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Abstract

In this work, we present a framework for tracking objects in changing
views by finding the subwindow most likely to be the object using Haar-like
features selected by AdaBoost as the representation. Probabilistic AdaBoost
[14] is used to derive the objective function. In addition, the projective warp-
ing of 2D features is used to track 3D objects in non-frontal views in real
time. Transformed 2D features can approximate relatively flat object struc-
tures such as the two eyes in a face. In this paper, it is shown that, under weak
perspective projection, the projective warping of a rectangle feature can be
approximated by a similarity transform with an additional free parameter.
Since features in non-frontal views are computed on-the-fly by projective
transforms under weak perspective projection, our framework requires only
frontal-view training samples to track objects in multiple views.

1 Introduction
Much effort has been made to solve the problem of real-time object tracking over the
years. However, tracking algorithms still suffer from fundamental problems including
drifts away from targets [2] (partially due to change of viewpoint), inability to adapt
to changes of object appearance, dependence on the first frame for template matching
[3], instability to track objects under deformations (e.g. deformed contours), the ineffi-
ciency of Monte Carlo simulations for temporal tracking [4], and reliance on gradients
by active contours [5], i.e. problems with similar intensities on the background and the
object, or high gradient edges on the object itself. These problems are due to the com-
plexity of the object dynamics. We also have to deal with difficult tracking conditions
which include illumination changes, occlusions, changes of viewpoint, moving cameras
and non-translational object motions like zooming and rotation.

Recent techniques use more complex and descriptive representations for tracking [6],
[7], [8], [9]. A more descriptive representation may reduce the dependency on temporal
information for tracking. There are a number of advantages to use a more descriptive
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representation. It makes tracking more robust in cluttered scenes. Less constrained phys-
ical state trajectories such as those containing discontinuities may also be tracked. If the
representation can encode the appearance of the object more discriminatively, it allows
the tracking of objects largely relying on framewise detections without much temporal
analysis, such as Viola-Jones detector-based tracking [6]. However, it is both difficult
and expensive to obtain statistics to build a 3D model for object detection or tracking
while 2D appearance models such as [13], [1], [7] and [9] have been very successful.
When multi-views are considered, a huge amount of data is needed for each view for the
training for a particular object. Such a huge dataset is impractical to create and it is also
computationally expensive to train such a multi-view model.

In this paper, a technique to track non-rigid objects in changing views with only
frontal-view training samples is developed. Non-frontal views are deduced from frontal-
view samples by geometric transformations under weak perspective. We show that, under
weak perspective projection, the projective warping of a rectangle feature can be approx-
imated by a similarity transform with an additional free parameter. The additional degree
of freedom allows the change of the aspect ratio of the rectangle feature. The approxi-
mation gives us an extremely efficient means to track a rotating object. Only the aspect
ratio η , the scale s, a 2D rotation with the angle γ and the centroid location (xl ,yl) need to
be tracked. For face tracking, in difficult situations, a subwindow containing a face may
be classified as a non-face because of the viewpoint, occlusions, the background or light-
ing. With probabilistic AdaBoost [14], the probability of that subwindow being a face
is higher than the probability of a non-face subwindow. A better approach would be to
find the subwindow most likely to be the object. An optimization framework is, therefore,
constructed to find the subwindow. Kalman filters are adopted to track the state variables
after projective warping in every frame. They are used to temporally confine the parame-
ter space of the transform. Since we utilize a single appearance model for both detection
and tracking ensuring a smooth transition from detection to tracking, the initialization of
tracking is completely automatic. No assumption on color is made in our model. Our
tracker is able to track non-rigid objects with a roughly flat surface such as faces or cars.

2 Projective Warping of Rectangle Features
Viola and Jones [1] make use of an intermediate representation for images called the in-
tegral image or summed-area table [10] to obtain the sum of pixel values for rectangle
features with no more than four array references. The integral image is vital to com-
putational efficiency for computing rectangle features. However, features are no longer
rectangular after projective transforms. Therefore, we cannot calculate the features di-
rectly from the integral image. We propose to use a generalisation of the method to
calculate the features while we can still use the integral image. The generalisation was
proposed originally by Glassner [11] for texture mapping. It computes the average pixel
value within a quadrilateral to an arbitrary degree of accuracy using the integral image
with additional computation depending on the accuracy required. Glassner approximates
a non-rectangular shape by rectangles. Two methods can be used to do this: additive and
subtractive synthesis. Arbitrarily accurate features can be obtained and the integral image
can still be used to retain the efficiency of the original appearance model.

An alternative way is to approximate projective transforms. This method makes the



computation much more efficient. A planar projective transformation is a transformation
with eight free parameters. A search in the parameter space could be computationally
very expensive. An advantage to approximate projective transforms is to reduce the di-
mensionality of the parameter space. High dimensionality leads to expensive computation
and sparsity of data which prevents the search from finding the correct set of parameters.
A common approach is to approximate projective transforms by considering weak per-
spective projection such as planar affine transforms. For a planar affine transform, the
number of free parameters is reduced from eight to six.

2.1 Approximating Projective Transforms
We may use weak perspective projection to approximate the perspective projection of
rectangle features such as Haar-like features. Let us consider a rectangle feature with
corners P′

i where i = 1 for the top left, 2 for the top right, 3 for the bottom right and 4 for
the bottom left.

Pi = RoP′
i , (1)

where Ro = Ro3(γ)Ro1(α)Ro2(β ) is the rotation of the object and Pi are the corners after
rotating the feature. α is the pitch angle and β is the yaw angle. Both of the rotations
are out-of-plane rotations. Ro3(γ) is the in-plane rotation around the z-axis. The in-plane
rotation is the last rotation so the order is Ro3(γ)Ro1(α)Ro2(β ). The corner of a rectangle
feature after rotation in world coordinates is, therefore,

Xw = (cosγ cosβ − sinγ sinα sinβ )X ′
w − sinγ cosαY ′

w, (2)

Yw = (sinγ cosβ + cosγ sinα sinβ )X ′
w + cosγ cosαY ′

w, (3)
where (X ′

w,Y ′
w) is the corner before rotation in world coordinates. Note that we rotate the

object symmetrically by locating it on the x-y plane and its center to be in the origin in
world coordinates so Z′

w = 0 and, under weak perspective,

Z̄w ≈ 0. (4)

A rectangle feature can be on any part of the object. Thus, Z̄w is not exactly zero. Assum-
ing there is no rotation between the world coordinates and the camera coordinates, under
weak perspective projection, we have

xwp ≈
f RT

1 (T −Pw)

RT
3 (P̄w −T )

= −
f (Xw −TX)

Z̄w −TZ
, ywp ≈

f RT
2 (T −Pw)

RT
3 (P̄w −T)

= −
f (Yw −TY )

Z̄w −TZ
.

in image coordinates. Using Equation 4, a corner in image coordinates under weak per-
spective projection is then

Piwp =

[

f (Xw −TX)

TZ

f (Yw −TY )

TZ
f
]T

. (5)

By combining Equations 2, 3 and 5, a corner after the rotation of the object becomes
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under weak perspective projection in image coordinates. Let us assume that large pitch
and yaw rotations do not occur at the same time. This is mostly true in natural human
head rotations. Therefore, when α becomes large, β ≈ 0, or when β becomes large,
α ≈ 0. Hence, sinα sinβ ≈ 0, sinα cosβ ≈ sinα and cosα sinβ ≈ sinβ . Accordingly,
the rotational matrix Ro is simplified to be





cosγ cosβ −sinγ cosα cosγ sinβ + sinγ sinα
sinγ cosβ cosγ cosα sinγ sinβ − cosγ sinα
−sinβ sinα cosα cosβ



 .

And, Piwp is
[

f (cosγ cosβX ′
w − sinγ cosαY ′

w −TX)

TZ

f (sinγ cosβX ′
w + cosγ cosαY ′

w −TY )

TZ
f
]T

.

Let k = cosβ
cosα , θ = −γ , t13 = − TX

cosα , t23 = − TY
cosα and t33 = TZ

f cosα .
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where xwp = x1
x3

and ywp = x2
x3

. The transformation between (X ′
w,Y ′

w) and (xwp,ywp) is
a similarity transform when k = 1. A similarity transform with 4 degrees of freedom
preserves the angles and the ratios of lengths. Thus, for k = 1, the aspect ratio of the
rectangle feature remains unchanged after the transform. k adds one more degree of
freedom to the similarity transform. The number of degrees of freedom becomes 5 and it
allows the change of the aspect ratio of the rectangle feature. A rectangle feature after 3D
rotation is still approximately rectangular whereas the aspect ratio of the rectangle feature
η after rotation becomes cosβ

cosα η0, where η0 = (X ′
2w −X ′

1w)/(Y ′
1w −Y ′

4w) is the aspect ratio
before rotation.

This shows that, under weak perspective projection, the projective warping of a rect-
angle feature can be approximated by a similarity transform with an additional free pa-
rameter. The additional degree of freedom allows the change of the aspect ratio of the
rectangle feature. The approximation gives us an extremely efficient means to track a
rotating object. Only the aspect ratio η , the scale s, a 2D rotation with the angle γ and the
centroid location (xl ,yl) need to be tracked.

3 Optimization for A Cascade of AdaBoost
A cascade of AdaBoost classifiers proposed by Viola and Jones [1] is computationally
very efficient for object recognition. The cascade of AdaBoost classifiers reject most
subwindows not containing the object in an early stage to reduce computation drastically.
In this section, an optimization framework for the cascade is presented.

Using the projective warping of rectangle features, we can track the object in chang-
ing views as shown in Figure 1. However, the tracker is not very robust because it selects
subwindows containing the object and uses the centroid of the subwindows as the location
of the object. For face tracking, in difficult situations, a subwindow containing a face may



Figure 1: Experiment 1 - Tracking a non-frontal female face in real-time. The figure
shows example images from an indoor sequence (Video Sequence 1).

(a) (b) (c) (d)

Figure 2: Notice that all tracking failures in our experiments are due to the fact that no
subwindow is classified to be a face in several consecutive frames. Video Sequence 1 is
used for Experiments (a) and (b). Video Sequence 2 is used for Experiments (c) and (d).
(a) and (c) show the failure of the tracker after tracking respectively 431 frames due to
the background and 499 frames due to a partial occlusion. (b) and (d) show the failure of
the tracker due to view changes after respectively tracking 17 frames and 141 frames. In
Experiments (b) and (d), no geometric transformation is used. The tracker is only able to
track very few frames in the sequences without geometric transformations.

be classified as a non-face because of the viewpoint, occlusions, the background or light-
ing (see examples in Figure 2). With probabilistic AdaBoost [14], the probability of that
subwindow being a face is higher than the probability of a non-face subwindow. A better
approach would be to find the subwindow most likely to be the object. An optimization
framework is, therefore, constructed to find the subwindow. Before optimization can be
adopted to allow efficient searches over the parameter space confined by Kalman filters,
a score for the cascade of AdaBoost is needed to be used as the objective function.

Let us define S to be the score for the cascade of probabilistic AdaBoost [14].

P[y = +1|x] = e∑t αt ht

e∑t αt ht + e−∑t αtht
, P[y =−1|x] = 1−P[y = +1|x] = e−∑t αt ht

e∑t αt ht + e−∑t αt ht
,

where P[y = +1|x] is the probability of label +1 which, in our case, is that the subwindow
is the object and P[y = −1|x] is the probability that the subwindow is not the object. αt
is the weight assigned to weak hypothesis ht . The cascade of AdaBoost proceeds to the
next stage until the subwindow is rejected or the last stage is reached. Let the number of



stages classifying the subwindow be k and the number of all stages in the cascade be K.
First, for two subwindows with the same number of stages evaluated k, we compare the
joint probabilities of the outcomes of the evaluated stages by assuming that the outcomes
are statistically independent. Let sy(k,xi) be the logarithm of the joint probability. That
is,

sy(k,xi) = log
k

∏
l=1

Pl[y|xi]

where 1 ≤ k ≤ K. Second, it is assumed that the probability of a subwindow to be the
object is higher if the subwindow progresses further through the cascade [6]. Therefore,
we define

Sy(i,xi) > Sy(i,x j) ∀ sy(i,xi) > sy(i,x j) , and (6)

Sy(i,xi)y > Sy( j,x j)y ∀ i > j. (7)

To find the subwindow, which is the most likely to be the object, we can either compute
argmaxxi S+1(k,xi), or argminxi S−1(k,xi). We choose to the find

argmin
xi

S−1(k,xi).

Now, the rules to compare the scores of two subwindows have been defined. However,
we cannot use standard optimization methods to find argminxi S−1(k,xi) because the score
defined is not a quantity. To quantify the score, we let

S−1(k,xi) = log
K
∏
l=1

Pl [y = −1|xi],

and set
Pl [y = −1|xi] = 1 ∀ l > k

in order to satisfy Equation 6 and Equation 7. Thus,

S−1(k,xi) = log
K
∏
l=1

Pl[y =−1|xi] = log
k

∏
l=1

Pl [y = −1|xi] = s−1(k,xi) (8)

Note that we approximate Pl [y = −1|xi] by 1 for all i > k. In Equation 8, for two sub-
windows with the same number of stages evaluated k, ∏K

l=k+1 Pl[y = −1|xi] = 1. Hence,
only s−1(k,xi) and s−1(k,x j) are compared. For two subwindows with respectively k and
k +n as the number of stages evaluated, when ∏k

l=1 Pl [y = −1|xi] and ∏k
l=1 Pl[y = −1|x j]

are comparable, S−1(k,xi) is larger than S−1(k+n,x j) since ∏k+n
l=k+1 Pl[y =−1|xi] = 1 for

S−1(k,xi) . ∏k
l=1 Pl [y = −1|xi] should not be less than ∏k

l=1 Pl[y = −1|x j] because, for
Subwindow xi, the number of stages evaluated is lower. That means Subwindow xi is less
likely to be the object. Therefore, ∏k

l=1 Pl [y = −1|xi] and ∏k
l=1 Pl[y = −1|x j] should at

least be comparable.
Figure 3 shows some typical shapes of the objective function S−1(k,xi). Because the

objective function is not necessarily unimodal, the optimization algorithm is required to
find the global peak in certain cases.
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Figure 3: Some Typical Shapes of The Objective Function S−1(k,xi) :Instead of plotting
S−1(k,xi), -S−1(k,xi) is plotted against the location of the object (xl ,yl) in the previous
frame for easy visualization. In Figures (a) and (b) the objective function is unimodal. In
Figures (c) and (d), the objective function is multimodal and there are two peaks in each
of the figures. One of the two peaks is only a local peak. Thus, the optimization algorithm
is required to find the global peak in certain cases.

4 Experimental Results
We use the MIT-CBCL face dataset [12] which consists of 6,977 cropped images (2,429
faces and 4,548 nonfaces). The resolution of the images is 19×19 and slightly lower than
24×24 used by Viola and Jones [1].

To make use of the integral image, we set the in-plane rotation angle γ to 0 so that
all features are upright rectangles. That is to say we only track the out-of-plane rotations
α and β . A 12-stage cascade of AdaBoost [1] is used in our experiments. There are
1,127 features in the 12 stages. The 12 stages separately compute 2, 5, 20, 50 × 2, 100
× 5 and 200 × 2 features. After the detector initializes our tracker, four Kalman filters
are separately used to track the aspect ratio η , the scale s and the centroid location of
the object (xl , yl). For the optimization, since the search space confined by the Kalman
filters should be reasonably small, when compared with an exhaustive search, stochastic
optimization to find the global minimum would not be very efficient. An exhaustive search



Figure 4: Experiment 2 - Tracking a non-frontal female face in real-time with the pro-
posed objective function. The figure shows example images from an indoor sequence
(Video Sequence 1).

is used to find the global minimum to avoid the local minimums of the objective function.
Experiment 2 (see Figure 4) shows a video (Video Sequence 1, the same sequence as

in Figures 2a and 2b) with |β | < 90◦. It shows that faces with relatively large |β | could
also be tracked. It is clear that the side views share some common features with the frontal
view after projective transforms. The experiment demonstrates that the tracker manages
to track the face in Video Sequence 1 with 500 frames while it fails without our optimiza-
tion framework as shown in Figures 2a and 2b. Experiment 3 (Figure 5) shows tracking a
partially occluded non-frontal male face outdoors with a moving hand-held camera (Video
Sequence 2, the same sequence as in Figures 2c and 2d). This experiment demonstrates
that the tracker manages to track the face in Video Sequence 2 with 526 frames while it
fails without our optimization framework as shown in Figures 2c and 2d. With Exper-
iment 4, Figure 6 shows a 30-second long video (Video Sequence 3) with 894 frames.
The distance between the person being tracked and the camera varies considerably. This
experiment shows that the tracker is very robust when both the camera and the object are
moving. The tracker is able to track objects in a very low resolution. The tracked face is
very small in the 320×240 sequence and the scene in the background is highly complex.
Experiments 2, 3 and 4 demonstrate that our tracker can track deformable objects from
different viewpoints, i.e. faces with different expressions in different views in this case.

In our current experiments, the tracking frame rate is 7.5 frames per second with the
frame size 320×240. The code for the interface is in Matlab. Our core code is compiled
by gcc on Cygwin on an AMD Athlon 1.68GHz machine.



Figure 5: Experiment 3 - Tracking a partially occluded non-frontal male face in real-time
with the proposed objective function. The figure shows example images from an outdoor
sequence with a moving hand-held camera (Video Sequence 2).

5 Conclusion
We have demonstrated a system using the projective warping of 2D features to track 3D
objects in non-frontal views in real time. Our framework requires only frontal-view train-
ing samples. Features in other views are computed by projective transforms under weak
perspective projection on-the-fly. Furthermore, an optimization framework is constructed
to find the subwindow most likely to be the object. Our method can track objects with a
roughly flat surface such as faces or cars.

Future work includes pose estimation making use of the out-of-plane rotation angles α
and β , and making the tracker more efficient by using noisy optimization such as implicit
filtering for searches in the parameter space for projective transforms.
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