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Abstract

Two new texture features, based on morphological scale-space processors are
introduced. The new methods are shown to have good performance over a
variety of tests. We demonstrate that if texture classifies are to be used in real
world scenes, then the choice of test is critical and that Brodatz-like tests are
unlikely to represent reality.

1 Introduction

There are a number of motivations for studying texture classification. Sometimes there
is a real problem such as the classification of marble, sorting of wood, classification of
carpet and so on. Other times one is interested to study a stylised classification problem
as a convenient benchmark. This latter position is more difficult since there is a nagging
doubt that results on stylised experiments will not extrapolate to reality. This paper ex-
amines this doubt, using available texture databases. The well known texture databases
are Brodatz; VisTex; MeasTex and Outex (see [6] for a summery). CURet [3], although
designed for a different task, might also be mentioned.
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No. Classes 100–112∗ 19 4 29 61

No. Images per class 1–4∗ 1–20 4–25 1–47 205†

Evaluation Framework? × ×
√ √

×
Defined test/training data? × ×

√ √
×

Unique copy? ×
√ √ √ √

Table 1: Available texture databases (∗ Depending on implementation,† At differing angle
and illuminant.)

With the exception of Brodatz, Table 1 shows that all are available for download
which ensures that each experiment is performed with identical texture samples. Bro-
datz, although the most common, is available as a book and since different methods and
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Figure 1: Three Outex natural scene images (left column), hand-segmented ground-truth
supplied with the database (middle column) and our new ground-truth (right column).
Note that each region has lighting, scale and rotation variations.

equipment were used for digitisation there are several electronic versions at different file,
size, format and resolution; all of which affect results1. Brodatz, VisTex and CuRET do
not have pre-defined test and training data which hinders comparisons of different clas-
sification methods. See [10], for example, where different test and training data lead to
conflicting results. MeasTex and VisTex have a few samples and classes. VisTex is no
longer maintained. In [11] it is claimed that the MesTex classes are non-overlapping for
a greater number of methods. Therefore Outex is the best dataset for comparing texture
classifiers and should be the database of choice for comparing texture classifiers.

Currently Outex has 319, grey-scale and colour textures spanning 29 classes. The
images are organised intotest suitessetup for, classification, segmentation, and retrieval.
The test suites are designed to examine illumination, scale, rotation and colour invariance.
There is also a natural scenes test suite which contains 20 colour images (2272× 1704
pixels) of scenes under varying illumination and orientation. There are five texture classes,
sky, trees, grass, road and buildings which are defined through hand-labelled ground-
truth. Examples of the scene and ground truth images are in Figure 1.

To compare texture classifiers that are restricted to rectangular windows, we provide
alternative hand-segmented ground truth also shown in Figure 1. We use the same class
labels as the original ground-truth.

1[9] for example shows images that have an accidental gray-scale inversion compared to the book.



1

Input Signal Difference Granularity

2

m

+

-

+

-

+

-

G1

G2

Gm

Figure 2: The structure of a sieve decomposition whereϕ is a filtering operator chosen
from a set [1, 2]. Non-zero regions in the output are calledgranulesand the set of granules
is called thegranularity domainin an analogy to granulometries.

2 Methods

There are a very large number of proposed methods of classifying texture. Here we at-
tempt to represent performance via three techniques that have been reported to work well
in the literature.

The first benchmark is the dual-tree complex wavelet transform (DTCWT) [5], which
is known to have better shift invariance and directional selectivity than conventional
wavelets. The DTCWT decomposes an image into eight sub-bands: two low-pass and
six high-pass at orientations of±15◦,±45◦,±75◦. Decomposing to three levels produces
8+ 82 + 83 bands. The sample mean and standard deviation of absolute values of these
bands are taken to form a feature vector of 336 elements.

The second benchmark is the local binary pattern (LBP) [7] method, which produces
features based upon the spatial structure of an image using absolute grey-level intensity
differences between neighbouring pixels. It works by passing a 3×3 window over every
pixel in the texture. Pixels that have intensities higher than or equal to, the target pixel are
masked off. These masked pixels are assigned weightings that are summed to produce
a LBP-score within the range 0−→ 255. Hence LBP produces a feature vector of 256
elements.

The third benchmark uses co-occurrence matrices (co-occ) introduced in [4]. Co-
occurrence matrices extract second order statistics based upon the vector between two
pixels in an image. Once the matrix of frequencies has been created, a number of features
can be derived from it. We use 12 features representing energy, contrast, entropy and
homogeneity at orientations of 0◦,90◦ and 45◦.

We also introduce new methods based upon the morphological operator known as
the sieve. Sieves were originally defined as one-dimensional systems [1] but were later
extended ton-dimensional filters [2] that adopt techniques from graph morphology. They
are cascades of morphological scale-space operators that remove intensity extrema at a



specific scale via the structure shown in Figure 2.
In the first new method, denoted (2D-sieve),ϕ is a 2DM -filter [2] which filters the

image using a morphological opening followed by a morphological closing in one opera-
tion. This method produces a decomposition that, ignoring sampling errors, is invariant to
rotation. At small scales, the processor tends to remove noise; then, as the scale increases,
texture; then, objects within the scene as in, for example, Figure 3.

A B C

D E F

Figure 3: An original image (A) sieved using a 2D-sieve to scales 15(B), 90(C), 251(D),
2000(E) and 5000(F). Each image has fewer intensity extrema than its predecessor. A full
decomposition may be summed to re-create the original thus the sieve is a transform of
the original image.

The second new method (1D-sieve) is similar, but now there is an additional parame-
ter: the orientation at which the filter is applied. Hereϕ is a 1D recursive median filter, as
in [13] for example, at orientations of 0◦,±30◦,±45◦,+90◦. The 2D-sieve decomposes
an image by scale equal to the area of intensity extrema, where as the 1D-sieve decom-
poses by length. Figure 4 shows an example 1D-sieve decomposition from which we can
see that the decomposition is anisotropic.

The features from both new methods are based ongranules. In [2], granule images
are defined as the difference between successive sieve outputs,Gn = ϕn−ϕn−1 whereϕn

is thenth stage in the serial structure shown in Figure 2. There are thus a great number
of granule images. TheGn are a transform of the texture which can be reconstructed
through a simple summation. Here, each texture image is sieved to a few scales,[s1 . . .sN]
where log10sn are equispaced between 0 and log10P, whereP = 30 is chosen to remove
all textural information from all images. The difference between these images are termed
channels, Cn = ϕsn − ϕsn−1. We chooseN = 5 to give 5 channels. The magnitude of
the channel images as a function of scale is an indicator of the scale-distribution of the
texture features. The sample mean, standard deviation and skewness of the magnitude of
the granule images may be used as features. Thus the 2D-sieve has 15 features and the
1D-sieve has 90 features.
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Figure 4: An original image (A) sieved using a 1D-sieve to scales 1(B), 5(C), 16(D),
29(E) and 50(F) at an angle of 45◦.

Figure 5 (left) hows the sample mean for three texture classes using a 2D-sieve.The
standard deviation and skewness are not show here but have similar variations. Finer scale
textures have peak responses at lower scales and the coarser textures have peaks at higher
scales.
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Figure 5: Left: Sample mean against feature index of three texture classes A,B and C
shown in Figure 7. Right: The sample mean of a texture class D shown in Figure 7 at 30◦,
60◦ and 90◦. Feature index is correlated with scale: 1 is scale (0-1), 2 is scale (1-2), 3 is
scale (2-5), 4 is scale (5-13) and 5 is scale (13-30).

Figure 5 (right) also shows how the sample mean varies for a stripy texture such as
class A (shown in Figure 7) using a 1D-sieve applied at several angles. At 90◦ where the



scan-line runs along the direction of the texture, the intensity variation is less resulting in
a flatter response.

Fast algorithms exist for sieves, and in practice a full decomposition of a domestic
video image takes a couple of hundred ms. In all methods we compute the covariance
matrix over the training data and apply principal component analysis (PCA) retaining all
components: since we have found that this always improves performance on all methods
and all databases.

3 Results

The first test,Test-1, uses the OutexTC 00000 test suite. It contains 100 leave-out-half
cross validation, classification experiments (different permutations of 240 testing and 240
training data) of 480 images. There are 20 samples of 24 texture classes. Classification is
via a k-nearest neighbour classifier (elsewhere [12] it has been shown that k = 1, Euclidean
distance is the best choice for this test). Table 2 shows the results. The success rate of
the LBP method differs from [7] (0.995) because in our experiments we are not using
a histogram distance measure. The results for Gabor wavelets and Gaussian Markov
Random Fields are taken directly from [8] and it is not clear what classifier or distance
measure is being used.

1D-Sieve 2D-Sieve DTCWT LBP Co-occ Gabor GMRF

x̄ 0.998 0.962 0.999 0.986 0.946 0.995 0.961

max 1 0.992 1 0.996 0.983 1 0.992

min 0.988 0.933 0.988 0.967 0.900 0.983 0.925

σ 0.0034 0.0103 0.0019 0.0070 0.0154 0.5 1.3

σ ′ 0.00034 0.00103 0.00019 0.00070 0.00154 0.05 0.13

f 90 15 336 256 12 ?? ??

Table 2: Mean success rate, ¯x, over 100 trials, max and min success rate, standard devia-
tion σ , standard error of the meanσ ′ = σ \

√
N and number of featuresf for Outex test

suite OutexTC 00000. The results for the Gabor and GMRF methods are taken from [8]
which doesn’t specify the number of features used.

Table 3 shows the result of using McNemars’s test on each trial at a significance of
α = 0.05. The 1D-sieve and DTCWT are indistinguishable at a significance for all 100
tests with OutexTC 00000.

Using PCA to reduce feature dimensionality improves the 1D-sieve success rate to
0.999 which is similar to the DTCWT but with only 40 features. The affect of applying
PCA to the DTCWT does not improve performance but maintains a 0.999 success rate
using 77 features. Figure 6 shows the affect on success rate of reducing the number of
features using PCA. The 1D-sieve has the highest success rate for the fewest features.

To test for noise-invariance we repeat the experiments using the OutexTC 00000 test
suite. Multiplicative noise (n) is added to each test image (I ) resulting in a noisy image
J = I + n∗ I , wheren is uniformly distributed random noise with mean 0 and variance



1D-Sieve 2D-Sieve DTCWT LBP Co-occ

1D-sieve x 90 0 10 96

2D-sieve - x 93 22 10

DTCWT - - x 12 98

LBP - - - x 67

Table 3: The number of times out of the OutexTC 00000 100 trials that we can confi-
dently (α = 0.05) reject the null hypothesis that the two data distributions are drawn from
the same source.

[V1 · · ·Vk] wherelog10Vk are equispaced between 0 and 0.0115. Figure 6 show that the
1D- and 2D-sieve are the most invariant to multiplicative noise2.
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Figure 6: Success rate against log number of features (left) and Success rate against mul-
tiplicative noise variance (right)

In the real world the orientation of a texture class may be unknown. So inTest-2we
use OutexTC 00010 to test for rotation invariance. This test suite contains textures under
constant illuminant and scale but with rotations of 00◦,05◦,10◦,15◦,30◦,45◦,60◦,75◦,90◦.
There are 480 training images of 24 classes and 3840 test images. Table 4 shows the re-
sults. It appears that the performance of some methods degrades badly under unknown
rotation. The 2D-sieve is now the best performing.

1D-Sieve 2D-Sieve DTCWT LBP Co-occ

x̄ 71.80 94.30 55.63 50.91 69.17

f 90 30 336 256 12

Table 4: Mean success rate, ¯x, and number of featuresf for rotation-variant Outex test
suite OutexTC 00010.

2We have similar results, not reported here, for additive Gaussian noise.



Test-3 concerns natural scenes. Rectangular regions (right column of Figure 1) are
cropped from images of natural scenes to give texture images of the type shown in the
centre row of Figure 3. There are 80 images which is too few for hold-out so they are
used in 80 leave-out-one cross-validation experiments. The top half of Table 5 shows the
results with a knn classifier (k = 3, Euclidean distance).

Test-4uses the Outex natural scenes database but now the ground-truth is polygonal.
There are a total of 91 labelled regions so again we use leave-out-one cross-validation.
Table 5 shows the success rate across all classes, with a knn classifier (k = 3, Euclidean
distance). Also shown is the number of samples per class. Not all texture methods are
easily applicable to this set because the regions are non-rectangular. We therefore restrict
the comparison to the LBP and sieve methods because, for these, we can generate the
filtered images, apply the hand-segmented region as a mask, and generate a feature for
each region. In Test-3 and Test-4 the best performing method on a per-class-winner or
overall mean basis is the 2D-sieve.
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Test-3
No. Samples 14 15 10 19 14 8

1D-sieve 1 0.933 0.4 0.84 0.71 0.38 0.71
2D-sieve 1 1 0.5 0.63 0.71 0.5 0.72
DTCWT 1 0.8 0.3 0.84 0.64 0.63 0.70

LBP 0.79 0.6 0.5 0.53 0.57 0.13 0.52
co-occ 0.93 0.93 0.3 0.37 0.57 0.5 0.60

Test-4
No. Samples 14 17 15 20 16 9

1D-sieve 0.79 0.59 0.2 0.6 0.38 0 0.42
2D-sieve 1 0.82 0.53 0.65 0.88 0.33 0.7

LBP 0.64 0.76 0.6 0.4 0.81 0.22 0.57

Table 5: Table shows number of samples per class, mean success rate per class and overall
mean success rate for the Outex natural scene database.

4 Conclusions

This paper presents new texture classifiers and compares their performance to some well
known benchmarks. The first test, Test-1, was quite conventional and is representative of
a large number of texture evaluations in the literature. Had we stopped at this point then,
the conclusion would be that one of the new methods, 1D-sieve, was as good as one of
the benchmarks (DTCWT) but used fewer features.

Test-2 represents the situation where the orientation is unknown. Now, the previously
best performing methods degrade. The DTCWT is now the second worst method and
the 1D-sieve is out-performed by the 2D-sieve which we were confident was not the best
method previously.



Class A Class B Class C Class D

Grass Trees Sky Road

Image 1 Image 4 Image 7 Image 10

Figure 7: Sample data from: Test-1 (row 1), Test-3 (row 2), Test-4 (row 3).

This conclusion is reinforced by Test-3 and Test-4 with real images which have scale
variation, perspective, class-overlap and so on. In Test-3 the 2D-sieve is the best perform-
ing method on four of the six classes. In Test-3 it’s worth noting that the training and test
data were sub-images formed by rectangular regions from the Outex natural scene test
suite. This is very favourable to 1D-sieve, DTCWT and co-ooc because these methods
have a fixed-shape support region which is unlikely to match the shape of natural texture
regions (note for example the decline in performance of the 1D-sieve in Test-4). There-
fore, there is a double problem with some conventional texture classifiers: not only can
they have poor performance, they may also be impractical.

This paper therefore, firstly, demonstrates that caution is needed when interpreting
texture classifications of the Brodatz-like type measured in Test-1: such tests will not
represent performance on many real problems. Secondly, we have presented a technique
that works well with both stylised situations and in reality. For the future we wish to
encourage texture classification in the context of real world scenes since it is here that it
is most useful to the general vision community.
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