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Abstract 

In this paper, a complete system is presented which mimics a QWERTY 
keyboard on an arbitrary surface. The system consists of a pattern projector 
and a true-3D range camera for detecting the typing events. We exploit depth 
information acquired with the 3D range camera and detect the hand region 
using a pre-computed reference frame. The fingertips are found by analyzing 
the hands’ contour and fitting the depth curve with different feature models. To 
detect a keystroke, we analyze the feature of the depth curve and map it back to 
a global coordinate system to find which key was pressed. These steps are fully 
automated and do not require human intervention. The system can be used in 
any application requiring zero form factor and minimized or no contact with a 
medium, as in a large number of cases in human-to-computer interaction, 
virtual reality, game control, 3D designs, etc. 
Keywords: virtual keyboard, computer vision, range camera, finger tracking, 
feature extraction, Swissranger, time-of-flight imaging 

1 Introduction 
As the demand for computing environments evolves, new human-computer interfaces 
have been implemented to provide multiform interactions between users and machines. 
Nonetheless, the basis for most human-to-computer interactions remains the binomial 
keyboard/mouse. Ordinary keyboards however, to be comfortable and effective, must be 
reasonably sized. Thus they are cumbersome to carry and often require wiring. To 
overcome these problems, a smaller and more mobile touch-typing device [1] has been 
proposed which does not have physical support. This device is known as virtual 
keyboard [2] or zero-form-factor interface. 

Finger tracking and finger tracking based interfaces have been an actively 
researched problem for several years now. For example, glove-based systems, such as 
the “Key-glove” by Won, Lee et al. [3], require the user to wear a tethered glove to 
recognize signal variations caused by the movement of fingers. Recently, other kinds of 
sensors have also been used in wearable virtual keyboards. Senseboard for example has 
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developed a virtual keyboard system [4] based on two devices made of a combination of 
rubber and plastic. The devices recognize typing events by analyzing the data from 
pressure sensors attached to the user’s palm. Other systems based on more sophisticated 
sensing devices have been proposed. One such example is the SCURRY system [5] 
which uses an array of gyroscopes attached to user’s hands to detect the movements of 
fingers and wrist. 

Computer vision researchers as well have made significant advances in the 
development of vision based devices that require no wearable hardware. Canesta and 
VKB for example have designed virtual keyboard systems [6][7] using infrared cameras 
to detect the interaction between the fingers and a projected image from a laser diode. 
Stereo vision has also been employed to obtain finger positioning and to perform 
rudimentary finger tracking. Lee and Woo for example describe ARKB [8], a 3D vision 
system based on a stereo camera. 

This paper describes a system based on the Swissranger SR-2 camera demonstrator 
[9], a novel 3D optical range camera that utilizes both the gray-scale and depth 
information of the scene to reconstruct typing events. The tracking of the fingers is not 
based on skin color detection and thus needs no training to adapt to the user. After 
initial calibration for environment setup, the system is fully automated and does not 
require human intervention. Besides its application in a planar setup, the system can be 
employed in a real 3D space for virtual reality and gaming applications. Since physical 
contact is not a requirement of the system, important applications designed for disabled 
computer users and for users operating in hostile and sterile environments are 
envisioned. 

The paper is organized as follows. In Section 2, the system architecture is described, 
including all main hardware modules and software components of the system. Section 3 
outlines the camera-calibration process, including the models for all known sources of 
error caused by the camera. The dynamic event detection algorithm is discussed in 
Section 4, where we describe the techniques for fingertip and keystroke detection. 
Results are presented in Section 5. 

2 System Architecture 
Figure 1 shows the physical setup of the system. The 3D range camera is placed several 
centimeters over the input surface, with a well-defined angle facing the working area. 
The size of the working area, limited by the spatial resolution of the camera, is 15 cm × 
25 cm, which is comparable to a full-size laptop-computer keyboard. The display 
projector is mounted on the camera, facing the same area, which would generate the 
visual feedback for the keyboard and input information. 

The proposed system consists of three main hardware modules: (1) 3D optical range 
camera, (2) visual feedback, and (3) processing platform. The range camera is 
connected to the processing platform, presently a personal computer (PC), via a USB2.0 
interface. The visual feedback module communicates with the computer via serial port. 

The Swissranger SR-2 3D optical range camera simultaneously measures gray-scale 
and depth map of a scene. The sensor used in the camera is based on CMOS/CCD 
technology and it is equipped with an optical band-pass filter to avoid all background 
light. It delivers gray-scale and depth measurements based on the time-of-flight (TOF) 
measurement principle with a spatial resolution of 160 × 124 pixels. The light source of 
the camera is an array of LEDs modulated at 20 MHz with a total optical power output 



 

of approx. 800 mW, however only a fraction of this total light power is utilized in the 
current setup. The depth resolution under these conditions is only about 1.5 cm without 
any spatial filtering, and may reach 0.6 cm with the spatial filtering with a window size 
of 5 × 5 pixels. A detailed discussion of the theoretical background and practical 
implementation of the camera can be found, e.g., in [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Projected-keyboard demonstration-system setup 

The depth information supplied by the range camera allows developing simpler and 
more efficient computer-vision algorithms to estimate the position of fingertips and to 
locate the corresponding stricken key. Simplicity and efficiency are key elements to 
enable real-time or even portable applications. 

However, there are still some challenges associated with the range camera utilized 
in this project. A number of problems, such as e.g., light scattering, and “close target” 
artifacts impact achievable depth accuracy. Moreover, the image resolution of the 
camera is relatively low, thus restricting its use to applications with large view window. 
As a result the working area of the keyboard is limited today to a sub-optimal size. The 
current power consumption and size of the range camera are also impediments to its use 
in truly portable applications. Naturally, the current demo system is composed, in part, 
by prototypes. Nonetheless, based on our research experience in the field of full-field 
TOF-based rangefinders, we believe that all these problems will be solved in the near 
future, and all-solid-state 3D cameras will soon fall in adequate size and price ranges. 

The visual feedback module is constructed using projection of a dynamically 
generated image based on a mini LCD. Whenever the processing algorithm detects a 
key-striking or key-bouncing event, it sends an UPDATE command to the visual 
feedback module with specific key information. The feedback module updates the 
generated display according to the command and thus the user can see the change of the 
keyboard image as well as textual or graphical updates. Additional audio feedback is 
used to help the user identify successful keystrokes. 

The processing algorithm consists of five main modules as shown in Figure 2: (1) 
depth map error correction, a camera dependent module based on specific models 
designed for the range camera, (2) background subtraction, (3) central column 
estimation, (4) fingertip detection, and (5) keystroke detection. Note that software 
modules (2) to (5) are camera independent modules applying computer vision 
algorithms to track the movement of fingers and to detect the typing event.  



 

The 3D range camera is calibrated at startup. The projection matrix of the camera is 
estimated during calibration. The depth map delivered by the range camera is first 
processed by the error-correction routine to compensate for errors caused by parallax 
and distributed clock skews in the camera. The rectified range measurements, combined 
with gray-scale image, are then subtracted from the reference image and binarized to 
extract the hand region. After applying the central column estimation, which is defined 
as the pixel segments associated with fingers that are good candidates for an event, by 
searching the local extrema in x-coordinate along the hand boundary, and applying the 
fingertip detection by extracting features with curve modeling, precise location of 
fingertips can be found in the hand region. Finally, the keystroke detection is obtained 
by fitting depth curve applying another feature model, and the corresponding hitting 
positions are mapped back to the world coordinate system to infer the stricken keys. The 
updated key status is then sent to visual feedback module to generate refreshed display. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Software flowchart 

3 Camera Calibration 
The 3D optical range camera requires certain calibration procedures. To estimate the 
projection matrix Mc of the camera, we use the classic method proposed by Tsai [11] 
with respect to a world coordinate frame attached to the table. We also find that there 
exist some camera specific errors in the range measurement, and we analyze the cause 
of these errors and how to model and correct them. 
 
 
 
 
 
 
 
 
 
 
    

(a)                                                                    (b) 
Figure 3. (a) Depth map of the desk before error correction and (b) depth map of the 
desk after error correction 



 

There are mainly two types of errors in the range measurement. One is caused by 
the parallax effect, the other by skew in the clock distribution of the sensor. Both errors 
result in location dependent under- or overestimation of depth. The parallax error is 
estimated using triangular geometry of the scene projection. The clock-skew error 
linearly increases with the x- and y-coordinates in the image plane. The gain or slope in 
x- and y-direction may be estimated using LMS. Figure 3 shows the depth map of a flat 
table surface before and after error correction, and Table 1 lists the statistical value of 
the two cases. The mean value of the latter case has counted in the offset. 

 Mean (cm) Standard deviation (cm)
Before correction 38.42 12.73 
After correction 35.84 1.46 

Table 1. Statistics of depth map before and after error correction 

4 Dynamic Event Detection 
To detect the movement of fingers, the proposed system applies a series of computer-
vision algorithms to the gray-scale image and depth map. The first step in the process is 
the segmentation of the scene into its foreground and background components. The 
foreground is defined as the fingers and forearms. Once the segmentation has been 
performed, the process of detecting the fingertips starts with estimating and extracting 
features. 

For the detection of the hand region, the algorithm uses a previously acquired 
background image as its reference frame. The background is modeled using both, gray-
scale image and depth map. During detection process, the input frame is compared to 
the reference frame, and its differential distance map is computed. 
 
 
 
 
 
 
 
 
 
 
 
                                       (a)                                                                      (b) 
Figure 4. (a) Differential depth map and (b) Binarized hand region after background 
subtraction 

When the pixels of the resulting differential map that have values larger than a 
given threshold (one for the depth map and one for the gray-scale image), it corresponds 
to the foreground. Binarizing the differential map results in a separation of the hand 
region from the background scene. Median filtering is then applied to the binary frame 
to reduce the impact of noise. The resulting hand image is clear and contains only few 



 

gaps. Figure 4(a) shows the differential depth map, and Figure 4(b) shows the 
segmented hand region computed for an example image. 

According to our analysis of the differential map after background subtraction, the 
difference is very small near the edge of the fingers and it is submerged by Gaussian 
noise, either in the gray-scale field or in the depth field. Therefore, it would be difficult 
to detect the precise location of a fingertip based solely on the thresholded hand region. 
Alternatively, the central-pixel column associated with a finger is first estimated from 
the binarized hand region. Then, the fingertip is detected by extracting features from the 
central column curve of the depth map. Since the frame rate of the demo system of 33 
frames per second is not high enough to apply cross-frame tracking in such a close 
distance, since the target tracking requires additionally a relatively complicated hand 
model, which is not suitable for our real time algorithm, no temporal coherence is 
assumed for this system. 

The most likely position of the central columns can be derived from the finger 
trunks based on the segmented hand region. We first compute the boundary of the hand 
by noting that any pixel on the hand region, which has 4-connectivity with a non-hand 
region, belongs to the boundary. Then we compute an approximation of k-curvature for 
each pixel on the boundary. K-curvature is defined by the angle between two vectors 
[P(i-k), P(i)] and [P(i), P(i+k)], where k is a constant and P(i)=(x(i), y(i)) is the list of 
contour points. Segen and Kumar used local curvature extrema [12], but with our 
specifically configured angle and elevation of the camera, we need only to compute 
local extrema in x-coordinate instead of the angle. 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                   (b) 
Figure 5. (a) Example of local-extrema detection and (b) Result of central column 
estimation 

With an appropriate value of k, the local extrema in the x-coordinates can be used to 
find the central columns of fingers. For each pixel on the boundary of the hand region, 
we extend two vectors k pixels away along the contour. Since it is an approximation of 
k-curvature and the computation for local extrema is simplified as sign detection, we 
may get a series of continuous “local extrema” near the actual central columns. In such 
a situation the center pixel of this series is taken as the estimation of the central column.  
Figure 5(a) shows an example of local extrema in x-coordinate. The figure indicates 
how sign change is used to detect local extrema. The current pixel is marked with black 
and the forward and backward vector from this pixel are denoted as F and B. If F and B 
have a different sign in x-direction, the current pixel is marked as local extrema, 
otherwise it is skipped. Figure 5(b) shows the result of central column detection in gray-
scale image. The detected central columns are marked with white lines. 



 

To detect the fingertip in the segmented hand image, the feature model of the 
differential depth curve is applied. The differential depth curve represents the depth 
values of the differential map along the central columns of the fingers in x-direction. It 
appears to be the piecewise linear superposition of a linear segment with a gradient 
close to zero, in correspondence of the finger, and a curve segment which can be 
modeled as a non-decreasing second order polynomial. We take the intersection point of 
two sections of the curve as the fingertip. 

Figure 6 shows the differential depth curve of the central column and the fitted 
curves of its piecewise parts, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Differential depth curve and the fitted curve 

The contact between fingertips and virtual keys is also detected by feature models. 
The depth curve of the fingertip appears to be a smooth second-degree parabola for the 
case that the finger touches the working surface or it is very close to it. For the case in 
which the finger lifts away from the working surface, the depth curve appears to have a 
discontinuity in the parabolic curve. The keystroke hypothesis is tested by curve fitting 
with second order polynomial. The hypothesis is verified when the fitted curve exhibits 
a deviation larger than some predefined threshold. This large deviation is caused by the 
perspective projection of the scene and the discontinuity in the depth map between the 
finger and the table. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Depth curve of collision case and non-collision case 



 

Figure 7 shows the depth curve in the finger-touching and the finger-lifting cases, 
respectively. The position of the typing fingertip is then mapped back to the world 
coordinate with previously calibrated projection matrix, and the corresponding virtual 
key is inferred from the differential depth map which codes the x- and z-coordinates of 
the keystroke. 

5 Experimental Results 
In this section, preliminary experimental results of the proposed system are presented. 
The range camera is connected to a PC with Pentium4 1.8GHz CPU. With these 
resources, the system could capture images and process them in approx. 30ms intervals, 
i.e., 33 frames per second on average. This frame rate is high enough for normal typing, 
which requires a finger speed of at most 10 cm/s. The camera was pre-calibrated with 
respect to a world coordinate frame associated with the surface, and the construction of 
the reference frame was achieved in less than 3 seconds. 

Figure 8 shows a true human hand’s typing motion being tracked by our algorithm 
and the detected keystroke event in the image sequence, which are marked with white 
dots. A sequence of frames leading to a specific keystroke is shown. The keystroke of 
the dynamic fingertip is detected accurately in Figure 8(b). Note that also the other 
fingers are correctly detected, as they are stationary keystrokes. Stationary keystrokes 
can be interpreted as REPEAT. Current challenge for the system is the finger occlusion 
problem for two-handed typing, which is common to most of the vision based hand 
tracking systems. A solution to this problem is to apply more complicated 3D hand 
models so that the position of the occluded finger can potentially be estimated. 
However, this may dramatically lower the system frame rate and cannot fulfill our real-
time requirement. 
 
 
 
 
 
 
 
               (a)                               (b)                                (c)                               (d) 

Figure 8. (a), (b), (c) and (d) Result from image sequence 

The proposed system could also be extended to the application of a virtual mouse. 
The finger tracking method can precisely locate the position of a moving finger in the 
working area, and detect the click event in the same way as the detection of keystroke 
event. The only challenge is to track multiple fingers and record their traces in the scene 
for this application. In the trivial case we can assume that there is only one finger in the 
scene as the input source. However, for the case where the left and the right button are 
both simulated, or for some gesture controlling interface, temporal coherence 
information can be employed and a more complicated tracking algorithm should be 
devised. 

Table 2 lists the results of the system’s usability tests, which involve users of 
different races, typing skills and genders, reflecting the natural distribution of left- and 
right-handed subjects. The subjects were required to type test patterns indoors under 



 

different lighting conditions and with slow, normal and fast typing speed. The finely 
designed test patterns cover all key positions and most of their possible combinations. 
Statistics were compiled to evaluate the false detection, misses and incorrect detection 
rate. False detection occurs when a key is not pressed but a character is issued. A miss 
occurs when a key is pressed but no character is issued. Incorrect detection is equivalent 
to a misprint. User set 1 consists of users who never used this system beforehand, and 
user set 2 of users who practiced with the system for less than 10 minutes. From Table 2 
we found that the dominant detection error is the false detection in both cases. This error 
is mainly caused by the low lateral resolution of the camera, which could not resolve 
very small floating distance between the fingers and the table, though that users could 
not adapt to a flat typing surface is also a reason. Experiments showed that with short 
time of practice, accuracy and typing speed are both observably enhanced. It was also 
shown that an appreciably experienced user can reach the normal typing speed of 
approx. 30 words per minute with the presented system. 

 False 
detection 

rate 

Missed-
strokes 

rate 

Incorrect 
detection 

rate 

Typing 
accuracy 

Average typing 
speed (words/min) 

User set 1 8.5% 3.5% 1% 87% 21.6 
User set 2 6.7% 2.7% 1% 89.7% 30.8 

Total 7.4% 3% 1% 88.6% 27.1 

Table 2. Summary of results of the system-usability tests 

In general, the surrounding lighting condition would impact the scene segmentation 
method if based on static reference frame. However, the infrared LED light source and 
the camera filter is narrow-banded and centered on a wavelength that only few natural 
light sources would have as their main component. This enables to extract the hand 
region according to pre-computed reference frame with very low processing 
complexity. 

In this paper, only static background conditions were discussed. One major problem 
of having a mobile input device is that of dynamic scene. We are currently working on 
methods of automatically updating the reference frame if the movement of background 
is detected. Furthermore, for the comfort of user’s wrist and elbow, generally virtual 
keyboard systems are developed based on 2D flat keyboard area. However, with the 
depth information supplied by the range camera, our system could be extended to 3D 
keyboard without any actual typing surface, which is also the direction for our future 
study. 

6 Conclusions 
A virtual keyboard system based on a true-3D optical range camera is presented. 
Keystroke events are accurately tracked independently on the user. No training is 
required by the system that automatically adapts itself to the background conditions 
when turned on. No specific hardware must be worn and in principle no dedicated 
goggles are necessary to view the keyboard since it is projected onto an arbitrary surface 
by optical means. The feedback text and/or graphics may be integrated with such 



 

projector, thus enabling truly virtual working area. Experiments have shown the 
suitability of the approach which achieves high accuracy and speed. 
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