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Abstract

This paper exploits the properties of the commute time to develop a graph-
spectral method for image segmentation. Our starting point is the lazy ran-
dom walk on the graph, which is determined by the heat-kernel of the graph
and can be computed from the spectrum of the graph Laplacian. We char-
acterise the random walk using the commute time between nodes, and show
how this quantity may be computed from the Laplacian spectrum using the
discrete Green’s function. We explore the application of the commute time
for image segmentation using the eigenvector corresponding to the smallest
eigenvalue of the commute time matrix.

1 Introduction
Spectral graph theory [2] is concerned with characterising the structural properties of
graphs using information conveyed by the eigenvalues and eigenvectors of the Laplacian
matrix (the degree matrix minus the adjacency matrix). One of the most important tasks
that arises in the analysis of graphs is that of how information flows with time across the
edges connecting nodes. This process can be characterised using the heat equation [5].
The solution of the heat equation, or heat kernel, can be found by exponentiating the
Laplacian eigensystem over time. The heat kernel contains a considerable amount of
information concerning the distribution of paths on the graph. For instance, it can be
used to compute the lazy random walk on the nodes of the graph. It may also be used to
determine commute times under the random walk between pairs of nodes. An alternative,
but closely related, characterisation of the graph is the discrete Green’s function which
captures the distribution of sources in the heat flow process. Not surprisingly, there is a
direct link between commute times and the Green’s function [3].

Random walks [14] have found widespread use in information retrieval and structural
pattern analysis. For instance, the random walk is the basis of the Page-Rank algorithm
which is used by the Googlebot search engine [1]. In computer vision random walks
have been used for image segmentation [7] and clustering [10]. More recently both Gori,
Maggini and Sarti [4], and, Robles-Kelly and Hancock [9] have used random walks to sort
the nodes of graphs for the purposes of graph-matching. However, most of these methods
use a simple approximate characterisation of the random walk based either on the leading
eigenvector of the transition probability matrix, or equivalently the Fiedler vector of the
Laplacian matrix [6]. However, a single eigenvector can not be used to determine more
detailed information concerning the random walk such as the distribution of commute
times. The aim in this paper is to draw on more detailed information contained within the
Laplacian spectrum, and to use the commute time as means of grouping.

There are two quantities that are commonly used to define the utility in graph-theoretic
methods for grouping and clustering. The first of these is the association, which is a mea-
sure of total edge linkage within a cluster and is useful in defining clump structure. The
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second is the cut, which is a measure of linkage between different clusters and can be
used to split extraneous nodes from a cluster. Several methods use eigenvectors to ex-
tract clusters using the utility measure. Some of the earliest work was done by Scott
and Longuet-Higgins [12] who developed a method for refining the block-structure of the
affinity matrix by relocating its eigenvectors. At the level of image segmentation, several
authors have used algorithms based on the eigenmodes of an affinity matrix to iteratively
segment image data. For instance, Sarkar and Boyer [11] have a method which uses the
leading eigenvector of the affinity matrix, and this locates clusters that maximise the aver-
age association. This method is applied to locating line-segment groupings. The method
of Shi and Malik [13], on the other hand, uses the normalized cut which balances the cut
and the association. Clusters are located by performing a recursive bisection using the
eigenvector associated with the second smallest eigenvalue of the Laplacian (the degree
matrix minus the adjacency matrix), i.e. the Fiedler vector. Recently Pavan and Pelillo [8]
have shown how the concept of a dominant set can lead to better defined clusters, and can
give results that are superior to those delivered by the Shi and Malik algorithm for image
segmentation. The dominant set provides a more subtle definition of cluster membership
that draws on the mutual affinity of nodes. The method does not rely simply on the affin-
ity between pairs of nodes alone. Here we argue that commute time can also capture the
affinity properties of nodes in a way that extends beyond the use of pairwise weights.

Graph theoretic methods aim to locate clusters of nodes that minimize the cut or dis-
association, while maximizing the association. The commute time has properties that can
lead to clusters of nodes that increase both the dissociation and the association. A pair of
nodes in the graph will have a small commute time value if one of three conditions is sat-
isfied. The first of these is that they are close together, i.e. the length of the path between
them is small. The second case is if the sum of the weights on the edges connecting the
nodes is small. Finally, the commute time is small if the pair of nodes are connected by
many paths. Hence, the commute time can lead to a finer measure of cluster cohesion
than the simple use of edge-weight which underpins algorithms such as the normalized
cut [13]. In this respect it is more akin with the method of Pavan and Pelillo [8].

2 Heat Kernel, Lazy Random Walks and Green’s
Function

2.1 Heat kernel
Let the weighted graph Γ be the quadruple

�
V � E � Ω � ω � , where V is the set of nodes, E

is the set of arcs, Ω ��� Wu ��� u � V 	 is a set of weights associated with the nodes and
ω �
� wu � v ��� � u � v �
� E 	 is a set of weights associated with the edges. Further let T �
diag

�
dv;v � V

�
Γ ��� be the diagonal weighted degree matrix with Tu � ∑n

v � 1 wu � v. The un-
normalized weighted Laplacian matrix is given by L � T � A and the normalized weighted
Laplacian matrix is defined to be ��� T � 1 � 2LT � 1 � 2 , and has elements

� uv
�
Γ ���

�� � 1 if u � v� wu � v�
dudv

if u �� v and
�
u � v �
� E

0 otherwise

The spectral decomposition of the normalized Laplacian is ��� ΦΛΦT , where Λ �
diag

�
λ1 � λ2 ��������� λ  V  � is the diagonal matrix with the ordered eigenvalues as elements sat-



isfying: 0 � λ1 � λ2 ��� � � λ  V  and Φ � �
φ1

�
φ2

� ������� � φ  V  � is the matrix with the ordered
eigenvectors as columns.

In the paper we are interested in the heat equation associated with the graph Laplacian,
i.e. ∂ � t

∂ t � � ��� t where � t is the heat kernel and t is time. The solution of the heat-
equation is found by exponentiating the Laplacian eigenspectrum i.e. � t � exp ��� t ��� �
Φexp � � tΛ � ΦT . The heat kernel is a

�
V
�	�
�

V
�
matrix, and for the nodes u and v of the

graph Γ the element of the matrix is � t
�
u � v � � ∑

 V  
i � 1

exp � � λit � φi

�
u � φi

�
v � .

2.2 Lazy random walk
Let us consider the matrix � � T 1 � 2PT � 1 � 2 � I � � , where I is the identity matrix, then
we can re-express the heat kernel by performing a McLaurin expansion as(see [3] page
5), � t � e � t � I ��
�� � e � t

∞

∑
r � 1
� r tr

r!

Using the spectral decomposition of the normalized Laplacian, we have � r � � I � �
� r �
Φ
�
I � Λ � rΦT and as a result

� r � u � v � �  V  
∑
i � 1

�
1 � λi � rφi

�
u � φi

�
v ��� ∑

πr

∏
i

w
�
ui � ui � 1 ��
dui

dui � 1

Lemma 2.1 The normalized probability matrix � r � u � v � is the sum of the probabilities
of all the random walks π of length r connecting node u and v.

Theorem 2.2 The heat kernel is the continuous time limit of the lazy random walk.

Proof Consider a lazy random walk R � � 1 � α � I � W
T α which migrates between different

nodes with probability α and remains static at a node with probability 1 � α , where W is
the weighted adjacency matrix and T is the degree matrix.

Let α � α0∆t where ∆t � 1
N . Consider the distribution R

�
VN

�
V0 � , which is the proba-

bility of the random walk joining node 0 and N, in the limit ∆t � 0

lim
N � ∞

RN � lim
N � ∞ � I � � W

T
� I � α0

1
N � N � e � WT � I � α0 (1)

while
W
T
� I � T � 1A � I � T � 1 � T � L � � I � � T � 1L (2)

Now consider the discrete Laplace operator ∆ with the following properties:��� T 1 � 2∆T � 1 � 2 � T � 1 � 2LT � 1 � 2, which implies ∆ � LT � 1. As a result, we get
limN � ∞ RN � e � ∆α0 which is just the expression for the heat kernel.

2.3 Green’s function
Now consider the discrete Laplace operator ∆ � T � 1 � 2 � T 1 � 2. The Green’s function is the
left inverse operator of the Laplace operator ∆, defined by G∆

�
u � v � � I

�
u � v � � dv

vol , where
vol � ∑v � V � Γ � dv is the volume of the graph. A physical interpretation of the Green’s



function is the temperature at a node in the graph due to a unit heat source applied to the
external node. It is related with the heat kernel � t in the following manner

G
�
u � v � ��� ∞

0
d1 � 2

u � � t
�
u � v � � φ1

�
u � φ1

�
v ��� d � 1 � 2

v dt (3)

Here φ1 is the eigenvector associated with eigenvalue 0 and its k-th entry is � dk � vol.
Furthermore, the normalized Green’s function � � T � 1 � 2GT 1 � 2 is defined as (see [3]
page 6(10)),

� � u � v � �  V  
∑
i � 2

1
λi

φi

�
u � φi

�
v � (4)

where λ and φ are the eigenvalue and eigenvectors of the normalized Laplacian � .
The normalized Green’s function is hence the generalized inverse of the normalized

Laplacian � . Moreover, it is straightforward to show that � � � ��� � I � φ1φ 	1 , and

as a result
� �
� � uv � δuv � � dudv

vol . From equation 4, the eigenvalues of � and � have the
same sign and � is positive semidefinite, and so � is also positive semidefinite. Since �
is also symmetric(see [3] page 4), it follows that � is a kernel.

3 Commute Time
We note that the hitting time Q

�
u � v � of a random walk on a graph is defined as the expected

number of steps before node v is visited, commencing from node u. The commute time
CT

�
u � v � , on the other hand, is the expected time for the random walk to travel from node

u to reach node v and then return. As a result CT
�
u � v � � Q

�
u � v � � Q

�
v � u � . The hitting

time Q
�
u � v � is given by [3]

Q
�
u � v ��� vol

dv
G
�
v � v � � vol

du
G
�
u � v �

where G is the Green’s function given in equation 3. So, the commute time is given by

CTuv � Quv � Qvu � vol
du

Guu � vol
dv

Gvv � vol
du

Guv � vol
dv

Gvu (5)

As a consequence of (5) the commute time is a metric on the graph. The reason for
this is that if we take the elements of G as inner products defined in a Euclidean space, CT

will become the norm satisfying: ��� xi � x j ���
2 �
� xi � x j � xi � x j � �
� xi � xi � ��� x j � x j ���� xi � x j � ��� x j � xi � .

Substituting the spectral expression for the Green’s function into the definition of the
commute time, it is straightforward to show that

CT
�
u � v � � vol

 V  
∑
i � 2

1
λi � φi

�
u ��
du

� φi

�
v ��
dv � 2

(6)

For a regular graph with du � dv � d, and the commute time satisfies:

CT
�
u � v ��� vol

d

 V  
∑
i � 2

1
λi

�
φi

�
u � � φi

�
v � � 2 (7)



This expression is important, since in the data clustering and image segmentation
literature it is usual to work with an affinity matrix, and the underlying graph is there-
fore regular for the clustering problem and almost regular for the segmentation problem
(boundary pixels have smaller degrees). As a result, the commute time can be taken as
a generalisation of the normalized cut since from Equation 7, for a pair of node u and v
the commute time depends on the difference of the components of the successive eigen-
vectors of � . Of the eigenvectors, the Fiedler vector is the most significant since its
corresponding eigenvalue λ2 is the smallest.

4 Commute Times for Grouping
The idea of our segmentation algorithm is to use the spectrum of the commute time matrix
for the purposes of grouping. We do this by using the eigenvector corresponding to the
smallest eigenvalue to bipartition the graphs recursively.

Our commute time algorithm consists of the following steps:

1. Given an image, or a point set, set up a weighted graph Γ � � V � E � where each pixel,
or point, is taken as a node and each pair of nodes is connected by an edge. The
weight on the edge is assigned according to the similarity between the two node as
follows

a) for a point-set, the weight between node i and j is set to be w
�
i � j � �

exp
� � d

�
i � j � � δx � , where d

�
i � j � is the Euclidean distance between two points and

δx controls the scale of the spatial proximity of the points.

b) for an image, the weight is:

w
�
i � j � � exp �� � ��� Fi � F j ��� 2δI

���� ��� �� exp � �	��� Xi � X j ��� 2δX 
 if ��� Xi � X j ��� 2 � r

0 otherwise

(8)

where Fi is the intensity value at pixel i for a brightness image or the RGB value
for a color image.

2. From the weight matrix W we compute the Laplacian L � T � W .

3. Then we compute the normalized Green’s function using Equation 4 and the eigen-
spectrum of the normalized Laplacian � .

4. From Equation 5, we compute the commute time matrix CT whose elements are
the commute times between each pair of nodes in the graph Γ.

5. Use the eigenvector corresponding to the smallest eigenvalue of the commute time
matrix to bipartition the weighted graph.

6. Decide if the current partition should be sub-divided, and recursively repartition the
component parts if necessary.

5 Experiments
In this section we experiment with our new spectral clustering method. We commence
with examples on synthetic images aimed at evaluating the noise sensitivity of the method.
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(b) Data clustering by normalized cut.

Figure 1: Clustering examples.
We then provide examples on real world images and compare the performance of our
method with that of Shi and Malik.

Point-set clustering examples: In Figure 1(a) and 1(b) we compare the results for
point-set clustering using commute-times and the normalized cut. Here we set δ � 1 � 5.
The sub-figures in both figures are organised as follows. The left-hand column shows the
point-sets, the middle column the affinity matrices and right-most column the components
of the smallest eigenvector. The first row shows the first bipartition and the successive two
rows show the bipartition based on the first partitions. From the figures it is clear that both
methods succeeded in grouping the data. However, the commute time method outper-
forms the normalized cut since its affinity matrix is more block like and the distribution
of the smallest eigenvector components is more stable, and its jumps corresponding to the
different clusters in the data are larger.

Image segmentation: We have compared our new method with that of Shi and Malik
[13] on synthetic images subject to additive Gaussian noise. On the left-hand side of
Figure 2, we show the results of using these two methods for segmenting a synthetic
image composed of 3 rectangular regions with additive Gaussian noise increasing from
0.04 to 0.20 with width 0.04. On the right hand side of Figure 2 we show the fraction
of pixels correctly assigned as a function of the noise standard derivation. At the highest
noise levels our method outperforms the Shi and Malik method by about 10%.

In Figure 3, we show some examples of our segmentation results and compare them
with those obtained using the normalized cut. The aim here is to investigate the effect of
adding and deleting link-weights at random. The first column shows the original image,
the second column the original affinity matrix and the third colum the affinity matrix after
link noise has been added. The first three rows show the effect of random link deletion,
and the second three rows the result of link addition. The fourth and fifth columns show
the results obtained using the normalized cut and the commute time. For these images,
Figure 4 shows the fraction of correctly assigned pixels as a function of the fraction of
links added or deleted. In the figure the red curve shows the effect of link addition on the
commute time method, the green curve the effect of link addition on the normalized cut,
the blue curve the effect of link deletion on the commute time method and, finally, the
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Figure 3: Examples of segmentation results with different link-weight distortion.
pink curve the effect of link deletion on the normalized cut. The main features to note
from the plot are as follows. First, the commute time method is more robust to both link
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Figure 4: Method comparison for synthetic images with different link-weight distortion.

deletion and insertion than the normalized cut. The second feature is that link deletion
has a less marked effect on the performance than link insertion. Thirdly, spurious link
insertion has a smaller effect on the commute time than the normalized cut.

In Figure 5, we show eight real world images (from the Berkeley image database)
with the corresponding segmentation results. The images are scaled to be 50x50 in size
and the parameters used for producing the results are r � 5, δI � 0 � 02 and δX � 0 � 2. In
each set of the images, the left-most one shows the original image. The middle and right
panels show the results from two successive bipartitions.

For two of the real images in Figure 5, we compare our method with the normalized
cut in the following sub-figures 6(a),6(b),6(c) and 6(d). The first column of each sub-
figure shows the first, second and third bipartitions of the images. The second column
shows the histogram of the components of the smallest eigenvector, and the right-hand
column the distribution of the eigenvector components. The blue and red lines in the right-
hand column respectively correspond to zero and the eigenvector component threshold.

Comparing the results of using the commute time and the normalized cut, it is clear
that commute time out performs the normalized cut in both maintaining region integrity
and continuity. Another important feature is that once again our eigenvector distribution
is more stable and discriminates more strongly between clusters.

6 Conclusion
In this paper we have described how commute time can be computed from the Laplacian
spectrum. This analysis relies on the discrete Green’s function of the graph, and we have
reviewed the properties of Green’s function. Two of the most important of these are that
the Green’s function is a kernel and that the commute time is a metric. We show how
commute time can be used for clustering and segmentation. Our future plans involve
using the commute times to embed the nodes of the graph in a low dimensional space,
and to use the characteristics of the embedded node points for the purposes of graph-
clustering.



Figure 5: Real world segmentation examples.
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Figure 6: Detailed segmentation process in comparasion.
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