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Abstract

Several tennis ball tracking algorithms have been reported in the litera-
ture. However, most of them use high quality video and multiple cameras,
and the emphasis has been on coordinating the cameras, or visualising the
tracking results. In this paper, we propose a tennis ball tracking algorithm
for low quality off-air video recorded with a single camera. Multiple vi-
sual cues are exploited for tennis candidate detection. A particle filter with
improved sampling efficiency is used to track the tennis candidates. Experi-
mental results show that our algorithm is robust and has a tracking accuracy
that is sufficiently high for automatic annotation of tennis matches.

1 Introduction

In automatic annotation of sports video, higher-level descriptions generally rely on low-
level features. In the context of a tennis match, the evolution of the game is described
by key events such as the tennis ball being hit, the tennis ball bouncing on the ground,
etc. To detect these important events, the tracking of the tennis ball is required. However,
tracking the small and fast moving tennis ball is a challenging task. Small objects usually
have less features to detect, and are more vulnerable to distractions; the moving of the
tennis ball is so fast that sometimes it is blurred into background; the tennis ball is also
subject to occlusion, false detection, and sudden change of motion direction. This last
point poses a major challenge for the tracking, especially when the ball is close to one of
the players, where abrupt motion change can happen at the same time as occlusion and
false detection.

Although various tracking algorithms have been developed in the past [1, 2, 4, 10],
little has been seen in the literature on how robust tracking algorithms are used to track
tennis ball. Most existing tennis systems use high quality video, which means simple al-
gorithms such as blob tracker is sufficient [7, 8]. The emphasis has been on coordinating
multiple cameras, or visualising the tracking results [6, 7, 8]. In this paper, we propose a
robust tennis ball tracking algorithm for low quality off-air video recorded with a single
camera. Multiple visual features are exploited for tennis candidate detection. A particle
filter with improved sampling efficiency is used to track the tennis candidates. Experi-
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mental results show that our algorithm is robust, and the tracking accuracy is high enough
for automatic annotation.

This paper is organised as follows: Section 2 gives a brief introduction to our au-
tomatic tennis video annotation system. In Section 3, the methodology of the proposed
tennis ball tracking algorithm is presented. Its performance is shown and discussed in
Section 4. Conclusions are given in Section 5.

2 The Automatic Tennis Video Annotation System
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Fig. 1 is the diagram of our automatic tennis annotation system. As a pre-processing
stage, image frames are de-interlaced into fields, and the geometric distortion of camera
lens is corrected. When the tennis ball is moving fast, it is alternately present and absent
on successive frame lines, thus the need to operate on fields rather than frames. Shot
boundaries are then detected and shots are classified into play shots and others (close-ups,
crowd etc.). For a play shot, the tennis players are tracked using standard background
subtraction and a simple blob tracker. By examining the tennis ball trajectory provided
by ball tracking module, and incorporating the player positions, key events (hit, bounce,
etc.) are detected. Finally, a hidden Markov model is applied to the events to generate
high level annotation, i.e., outcome of play, point, etc.

3 Methodology

In this section, we show how the difficulties in tennis ball tracking are tackled. Three
major steps involved in the proposed tennis ball tracking algorithm are presented. First,
foreground moving objects are extracted by differencing temporally neighbouring fields.
Foreground blobs are then classified into tennis ball candidates and non-candidates using
multiple visual cues. Finally, the candidates are tracked with a particle filter.

3.1 Motion Segmentation

Pixel-wise temporal differencing is adopted as means of motion detection. A pan-tilt-
zoom camera is assumed. Homographies between fields are calculated by tracking cor-
responding corners, and then used to compensate the global motion between fields. Let
f, be thek!" field in a play shot, and, be a neighbouring field, which is already motion
compensated with respect fp. For a pixelp,(m,n) in f, with intensity I, (m,n) and
indicesm, n, a boolean variable is defined as



iSFG,(m,n) = [I,(m,n) —1I;(m,n) > i]

whereiy,, is a threshold. Pixgb, (m,n) is classified as foreground pixel when
iSFG (mn) £ A isFG ,(mn) =true
vleL, ’

whereA is the logical AND operation, ant, is a collection of several neighbouring
fields. In our implementation,

L, = {k—8 k—6,k—4,k+4k+6,k+8}

Note thatf, _, andf, , , are not used, to prevent the ball being excluded when itis traveling
at very low velocity.

The result of tennis player tracking is then incorporated. Pixels that belong to the
players are excluded from foreground pixels.

3.2 Tennis Ball Candidate Detection

The foreground pixels obtained above are clustered into blobs according to their connect-
edness. A blob may be the true tennis ball, it may also be part of the player, the racket,
or even part of the advertising boards, due to various inaccuracies. A method for fore-
ground blob classification is required. In [7], the authors suggest that the tennis ball has a
standardised yellow colour, which can be used as an important cue for the classification.
However, in some off-air material, since the colour bandwidth is low, and the tennis ball
has a very small size, its colour can be strongly affected by the colour of the background it
is traveling on. Moreover, the video archives our system is targeted at are usually subject
to artifacts introduced by analogue encoding, for instance, the PAL cross-colour effect,
which appears as reddish noise colour “floating” in the image. This also suggests that
colour information by itself is not sufficient for the classification. We suggest a multi-cue
foreground blob classification method as follows.

For each foreground blob, a small surrounding area is included, and the enlarged blob
is interpolated, using bi-linear interpolation. The corresponding binary image, in which a
“true” stands for a foreground pixel, a “false” for a background pixel, is also interpolated.
The edge pixels of the interpolated binary image are then extracted, and used as the edge
of the blob in the interpolated intensity image. An ellipse is fitted to the edge pixels,
according to a least square criterioll points are then sampled along the ellipse. For
each point, the normal direction is found, and the gradient is calculated using3a 3
Sobel mask.

Fig. 2(a) - Fig. 2(d) shows the major steps involved in this process. The idea is to use
the mean absolute angle difference of the normal direction and the gradient direction at
all sample points for foreground blob classification. We define

1M
aélea.
M2

whereq; is the absolute angle difference in radians at ithesample point. It takes a
value ranging from O tar. Using the assumption that a target-originated blob is a local
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Figure 2: An important feature for blob classification: absolute angle difference between
gradient orientation and surface normal orientation. (a) interpolated intensity image, (b)
interpolated binary image, (c) interpolated intensity image with blob edge, (d) fitted el-
lipse with surface normal (thick line) and Sobel gradient (thin line), (e) gradient vectors
of an target-originated bloly = 0.31, (f) gradient vectors of a clutter-originated blob,

o =1.93.

maximum in the intensity image and is approximately elliptical, a blob with smalier
more likely to be target-originated.

An 8-dimensional feature vector is then constructed, witas one dimension of it.
Other dimensions include the coordinates of the blob center (row and column), the pa-
rameters of the fitted ellipse (major axis, minor axis), and the mean of the pixels inside
the blob in HSV channels. An SVM is then trained to classify foreground blobs. Experi-
mental results show that with this multi-cue blob classification method, a good accuracy
can be achieved without imposing too much computational overhead.

3.3 Tennis Ball Tracking

Problem Modelling: Consider a linear time-invariant dynamic system defined by a sys-
tem model and a observation model as follows:

X = AX_,+V

zz = Hx+w

wherex; is the system state, is the observation, and w are process noise and observa-
tion noise, respectively. The objective is to estimateecursively, using noise corrupted
observatiory;. In our tennis ball tracking problem, the position and velocity of the tennis
ball in both vertical and horizontal directions are modelled by the state vector:
Xt = (pYa ptha VY’ V{])T
Assuming the velocity of the tennis ball is constant in two successive fields, the state
transition matrixA and observation matrid are then determined as

1010

0101 1000
A=loo1o0 HZ(Oloo)
0001

The process noise and observation noise are further assumed to be zero-mean,
white, and Gaussian random processes.



Tracking with a particle filter: Using the assumptions made above, we have:

1 1 TA-1
P(Xi|X_1) = —————exp—= (X —AX_;) Q (X — AX, _ Q)
(Xe[%_1) 2n)2/0)h Pl 5 00 =A% 1) Q0% — A% _y)]
whereQ is the covariance of the process noise.
Assuming the number of clutter-originated observations is Poisson distributed, the
total observation density can be proved to be, up to proportionality,

plzfx) 0 + z exii—5 (2l —Hx) TRz —Hx,)] @

7'E| |2

whereR is the covariance of the observation noizgels the j" tennis ball candidater
is the number of candidates detected at timandf is a constant corresponding to the
observation density caused by clutter [2].

According to Bayes’ theorem, and using the result of Eq. (1) and Eq. (2), the pos-
terior densityp(x|Z;) can be derived to be a Gaussian mixture. An optimal algorithm
(in the Bayesian sense) for estimating this density has been proposed by Bar-Shalom and
Forman in [1]. However, in their algorithm, the decomposition of densities with respect to
all the observations is performed at each time step, leading to an exponentially increasing
number of modes in the Gaussian mixture, and hence an exponentially increasing com-
putational complexity. An elegant solution to this problem is provided by Monte Carlo
simulation [9].

Assume at timé — 1 the posterior density is represented by a set of particles with
uniform weights, i.e.,

P(X_11Z 4 Zl 5 (X_1— S1) 3)

wheren is the number of particles(-) is the Dirac delta function, and_, is the obser-
vation history up to timé¢ — 1. Using Eq. (3) and Eq. (1), the prior density at titris
obtained as:
Pz =15 T e iy AS QX AS )] @
‘ T A

According to Bayes’ theorem, and using the result of Eq. (4) and Eq. (2), after some
rearrangement, we get the posterior density at tiae

1 LT L i
P04 2) DZ Z; C,J|2exp[—§<xt—mm>Tcw -mih](9)
where
wl=p, G°=Q m°=Ag, (6)
for j#0
R JE R Y T i
W P exp—3(z) —HAS_)T(R+HQHT)"(z) —HAY_,
Ct”z(l—KH)Q

mil =Aq_; +K(z —HAY ) (7)



and
K=QHT(R+HQHT)? (8)

Eq. (5) to Eq. (8) show that the posterior density is a Gaussian mixturenwitm, +
1) components, and the weight, covariance, and mean of each component are analytically
available. Moreover, it is straightforward to simulate a Gaussian mixture distribution. An
update cycle of the particle filter is thus complete.

Two advantages are achieved with the proposed algorithm. Firstly, Monte Carlo simu-
lation allows us, without losing Bayesian optimality, to limit the computational complex-
ity by choosing the number of particles. Secondly, in the standard Sample-Importance-
Resample particle filter [2], samples are drawn from prior probability distribution. When
the likelihood is much more peaked than the prior, this leads to a very low sampling ef-
ficiency, since most particles will have negligible weights. Various techniques have been
suggested to solve this problem, by “herding” the particles to the right part of the state
space [9, 10]. In our case, however, those techniques are not needed. Since we can draw
samples directly from the posterior density, our algorithm is optimal in terms of sampling
efficiency [10].

Automatic switching between two dynamic models [3]:When the tennis ball is hit by

a player, it changes its motion drastically. This may cause loss of tracking. To handle the
abrupt motion change, when the tennis ball is close to a player, a second dynamic model
with the following form is triggered with a certain probability:

1 00O
01 00
0010
0 0 01

A=

Note that to use the second dynamic model, the only modification needed in the algorithm
is to useA’ instead ofA in Eqg. (6) and Eq. (7).

(a) Chamfer distance transform on the tennis (b) The second dynamic model is triggered when

player tracking result the ball is close to the players. Red points: par-
ticles propagated using the first dynamic model;
yellow points: particles propagated using the sec-
ond dynamic model

Figure 3: Automatic switching between two dynamic models
The probability that a particle is propagated with the second dynamic model is deter-

mined by the distance between the particle and the players, and also the “history” of the
particle. The tennis players are tracked, and Chamfer distance transform is applied to the



resulting binary image, as shown in Fig. 3(a). A threshadis then set. A particle is
said to be “close to a player” d; < d,;,, whered, is its corresponding Chamfer distance.

If a particle is not “close to a player”, it is always propagated using the first model. If a
particles is “close to a player”, we search through its history backwards. Assume the
first particle in its history that isot“close to a player” is encountered at tirggand the

first particle that is propagated with the second model is encountetedfat, < t,, § is
propagated using the second model with a probability ogind using the first model with

a probability of 1— p'. If t, > t,, the particle is always propagated using the first model.

Input: a set of particles at tinte- 1: {5{71, %}in:l
observations at time {z}}1*,
Output: a new set of particles at tire{sf, 1} |

- FOR (each particlg_, at timet — 1)
- find the corresponding Chamfer distance and the dynamic model to use
- computen), CJ, andmi} of each component ip(x;|Z), using Eq. (6),
Eq. (7) and appropriate dynamic model
- normalise so thaXlez?Lov%vl =1
- storewy’!, Ci+J, mp) and the index
- END FOR
-FOR k= 1k <=n;k++)
- select a pair (i,j) with probability(i, j) = W{J This can be done by cumulating
the weightw}) and using a random number normally distribute¢Oiri]
- sample from théi, j)'" component of the posterior density. i.e., the one with
Cl'J as covariance ana)) as mean.
- store the sampled particle, along with the index of its parent patrticle,
- END FOR

Table 1: Pseudo-code of one update cycle of the algorithm

Smoothing and observation origin identification: The accuracy of the tennis ball track-
ing result is critical for our application. It has great impact on the following event detec-
tion procedure, and will in turn affect the final annotation result. Unfortunately, estimates
computed directly fronp(x;|Z;) are usually not accurate enough. A smoothing process is
required, which tries to estimaf®x;|Z; ), i.e., the distribution ok; in the light of all the
observations in the sequence. A fast smoothing algorithm developed by Kitagawa [4] is
adopted.

The smoothing procedure is straightforward. The{tr }in:l is stored at each time

tinstead of the sefts, 7}, where§ = (slfll, - ,5{4'[) is the history of particle, ki is
the index of the particle i§ at timer, andk{’t =i. The smoothed density is then:

n

PIXZr) = 3 #H80x - £ (©)



In our implementation, the weigh' is always%. The only difference between the un-
smoothed densitp(x;|Z;) and the smoothed densipyx;|Z; ) is that two different sets of
discrete support are used: if a particle, as a hypothesis, is reinforced “in the future”, it will
have more copies in the smoothed density.
Using Eq. (9) and the observation model, we get:
(L 1 1 iT iT
— Y ——  exg—Z(z —H TR Y(z —Ht
p(z|Z7) ni; (277:)|R|% exp Z(Zt Hs' ) 'R (z —Hg' )] (10)
Substitutingz[j,j =1,---,m into Eq. (10) we get the likelihood of each observation. If
the likelihood of at least one observation is greater than a thregfjpoltie observation
with highest likelihood is used as the final tennis ball position. If none of the likelihoods is
greater tha,, we assume the tennis ball is not detected, and its position is interpolated.
This extra process identifies the origin of each observation, so the effect of outliers is
completely eliminated.

4 Experimental Results

To evaluate the performances of the proposed tennis ball tracking algorithms, experiments
were carried out on video sequences from the 2003 Australian Open tennis tournament.
We ran our tracking algorithm on 70 shots that were classified as “play” shots by our
system (Fig. 1). In total the 70 shots are approximately 8 minutes long, and contain
23096 fields. In the experiments, a particle number f1000 is used, and the standard
deviations of observation noise and process noise are 0.5 pixel and 2 pixels, respectively.

For this quantity of data, it is not feasible to provide ground truth. However, good
results were observed in visual inspection. On all 70 shots, tracking is successfully ini-
tialised using a simple method, which detects smooth motions. The tracking result is
excellent on 69 shots: when the true tennis ball is detected as one of the candidates, it is
always correctly identified as the target-originated observation; in the rare cases where,
due to occlusion or errors of blob classification, the tennis ball is not detected as one of
the candidates, its position is accurately interpolated. Examples of the tracking result are
shown in Fig. 6.

The only tracking failure happens in a shot containing 466 fields, where the tennis
ball is either occluded by the “near player” or confused with the sideline in 34 successive
fields, before it reappears at the far side of the court. Tracking is lost during this period.
A tracking re-initialization mechanism is still to be developed.

5 Conclusions

In this paper, we present a tennis ball tracking algorithm for low quality off-air video.
Multiple visual features are exploited for foreground blob classification, among which a
novel feature for detecting elliptical objects is proposed. A particle filter is used to track
the tennis candidates. Samples are drawn directly from the posterior density. As a result,
an improved sampling efficiency is achieved. Smoothing and observation origin identifi-
cation are then used to refine the trajectory, to give higher tracking accuracy. Experimental
results show that our algorithm is robust and has an accuracy that is sufficiently high for
tennis annotation.



Figure 4: The particle filter in operation. 6 successive fields are shown, the field num-

bers are (from left to right, top to bottom) 101-106. 101: particles are closely clustered

around the observation, this is the result of sampling directly from posterior density, and

indicates a high sampling efficiency. 102: when no tennis ball candidate is detected, the
particles are governed only by the prediction model. 103-106: when multiple observa-
tions are made, ambiguity arises. The particle filter tracks each of the observations till the
ambiguity is resolved. Particle colours are as in Fig. 3(b)

Figure 5: Smoothing and observation origin identification. Trajectories are shown on
a background image constructed with image mosaicing technique. Top left: Mean of
p(%¢|Z;) (unsmoothed density). Top right: Mean (x| Z;) (smoothed density). Bottom

left: Tennis ball trajectory after observation origin identification. Points: observations;
crosses: interpolated positions. Bottom right: The trajectory is now accurate enough for
key events (hit, bounce, etc.) detection. Red square: key events detected using motion
discontinuity in the trajectory.
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Figure 6: Some examples of the tracking result. Top row: final trajectories without de-
tected key events. Bottom row: final trajectories with detected key events.
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