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Abstract

Methods for generating maximally stable extremal regions are generalised
to make intensity trees. Such trees may be computed quickly, but they are
large so there is a need to select useful nodes within the tree. Methods for
simplifying the tree are developed and it is shown that standard confidence
tests may be applied to regions identified as parent and child nodes in the
tree. These tests provide a principled way to edit the tree and hence control
its size. One of the algorithms for simplifying trees is able to reduce the tree
size by at least 90% while retaining important nodes. Furthermore the tree
can be parsed to identify salient contours which are the parameters of stable
salient regions.

1 Introduction
Mataset al [6] describe an algorithm for extractingmaximally stable extremal regions.
Such regions are claimed to have good performance compared to other feature detect-
ors [3, 7] so form a natural first stage for stereo matching [6], image retrieval [11] and
other things. In [6] an image is defined as a mappingZ2 → Sand regions are defined as
two-dimensional connected sets with four connectivity. A more general notation comes
from graph morphology [12], in which arbitrary arrays of pixels may be described via a
graphG = (V,E) whereV is the set of vertices that labels the pixels, andE is the set of
edge sets that define the pixel neighbours. Thus an image may be defined in any number
of dimensions and with arbitrary connectivity. The image intensity is a function overV,
so that, for examplef (x),x∈V, is the intensity of pixelx. The set of connected subsets of
scales, a positive integer, containing pixelx is defined asCs(G,x) = {ξ ∈ Cs(G)|x∈ ξ},
whereCs(G) is the set of all connected sets inG with s pixels. Graph morphology oper-
ators may be applied over such sets. Thusψs,γs,Ms,Ns : ZV → ZV may be defined, for
eachs≥ 1 as

ψs f (x) = max
ξ∈Cs(G,x)

min
u∈ξ

f (u),

γs f (x) = min
ξ∈Cs(G,x)

max
u∈ξ

f (u),

and
Ms = γsψs, Ns = ψsγs.

ThusMs, in grey-scale morphology, is an opening followed by a closing, both of sizes
for images defined in any finite dimensional space. TheM- andN-sieves [1] of a function,
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f ∈ ZV are defined as sequences( fs)∞
s=1 with: f1 = M1 f = f , and fs+1 = Ms+1 fs; f1 =

N1 f = f , and fs+1 = Ns+1 fs; both for integers,s≥ 1 which are cascades of types of
alternating sequential filter. The opening and closing sieves may be defined similarly as
cascades ofψs and γs. Non-zero regions in the differences between successive stages
are described in [1] asgranulesas an analogy with granulometries. Theorem 6.36 of
[1] proves that if pixels that are neighbours,{x,y} ∈ E, with intensitiesfs(x), fs(y), δs =
fs(y)− fs(x), thenδ1 ≥ δ2 ≥ ·· · ≥ 0 orδ1 ≤ δ2 ≤ ·· · ≤ 0, from which it is concluded that
sieves preserve scale-space causality. A further consequence is that theextremal regions
in [6], are granules. An extremal region is defined as a connected set such that all pixels
not on the boundary are either all brighter than or all darker than those on the boundary. A
set of extremal regions can therefore be formed as the union of the set of extremal regions
from an opening sieve and the set of extremal regions from a closing sieve. However it is
known thatM andN trees are more robust to noise and occlusion, probably because they
remove maxima and minima in one pass and thus approximate a median filter [1] so there
is possible enhancement to [6] by switching to theM or N operators, and redefining an
extremal region to be a connected set such that all intensities in the set are more extreme
than those of the neighbours.

Efficient algorithms exist for the computation of sieves that are similar to [6] or [13]
which provide a dense set of nested regions. The relationship between the regions may be
described via a tree. The tree has a root node that represents the whole image and children
that represent the extremal regions, ordered by scale. Each node in the tree represents a
connected grey-level set in the image. A tree edge indicates containment, so that child
regions are subsets of their parents. Figure 1 (left) shows a tree computed for a stylised
100×100 pixel image. Here the root node is node 5 and represents the whole image. It
has one child, node 4, representing the face, with three children representing the mouth
and two eyes. Each tree node has been plotted above the centroid of its associated region
and at a height proportional to its depth in the tree. Even though such trees can be built

Figure 1: Trees built from original image (left); noisy version (right)

efficiently [13], there are potentially very many nodes in the tree and many of them are
associated with noise or fine details. This is illustrated in Figure 1 (right) which is a tree
of the same image after the addition of Gaussian random noise (µ = 0, σ = 0.05)1. The

1subsequently the image has been quantised to integers in [0,255].



original five nodes are no longer visible within the 958 nodes and the tree has become
unpleasantly complicated.

This problem was addressed in [2] in which nodes were removed through two heur-
istics calledcollapsingor pruning. In collapsing, long chains of nodes that have only one
child, are replaced by a single node and, in pruning, children are removed by thresholding
their area or intensity relative to their parents. These methods are rather unprincipled but
sometimes work well. In [6] a variant is introduced in which, for theith node,

q(i) =
|Qi+δ \Qi−δ |

|Qi |
, (1)

whereQi is the ith connected set in a sequence of nested extremal regions:Q1 ⊂ Q2 ⊂
Q3 · · ·Qi ⊂ ·· ·, |·| denotes the number of pixels in the set andδ is a parameter of the
method. The idea is to examine the sequence ofq(i) to retain nodes that have a local
minimum q(i). Such regions are calledmaximally stable extremal regionsor MSERs.
Because the nodes form a tree, there is a potential uncertainty in [6] because each node
might form a part of several sequences of nested extremal regions – nodes may have
several children. In Figure 1 for example,{1,4,5}, {2,4,5} and{3,4,5} are all nested
sequences.

In [8], which also examines stereo matching, it is argued that collapsing and prun-
ing aread hocmethods and are better replaced by a system in which nodes are labelled
with statistical significance scores derived under an assumption that the distribution of
intensities within a region may be modelled by unimodal Gaussian distributions (denoted
here as the difference of Gaussians, or DG, test). The child region consists of the sup-
port region for the child and all its children; the parent region is the support region for
the parent and all its children excluding the child currently under consideration. Using
a standard hypothesis test for the difference of means of two Gaussian distributions of
unequal variance ([9], for example) gives aχ2-score which is then thresholded to allow
the progressive removal of nodes. However the unimodal Gaussian assumption is erro-
neous so, to avoid unrealistically low variance estimates, a Shepperd’s correction is used,
quantisingχ2, which means that is difficult to remove nodes progressively.

We note some minor differences between the methods so far described. In [6],q(i) is
derived from regions above and below theith node in the tree, whereas in [2] and [8], the
authors appear to consider only parent-child relationships. In [6] there is a parameterδ

which is difficult to choose correctly for all regions (largeδ is appropriate for high con-
trast blurred objects whereas smallδ is appropriate for low contrast or sharper objects).
[2] also has some user-defined parameters to control the degree of pruning whereas in
[8] the parameter is related to a confidence on statistical model but the model doesn’t fit
reality very well.

2 Simplification methods
A natural extension is to compute histograms of the intensities in the parent and child
regions. To avoid under- or over-smoothed histograms we choose the bin width using
the method advocated in [10]2 in which an approximate expression for the bin width is
h= 3.49σn−1/3. wheren is the sample size andσ is the sample standard deviation which,
here, is the standard deviation of all the intensities in the image.

2The bin width is chosen to asymptotically minimise the integrated mean squared error between the histo-
gram and some true density function.



Two standard hypothesis tests are considered: theχ2-test for equal distributions and
the Kolmogorov-Smirnov test. If the two sets of data are distributed intok bins with pi ,
ci as the counts of the parent and child region pixels inith bin then,χ2, is computed as

χ
2 =

k

∑
i=1

(
√

∑i ci
∑i pi

pi −
√

∑i pi
∑i ci

ci)2

pi +ci
(2)

from which thep-value can be calculated. But, becausep is monotonically related to
χ2, we need compute onlyχ2 which saves time. A largeχ2-value tends to indicate the
difference of two distributions.

The Kolmogorov-Smirnov (or K-S) test is designed for continuous data but is easily
applied to quantised histograms. If the cumulative histograms corresponding topi andci

arePi andCi then the K-SD value is the maximum distance of two cumulative distribu-
tions: D = max−∞<i<∞ |Pi −Ci |. Given the null hypothesis that data sets are drawn from
the same distribution, the significance level is approximated by

Pr{D > observed}= Qks
(
[
√

Ne+0.12+0.11/
√

Ne]D
)

= Qks(λ ) (3)

whereQks(λ ) = 2∑∞
j=1 (−1) j−1e−2 j2λ 2

, which is monotonic withQks(0) = 1,Qks(∞) = 0
whereNe = npnc/(np+nc), andnp andnc are the number of pixels in the parent and child
regions. As with theχ2-test, we note that we need compute onlyλ rather thanQks(λ ).
More details aboutχ2-test and K-S test can be found in, for example, [9].

2.1 Node merging

Original Signal Granules

Merge with subtraction Merge without subtraction

1 2

3

4

Figure 2: Two ways of node merging.

Removing, or merging, nodes contains a subtlety. As far as the tree goes it is safe to
simply remove nodes. However if we wish to reconstruct the image associated with the
edited tree then care is needed when editing the associated regions in image. Figure 2
shows, top left, a one-dimensional signal and, top right, its associated components, or
granules, and tree. Consider removing node 3. On the bottom right, pixels uniquely asso-
ciated with node 3 have been assigned the intensity of its parent (node 4) and the children
(nodes 1 and 2) have been left untouched. Such an editing procedure is unsafe because
the tree of the edited image is not the same as the edited tree. The correct alternative,
which we use here, is to subtract node 3’s intensity from all pixels supported by node 3
(pixels covered by nodes 1, 2 and 3). This procedure gives the correct tree but there is a



cost: the resulting image may now contain negative intensities. We overcome this prob-
lem by either clipping negative intensities to zero or re-mapping the whole image into
a new intensity range while preserving the ordering of the intensities. Of course, if we
are interested only in finding regions, such as MSERs or other salient nodes, then these
reconstruction details may be ignored.

3 Results

Figure 3: Example images taken from MPEG-7 common colour dataset.
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Figure 4: Distribution of K-S D value (left),χ2 value (middle) and DGp-value (right),
from the tree built from Figure 3.

Figure 3 shows two images (120× 160 pixels3) from the MPEG-7 common colour
dataset which have trees with 10644 and 12147 nodes. Figure 4 shows the distributions of
the scores within a tree. The DG method provides a smoothly varying score whereas the
other two methods do not. The top half of Figure 5 shows results from three simplification
algorithms with thresholds chosen so that the resulting trees have 10 % of the nodes (hence
trees with 1065 and 1215 nodes). Much of the fine detail is removed but the semantic
information seems to be intact – subjects are still recognisable. The best performing
method is the K-S test (left column), followed by theχ2 test (centre column) and the DG
test (right column) which was the original method. Simplifying still further, gives trees
with 533 and 607 nodes, (lower-half of Figure 5), in which the ordering of the methods
is unchanged, but now the images are becoming corrupted. In practice we find that it
is possible to reduce the tree size to around 5% of its original size without substantially
affecting the image. This is illustrated in Figure 6 which shows (left) the original tree and
variants with 10% and 5% of the the original tree size.

3This paper uses low resolution images for two reasons: firstly the trees are difficult to visualise for large
images and, secondly, theE⊕ error used later in this paper is quite slow to compute. In practice computing
MSERs using the method described in [6] takes under a second for video frames.



K-S test χ2 test DG test

Figure 5: Example images after simplification with various tests. On the top are images
reconstructed from trees with 10% of the original number of nodes. On the bottom 5%.

Figure 6: Trees of original image (left of Figure 3) and versions simplified using the K-S
test to give 10% and 5% of the original number of nodes.

We can improve on just looking at the images though. Elsewhere [4] we have con-
structed human segmentations from images in a well-known image database and show
that we can measure the effectiveness of a segmenter by comparing automatic segments
to the human segments using a normalised error measure based on the binary exclusive-
OR between segments. Although the tree is not a segmentation, we can use the same
method here. If a tree containsNT regions,T1...TNT and the ground-truth image contains



Figure 7: Left: original image with green patch as human segment. Right: a 10% simpli-
fied version of by K-S test, with green patch as the node optimally matching the human
segment.

NG regionsG1, ...,GNG then the normalised XOR error is

E⊕(T,G) =
1

NG

NG

∑
m=1

min
n

|Tn⊕Gm|
|Tn|+ |Gm|

(4)

where⊕ represents a binary exclusive-or. Note that the effect of the min-operator in (4)
is to select the best matching tree-node. Figure 7 shows, on the left-hand side, a region
identified as important by one of the human labellers and, on the right-hand side, the
best matching tree-node identified by the XOR error. The distance between the regions
represented by the unedited tree to the ground-truth provides the upper bound that a best
simplifying method could possibly reach. Given this distance, a simplified tree can be
rejected if the distribution of its distances is too variant from the distribution of distances
we get from a full tree. Since these distance distributions are histograms we can, again,
use a standard confidence score for comparing histograms. Again then, we optimise the
bin size using [10] and apply aχ2 test and a K-S test, this time on the distance histogram,
to obtain Table 1 which showsp-values for the null hypothesis that the two distributions
are identical. Thus lowp-values tend to support the alternative hypothesis that the two
distance distributions are different.

Ratio K-S χ2 DG
0.05 0.0720 0.0294 0 9.49×10−30 6.65×10−7 1.94×10−8

0.1 0.971 0.872 0.0214 0.0027 0.0045 1.736×10−4

Table 1: p-values for significance tests on the difference of distance histograms. For
each tree simplification method we compare the distance histograms using either aχ2

(left-handp-value) or a K-S (right-handp-value)

For a confidence level of 0.01, we can rejectH0 (that the two datasets are not signi-
ficantly different) for the DG-test on all ratios by both tests. Theχ2 tree simplification
method causes us to acceptH0 for the large tree (ratio of nodes 0.1) with the distances
compared using theχ2 scheme.H0 cannot be rejected for any of the the K-S simplific-
ations which supports the hypothesis that the tree simplified by the K-S test has retained
the important nodes in the original tree and is the best method.

So far we have shown that the trees can generate extremal regions of the type defined
in [6] and that these trees can be simplified, using a new method, to produce manageable
data structures that preserve many important features in the image measured both qual-
itatively and quantitatively. We now want to parse the trees to produce the equivalent to
MSERs. The proposed algorithm draws upon ideas in [6] and [2] in which stable nodes



are likely to be drawn from tree branches that are composed of long chains. The algorithm
proceeds as follows:

1. All child-to-parent connections are assigned aλ score via (3).

2. The tree is parsed to find monotonic paths (a path in which the depth of nodes is
either always increasing or decreasing). Any monotonic path that is longer than a
fixed value,l , and has all nodes withλ below a threshold is designated as stable.

3. A stable node is extracted as the middle node of this path.

On the face of it, this algorithm appears rather unsatisfactory because it contains two para-
meters. However note thatQks(λ ) is a properly normalised confidence so thresholdingλ

amounts to selecting an operating point for a hypothesis test. The length threshold,l , like
δ in (1), can be set to give fewer or more stable-contours.

Figure 8: Regions detected in theGraffiti image from [7]. Left 0◦ and right 20◦ image.

Figure 8 shows example regions detected by the system. Note that, unlike salient re-
gion methods based on corners or fixed windows, the regions are the shape of the intensity
contours in the images and hence are more likely to represent meaningful regions.

The evaluation of region detectors has recently received some attention [7] so there is
now a standard test with Matlab source code that we can use. In [7] the authors present
multiple images and ground-truth homographies that would map one into another. A
peculiarity of the evaluation is that region is represented by ellipse with identical area
moments up to second order. This ellipse is then warped to another image and the test
looks for its corresponding ellipse. If the overlap error between these two ellipses is small
(below 40% in [7]), a correspondence is achieved. Therefore, the repeatability of a region
detector for these two images can be computed as the number of ellipse correspondences
divided by the smaller of the numbers of regions generated from each images.

Figure 9 shows the results from two images from the set in [7]. Note that, for these
images, the MSER technique is already the best performing so it is gratifying to be able
to improve on the best known method. However, as with theδ parameter in the MSER
method, a poor choice ofk can degrade performance. For interest, we also show an
alternative node selection method based on entropy. In [5] it is argued that entropy forms a
suitable selection scheme for selecting the scale of window. The idea is to vary a window
by scale and select a node which is a local maximum in the scaled entropy. Here we
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Figure 9: Repeatability (top) and correspondence count (bottom): graffiti images(left) and
bikes images (right) from [7] for stable salient contours (SSCs), MSERs and an alternative
entropy-based method. The branch length thresholdl = 0.02×k× treedepth.

compute, for theith nodeHi = −∑255
n=1 pni log2 pni wherepni is the probability of thenth

grey-level in theith node. Leaf nodes are assigned zero entropy. We identify salient nodes
as those that have locally maximal entropy on monotonic paths. As in [7] we find that
entropy is not a very effective measure. Possibly we could, as in [5], scale the entropy
by s2(∑255

n=1

∣∣pni− pn j
∣∣)/(2s−1) where j is a child of node i, but for large trees this is an

expensive operation.

4 Conclusions
Sieve trees are well known decompositions of images [1]. They generate a hierarchy
of connected sets that is potentially very large (the trees have many nodes). This paper
has introduced two new methods for simplifying the trees. The method based on the
Kolmogorov-Smirnov test is easy to use and is the best performing. It is possible to
reduce the tree to 10% of its original size without affecting the image too much. By
comparing the nodes in a full tree and a simplified tree with ground truth from human
segmenters we cannot reject the hypothesis that difference between a simplified tree and
ground truth is identical to the difference between full tree and ground truth – implying
that the simplification method retains the important regions.

This paper has further demonstrated that stable salient contours may be generated
from sieve trees. These salient contours are related to, but are not the same as, Maximally
Stable Extremal Regions (MSERs) from [6]. We evaluate these stable salient contours
using the standard methodology in [7]. We find that the new methods can perform as
well as MSERs which themselves are known to be among the best performing methods.
However, as with MSERs, there is a dependence on a parameter,k, which is related to



the length of stable branches. For future work we hope to eliminate this parameter. For
the left image in Figure 3, the efficient sieve tree algorithm can build the tree within
0.5 second on a computer with Pentium III processor and 522MB RAM. However, the
current implementation of the full algorithm is rather slow and inefficient, mainly due to
the exhaustive search of all possible paths in the tree.
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