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Abstract

Predication of a pedestrian’s 3D pose using movie sequences is not straight-
forward because of the human body’s articulation and the complexity of
biped locomotion. In this paper we show how temporal coherence can be
employed to help the reconstruction of gait pose using corresponding silhou-
ette moments of a video sequence from a monocular view. Virtual avatars
were used to train the model for inferring the pose. The system was tested on
a walking real person’s silhouettes and evaluated using different avatars that
were not in the training set.

1 Introduction

In recent years, computer vision researchers have been interested in tracking people’s
3D pose from monocular camera views [1]. Such a monocular tracking system is less
expensive and easier to set-up than multi-camera 3D tracking systems [9]. However,
inferring the pose of the subject is not easy because of the human body’s articulation and
the complexity of the human body’s movement.

Bowdenet al have attempted to achieve 2D to 3D mapping by combining 2D and 3D
data in a single model [1] . In their approach, 2D landmarks (400 points) were labelled on
the person’s silhouette contour in each frame to represent the shape of the moving person
through an image sequence. They then concatenated the 2D shape with corresponding
3D body structure and positions of the hands and face to build a non-linear model sim-
ilar to a local linear embedding [11]. By applying such a model to a given image the
corresponding 3D structure could be reconstructed. This work showed that 2D and 3D
information can be combined to provide a mapping between them. However, in such an
approach, the 3D structure reconstructions were performed on each example separately
without introducing the constraint of temporal coherence.

Graumanet al [5] have introduced a similar approach to infer 3D structure using
an image-based shape model. They concatenated the 2D shapes in images obtained from
calibrated cameras and the corresponding 3D locations of key joints by means of a mixture
of probabilistic principal components analyzers (PPCA) [13]. A mean joint location error
of 3 cm was achieved while using four cameras. They have also tested their method by
training and testing the model with single views. However, when only one input view was
given the performance dropped to an accuracy of 5 cm on average, which corresponds
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approximately to 7 degrees of rotation error if we assume the average distance between
key joints is 40 cm. As in [1], Graumanet al treated the examples at each time separately.

In practice there are temporal relationships between adjacent examples of a pedes-
trian’s pose and patterns for certain movements such as walking, running and jumping
can be learned during a training process. Thus, we can and should consider introducing
temporal constraints to make the 2D to 3D mapping more accurate and specific for these
kind of movements. We have used this approach to develop a method that employs an
extended Kalman filter (EKF) [2, 14] to estimate a person’s 3D pose using both the in-
formation from the silhouette obtained from a single camera and the characteristics of the
movement pattern (e.g. walking).

2 Data representation and preparation

We represented 3D pose by the rotation of the key joints of an avatar, such as the knees,
hips, elbows, shoulders etc as in Biovision’s BVH format [12]. Within this approach,
unlike others that use 3D joint locations (e.g. [5]), the 3D pose may be applied to other
objects which have different physiques from that of the object being tracked. If we sup-
pose there areL key joints, then the column vector

s= [x1,y1,z1, · · ·xi ,yi ,zi , · · ·xL,yL,zL]
T , (1)

in which xi ,yi ,zi stand for the rotations of theith joint around theX,Y,Z axes, will rep-
resent the 3D pose. To parameterise the silhouette, instead of using contour points and
landmarks as in [1, 5], we used normalised central momentsηpq [7], which are invariant
to image rotation and approximately invariant to changes in viewing distance. This is an
attractive option as the moments are easily computable in real-time from the silhouette
contour and the silhouette itself may similarly be obtained from the image on an ordi-
nary, up to date, desktop workstation [6]. Moreover, the moments are not dependent on
the presence of particular landmark points which may sometimes be obscured and, by
focusing first on the low-orders, moments can be used in a way that progressively intro-
duces more detail of an object’s shape. By definition, the zero order normalised moment
is one and the first order central moments vanish. We therefore used moments of order
2≤ p+q≤ l with l = 5 (i.e. up to fifth order) to represent the shape of the silhouette in
the image by means of the(l +4)(l −1)/2 dimension column vector

m= [η20,η11,η02, · · · ,η0l ]T . (2)

The vectorss andm are not defined in the same space and are not of similar scale. Prin-
cipal component analysis (PCA) [8] was therefore applied to both data sets:

s= s+Psbs, m= m+Pmbm, (3)

wherebs, s̄ and Ps are respectively the weight parameters, mean vector and matrix of
principal components of the 3D pose data set, andbm, mandPm are the weight parameters,
mean vector and matrix of principal components of the silhouette moments data set. The
matricesPs andPm were respectively chosen to contain the firstts and tm eigenvectors
in each space, so as to explain a fractionf of the respective total variations. Typically,
f = 0.90, 0.95, 0.98 or 0.99. Given the weightsbs andbm for each training example, we



Figure 1: (a) A single cycle of the trajectory of the whitened pose PCA parameters of
walking. The figure shows the first three principal components which describe, on aver-
age, 83.5% of the total variation. (b) Trajectories of the first three whitened pose PCA pa-
rameters of a walking avatar compared with their approximations using equation 4 when
Γ = 15. From top to bottom at zero phase,b́s(2), b́s(3) andb́s(1), the open circles show
values of the PCA components, the lines show the truncated Fourier approximations.

balanced them by whitening as suggested by Cootes [3] and used the scaled, whitened
weightsb́s and b́m to represent the 3D pose and the corresponding silhouette. Training
data obtained from animation of the avatar implicitly enabled us to construct the joint
distribution p(s,m). In practice, this was characterised by the meanss andm and the
covariance, which was calculated in the combined space of the vectorsb́s andb́m.

3 Learning the movement pattern

Owing to the fact that people’s movements such as walking, running and jumping are
mainly composed of regular, repetitive motions, these movements present obvious peri-
odic features. Such a periodic movement pattern can be seen from the trajectories of the
pose PCA parameters of one walking cycle shown in figure 1. Thus, we can learn such a
movement pattern from one selected period.

Practically, in our approach, we used Fourier expansions on one interval[0,2T], which
corresponds to one walking cycle, of the pose PCA parameters to describe the movement
pattern trajectory by means of the functions:

b́s(k,ϕ) =
A0(k)

2
+

Γ

∑
n=1

An(k)cos(nπϕ/T)+
Γ

∑
n=1

Bn(k)sin(nπϕ/T). (4)

HereA0(k), An(k) andBn(k) are the Fourier coefficients of thekth PCA pose parameter,
T is the number of training samples taken for one stride,ϕ is the phase of the movement
cycle, andn= 1,2,3, · · · ,Γ. Figure 1 shows the trajectories of the first three pose PCA pa-
rameters of a walking avatar and also the approximations to them obtained from equation
4 whenΓ = 15. These truncated Fourier series approximations to the 3D pose PCA para-
meters had a RMSE of 2.55×10−8 in PCA space and a mean joint orientation difference
of 1.02 degrees when projected back into the original pose space. The avatar’s walking



movement was created using POSER [4] and the orientation differences were measured
over 19 key joints.

4 Initial estimation of gait pose given a silhouette

If we assume the joint distribution of the whitened weightsb́s andb́m are Gaussian, then
the conditional densityp( ´bs |b́m), which defines the distribution of thébs givenb́m is also

Gaussian and can be denoted asp( ´bs |b́m) = Nts( ´bs|m, Cs|m). Moreover, the mean´bs|m and
covarianceCs|m of the conditional density are given by:

´bs|m = Cs,mC−1
m b́m and Cs|m = Cs−Cs,mC−1

m Cm,s , (5)

whereC−1
m is the inverse covariance matrix of thébm andCs,m is thets×tm cross-covariance

matrix of theb́s and theb́m. In practice, the matricesC−1
m andCs,m are constructed using

vectorsb́s and b́m, which are computed from training examples. It is important to note

that, according to equations 5 and 3, the conditional mean´bs|m is a function of the silhou-
ette vectorm. Given a new example silhouette, the most likely corresponding 3D pose
weightsb́s may therefore be estimated as the mean of the conditional densityp( ´bs |b́m).

5 Construction of the EKF

We now use equation 4 as the description of the trajectories of the PCA pose parameters
of a person’s movement and the prediction of the pose obtained from the silhouette by use
of the posterior Gaussian density model as described in section 4 to construct an extended
Kalman filter (EKF).

This EKF enables us to estimate the person’s 3D pose using both the silhouette ob-
tained from a single camera and the characteristics of the movement pattern, such as
walking. Used together in this way, the EKF and the pose trajectory model enable us to
exploit the temporal coherence of the movement.

In the EKF, the state variables are the phaseϕ and the velocity of the phasėϕ. Theϕ

indicates the object’s position in a walking cycle and theϕ̇ indicates how fast the object
walks. The state evolution equations were assumed to be:[

ϕr

ϕ̇r

]
=

[
1 1
0 1

][
ϕr−1

ϕ̇r−1

]
+

[
0
w

]
, (6)

wherew is zero mean random noise. The subscriptsr andr −1 represent the current and
previous sampling times respectively. The measurements were taken to be the person’s
PCA pose parameterśbs(k,ϕr) as obtained from the observed silhouette at timer corre-
sponding to phaseϕr as discussed in section 4. The measurement equations of the EKF
are thus represented by equations 4 (to each of which noisev(k) say, should be added)
and need to be linearized for example, as described in [14]. This requires the Jacobian
matricesH andV which are the partial derivatives of the measurement equations with
respect to[ϕr , ϕ̇r ]T andv respectively. In our caseV is a diagonalts× ts matrix whilstH



Figure 2: (a) Examples of avatars used for training and evaluation. (b)Examples of walk-
ing people’s silhouettes from theSouthampton Human ID at a Distancedatabase

is thets×2 matrix:

H =
nπ

T


∑Γ

n=1Bn(1)cos(nπϕ/T)−∑Γ
n=1An(1)sin(nπϕ/T) 0

∑Γ
n=1Bn(2)cos(nπϕ/T)−∑Γ

n=1An(2)sin(nπϕ/T) 0
...

...
∑Γ

n=1Bn(ts)cos(nπϕ/T)−∑Γ
n=1An(ts)sin(nπϕ/T) 0

 (7)

evaluated atϕ = ϕr .
When new silhouettes of a walking person are given, initial estimates of the gait pose

parameters (in PCA space) are calculated as discussed in section 4. These initial parame-
ters were then used as measurements in of our EKF and the walking person’s current state
variablesϕ andϕ̇ were estimated. Given the phaseϕ we could then reconstruct the gait
pose by using equations 4 and 3.

6 Experiments and evaluation

Our approach was tested on a walking movement. We used a number of avatars with the
same walking pattern but different physiques, hair styles and clothes to train the model as
described in sections 2 and 3. Avatars, which had a slightly different gait and which were
not used in the training were used to evaluate the system’s performance. We also tested
our method on a real walking person’s silhouette from theSouthampton Human ID at a
Distancedatabase [10].

During the training process, we placed the virtual camera in front of the training
avatars and made the avatars walk from right to left, which was the same as for the real
silhouette examples from the image database as shown in figure 2. Each training avatar
performed one cycle of walking and 60 frames, together with their corresponding 3D pose
information, were collected as the training data set for that avatar. All the training data
sets from different training avatars were then concatenated and used to calculate the in-
verse of the covariance matrixC−1

m and the covarianceCs,m described in section 4. These
were then used in equation 5 for initial estimation of gait pose when given a new example
silhouette.
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Figure 3: The estimated phase velocityϕ̇ when it was initialized to 1.2, 1.1, 1.05 and 0.95
for (a), (b), (c) and (d) respectively.

6.1 Evaluation using testing avatars

Because the real walking data lacks 3D pose information, the evaluation of our approach’s
accuracy of gait pose reconstruction was carried out using virtual avatars. In order to
test the robustness of our method, we used a different walking pattern from that used in
training by introducing a different stride length. Since we sampled 60 examples within
each walking cycle, the true period 2T, velocity of the phasėϕ and initial phaseϕ were
60, 1, and 0 respectively. In figure 3, we show for one testing avatar the result obtained
when we set the initial phase to 12 and the initial phase velocity to 0.95, 1.05, 1.1 and
1.2 respectively. It can be seen that the phase velocity converges to the correct value
of 1 for all four cases. The approach to the correct velocity was more rapid when the
initial estimate ofϕ̇ was set closer to 1 although in all four cases there was an initial
undershoot/overshoot and subsequent oscillation.

As a measure of accuracy, we took one walking cycle from a testing avatar and com-
pared the PCA pose parameters obtained from the EKF, computed using equation 6, with
corresponding measurement (i.e. the initial conditional mean estimates), and ground truth
parameters. The initial state was set asϕ = 12, ϕ̇ = 1.2 and the PCA parameters were
compared after the state variableϕ̇ became stable after approximatelyt = 800. From
figure 4 we can see that pose parameters estimated from the EKF are much closer to
the ground truth than the frame-by-frame initial measurement values obtained from the
conditional mean estimates. It is particularly notable that the system uses the relation-
ship between the PCA pose parameters to correct the estimates of the second component
(figure 4(b)).

The difference between the angles of key joints in the reconstructed pose and their
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Figure 4: The pose PCA parameters estimated from the EKF compared with ground truth
parameters and with the parameters predicted directly by the measurement equation. (a),
(b) and (c) are for the first, second and third PCA components respectively. (d) is the
histogram of angular differencesθ(i) and the mean is 3.38 degrees.

ground truth values were also used to assess the system’s performance. To do so, we
represented the estimated and ground truth orientations of each key jointi as orthogonal
matricesqr(i) andqt(i) respectively and, by solvingqt(i) = qr(i) ·qe(i) we obtained the
matrix qe(i) that would rotateqr(i) into qt(i). The angular differenceθ(i) between the
estimated and ground truth rotations for each key joint may then be obtained from the fact
thattr(qe(i)) = 1+2cos(θ(i)). For each test avatar, once the EKF had settled down, we
took one walking cycle (60 examples) and measured theθ(i) over the 19 key joints. The
result are shown as a histogram in figure 4(d). The mean value of the difference is 3.38
degrees.

The experiments discussed above were carried out under noise free conditions. In
order to evaluate the system’s performance in a noisy situation, we introduced noise on the
test avatar’s silhouettes. The noise was added randomly (even though, in practice, noise on
the contour at neighbouring pixels would be correlated) to the avatar’s silhouette contour
along the normal of each contour pixel. A noise level of 10 pixels means we randomly
generated a number between -10 and 10. If the random number obtained was positive,
we added this number of noise pixels outside the silhouette contour along the direction of
the contour’s normal, while if the random number was negative, we similarly added noise
pixels inside the silhouette. The mean value of theθ(i) when the above experiment was
repeated on noisy silhouettes is 3.37 degrees, which is close to the accuracy obtained for
noise-free silhouettes. This indicates that noise on the silhouette contour will not affect
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Figure 5: (a) The image on the left shows a noise-free silhouette, the image on the right
shows the silhouette with a noise level of 10 pixels. (b) The histogram of angular differ-
encesθ(i). The mean is 3.37 degrees.
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Figure 6: Estimated phase velocity (a) and phase (b) for real silhouettes. The initial phase
was set as 0 and the initial phase velocity was 2.5.

the system’s performance too adversely.

6.2 Testing on real images

The Southampton database provides walking people silhouettes which we sampled at
approximately 30 frames per walking cycle. Inspection of the data showed that the actual
phase velocitẏϕ for the walking people was about 2.

Figure 6 shows the estimated phase velocity for one set of real images from which
it can be seen thaṫϕ converged to about 2.23 and that the estimated phaseϕ is approx-
imately linear as it should be with little drift. Figure 7 shows some examples of the
silhouettes from the database and the corresponding estimated pose of the avatar used.
Although we cannot assess the pose estimation errors in this case, we measure the accu-
racy of the match quality between the real silhouettes, represented by the binary masks
Ss, and the silhouettesSe, similarly represented, obtained by projection of the avatar. The
match quality was defined as

2× (Ss∪Se−Ss∩Se)
(S∪Se+Ss∩Se)

, (8)



Figure 7: Real silhouettes (first row) and corresponding avatar poses (second row)

for each frame in the sequence. An average match quality of 0.34 was obtained for 57
real silhouettes. For comparison, we also computed the silhouette match quality from the
experiments in which the test avatars were used. An average match quality of 0.15 was
obtained.

7 Conclusion and future work

In this paper we introduced an avatar modelling and Kalman filtering approach to the esti-
mation of gait from monocular imagery. Initial estimates of a subject’s pose were obtained
by constructing a posterior density of the pose given a silhouette. Temporal coherence
was introduced to improve the initial estimation by learning the gait characteristics and
employing an EKF which took the initial pose estimates from the posterior conditional
mean noisy measurements. The posterior density and gait characteristics were obtained
by using avatars and a walk animation script [4] to provide training data. The system’s
performance was evaluated by using a test avatar different from those used in the training
and experiments carried out on real data obtained from the silhouettes of walking people
in theSouthampton Human ID at a Distancedatabase. Satisfactory results were obtained
in the experiments on both the test avatars and on real data. Once the EKF had settled
down, the former was accurate, for the key joints, to a mean rotation angular error of
approximately 3.5 degrees with either clean test silhouettes or silhouettes to which noise
had been added. Analysis of the silhouettes indicates that the fit to the real data in the
experiments on the Southampton database is of a comparable accuracy to that obtained in
the test experiments when virtual data was used.
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