphs
Two graphs are said to be cospectral if they have the same eigenvalues with respect to the
matrix representation being used. Haemers and Spence[4] have investigated the cospec-
trality of graphs up to size 11, extending a previous survey by Godsil and McKay[3]. They
show that the adjacency matrix appears to be the worst representation in terms of produc-
ing a large number of cospectral graphs. The Laplacian is superior in this regard and
the signless Laplacian even better. The signless Laplacian produces just 3.8% cospectral
graphs with 11 vertices. Furthermore, there appears to be a peak in the fraction of cospec-
tral graphs which then reduces. These results are shown in Figure 1, bottom right. Trees
are known to be a particular problem with regard to cospectrality; Schwenk[10] showed
that for large enough trees, they are nearly all cospectral to another tree.

Here we complement the investigation of Haemers and Spence by looking at the
cospectrality of trees up to size 21. These trees were generated using the method de-
scribed by Li and Ruskey[6]. It is clear from the matrix definitions above that the eigen-
values of L, H and Dk are related and so cospectrality in one implies cospectrality in
another. Since trees are bipartite, the spectrum of |L| is also related to L. We therefore
confine our attention to A, L and L̂.
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Figure 1: Fractions of trees which are cospectral with respect to the matrices A, L and L̂,
and fractions of cospectral graphs[4]



Size Number A L L̂ A & L (number)
8 23 0.087 0 0 0
9 47 0.213 0 0.0426 0
10 106 0.075 0 0.0377 0
11 235 0.255 0.0255 0.0511 2
12 551 0.216 0.0109 0.0508 2
13 1301 0.319 0.0138 0.0430 2
14 3159 0.261 0.0095 0.0386 10
15 7741 0.319 0.0062 0.0314 2
16 19320 0.272 0.0035 0.0241 14
17 48629 0.307 0.0045 0.0171 40
18 123867 0.261 0.0019 0.0145 38
19 317955 0.265 0.0014 0.0079 64
20 823065 0.219 0.0008 0.0068 148
21 2144505 0.213 0.0005 0.0036 134

Table 1: Fractions of trees which are cospectral with respect to the matrices A, L and L̂

The results are summarised in Figure 1 and Table 1. The fractions here refer to the
number of trees which do not have a unique spectrum. The Laplacian is clearly superior
in this regard, having a very small fraction of cospectral graphs at all sizes. Both the
Laplacian and its normalised counterpart show a decreasing trend, suggesting that for
larger trees the fraction which are cospectral in these matrices could be negligible. The
trend for the adjacency matrix is less clear, but the fraction appears to decrease after 15
vertices. Our results clearly show that the combinatorial Laplacian is by far the best
representation in terms of the fraction of trees uniquely represented by the spectrum. This
result is in line with that of Haemers and Spence[4] for all graphs which suggested that
the signless Laplacian was the best.

The final column in Table 1 shows the number of pairs of trees which are cospectral
in A and L at the same time. Interestingly, cospectral pairs for A and L seem to be un-
correlated with each other, and so combining the two spectra leads to very few cospectral
graphs. For example, at 21 vertices, there are only 134 cospectral examples from more
than 2 million trees.

4 Measuring the stability and representational power of
eigenvalues

One aim in this paper is to assess the usefulness of the eigenvalues for representing the
differences between graphs. In addition, we aim to determine which matrix representation
is most appropriate for this task.

4.1 Graph distance
The fundamental structure of a pattern space can be determined purely from the distances
between patterns in the space. There are a number of ways to measure the distance be-
tween two graphs, but the most appropriate in this case is the edit distance[8, 1]. The



edit distance is defined by a sequence of operations, including edge and vertex deletion
and insertion, which transform one graph into another. Each of these operations has an
associated cost, and the total cost of a sequence of edits is the sum of the individual costs.
The sequence of minimal cost which transforms one graph into another is the edit distance
between the graphs. In the examples here, we have assigned a cost of 1 to edge insertions
and deletions. Clearly, if the spectrum is to be a good representation in this sense, then
the requirement is that the distance between spectra should be related to the edit distance
between the graphs.

4.2 Classification
Classifying a large number of different kinds of graphs is also a common and important
task. Any representation which fails to do this well is not a particularly good or practical
one. Therefore, as well as determining the distance between graphs, it is also important to
be able to classify them using the representation. If the spectrum is a good representation,
then we should be able to identify the class of a graph even under noisy conditions. In our
second set of experiments, we therefore investigate the classification of graphs when the
graphs to be classified are perturbed by edge deletion operations.

5 Experiments
In this section, we provide some experimental evaluation of the six graph representation
methods given in the previous sections. There are two aspects of this study; first, we
show that the more similar the two graphs are, the smaller the Euclidean distance of the
eigenvalues will become. We use both Delaunay graphs and random graphs to demon-
strate this. We also compute the relative deviation of the Euclidean distance to assess the
accuracy of this relationship. Second, we compute the error rate for classification using
random graph matching.

In the first experiment we compute the Euclidean distance between the vector of eigen-
values of the Delaunay graph with thirty vertices and its altered graph, modified by edge
deletion from one to thirty edges, using six graph representation methods mentioned be-
fore. The edge to be deleted is chosen at random. For each level of editing, we perform
100 trials in order to obtain an average and deviation in the distance. The t in heat kernel
equation is set to 3.5 and the length of path is path length distribution is 2. We can obtain
the mean Euclidean distance and the standard deviation at each edge deletion of these
matrix representations. The results are shown in Figure 2

The second experiment is much the same as the first one. The only difference is that
this time we use random graphs. In this experiment, we generate random graph with thirty
vertices and seventy edges. The other parameters are identical to the previous experiment.

These plots show that all these representations give a spectrum which follows the edit
distance closely, although the adjacency and Laplacian matrices seem marginally less
linear. In Tables 2 and 3 we give the relative deviation of the samples for 5, 10, 20 and
30 edit operations. The relative deviation is the standard deviation of the samples divided
by the mean. This value gives an indication of how reliably the spectrum predicts the edit
distance. In this regard, the heat kernel matrix is clearly superior to the other methods.

We now construct a classification experiment using 50 graph classes. Each class is
represented by a single graph. We create graphs to be classified by performing random
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Figure 2: Euclidean distance of Delaunay graphs
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Figure 3: Euclidean distance of random graphs

edit operations on the class graphs. The graphs are classified using a simple 1-NN clas-
sifier and the Euclidean distance between the spectra; the aim here is to investigate the
efficacy of the representation rather than the classifier. Figure 4 shows the classifica-
tion error rates over a range of numbers of edit operations. Here the heat kernel matrix
is the best method followed by the path length distribution. The adjacency matrix is a
poor representation whereas the combinatorial and normalized Laplacian have the same
performance.



Matrix 5 edge deletion 10 edge deletion 20 edge deletion 30 edge deletion
A 0.0918 0.0827 0.0716 0.0530
L 0.0802 0.0727 0.0619 0.0498
L̂ 0.0753 0.0676 0.0571 0.0414
|L| 0.0523 0.0449 0.0268 0.0121
H 0.0358 0.0287 0.0193 0.0105
D2 0.0420 0.0313 0.0252 0.0127

Table 2: Relative deviation of Delaunay graphs

Matrix 5 edge deletion 10 edge deletion 20 edge deletion 30 edge deletion
A 0.1164 0.1023 0.0805 0.0657
L 0.1042 0.0930 0.0771 0.0592
L̂ 0.0947 0.0830 0.0651 0.0558
|L| 0.0647 0.0586 0.0401 0.0253
H 0.0582 0.0494 0.0299 0.0175
D2 0.0607 0.0523 0.0385 0.0225

Table 3: Relative deviation of random graphs
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Figure 4: Error rate of six methods of matrix for random graphs

6 Conclusions
Our results show that use of the Laplacian matrix or its derivatives can drastically reduce
the problem of cospectrality between trees. If the trend we have seen continues, then
virtually all trees will have a unique Laplacian spectrum. In terms of a representation
for graph matching, the heat kernel matrix outperforms the alternatives both in terms of



tracking edit distance and classification. Again, the adjacency matrix is inferior.
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