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Abstract

We address the problem of estimating statistics in regions of interest (ROIs)
containing both whole and partial pixels. Such ROIs arise frequently in vision
problems such as segmentation and registration. For example, even where the
control points of an ROI, say the vertices of a polygon, are forcibly aligned
with the pixel grid, the connecting edges will rarely do so. In medical image
analysis, for instance, this can be a cause of significant error. More generally,
any cost function that includes statistics estimated from the image will often
exhibit irregularities due to such partial pixels.

Our proposed solution addresses this problem by correctly accounting
for the partial pixel area. Moreover, the method has no arbitrary parameters
such as bin widths or kernel sizes. It implicitly addresses the issue of inde-
pendence and gives rise to continuous density estimates whose quality is, in
principle at least, independent of the number of pixels in the ROI. We present
results to compare our proposed method with conventional techniques such
as weighted histograms and Parzen windowing.

1 Introduction

Probabilistic and statistical methods are of fundamental importance in image (and signal)
analysis, but particularly in medical image analysis. For example, image segmentation
based on variants to region competition [8] requires iterative estimation of the probability
density function (PDF) inside and outside a putative regionthat is growing or shrinking
during the segmentation process. The segmentation of MRI images of the brain into
regions corresponding to grey matter (GM), white matter (WM), cerebrospinal fluid (CSF)
etc, such as the hidden Markov random field (HMRF) approach developed by [7], require
either that pdfs for those tissue classes be known in advanceor, more usually, that they be
estimated directly from the (3D) image. The simultaneous segmentation and registration
(alignment) of images [6] based on HMRFs also requires the estimation of PDFs from
images. Examples such as these, and probabilistic modelling techniques such as those
motivated through Bayesian analysis, rely upon the accurate and reliable estimation of
the PDF of some appropriate signal (class).

PDF estimators may be classified using three categories: parametric, non-parametric
and semi-parametric. Parametric techniques are suitable where a particular form of func-
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tion can be assumed for application specific reasons. For example, Rician and Rayleigh
functions are often used in ultrasound signal processing. Of the non-parametric tech-
niques, the simplest and most widely used method is the histogram. Its limitations, prin-
cipally the requirement to pre-specify the number of bins, the arbitrary bin boundaries
and the block-like nature of the resulting PDF estimate havelead to the development of
a number of alternative methods. For example, Parzen windowing avoids arbitrary bin
assignments and leads to smoother PDFs. However, a suitablekernel shape and size must
still be chosen. Finally, semi-parametric techniques suchas Gaussian Mixture Models, in
which the superposition of a number of parametric densitiesare used to approximate the
underlying density, offer a useful compromise between these two approaches.

Recently, [2] noted that common to all such methods is the assumption that the sam-
ples from which the PDF is estimated are Independent and Identically Distributed (IID),
despite the fact that image samples are evidentlynot independent, a fact which is univer-
sally acknowledged, and ignored. However, images (and signals), from which we wish to
estimate PDFs are both Band-Limited and (at least) Critically Sampled (BL-CS). For such
signals, the samples represent the band-limited continuous signal, evaluated and quantised
at some (arbitrary) spatial or temporal points. This differs fundamentally from the IID as-
sumption in several important ways: the samples arenot independent; the samples are
ordered; and knowledge of the samples, their order and the sampling pre-filter are enough
to uniquely specify the band-limited continuous signal exactly (upto quantisation[4]).

Starting from this observation, [2] have developed a general, non-parametric tech-
nique for the accurate and stable estimation of PDFs. The method is briefly sketched in
the next Section. Their method has several useful properties. First, the domain resolution
of the resulting estimate is continuous, hence is independent of the number of sample
points and signal quantisation. That is, the number of points at which the PDF can be
usefully evaluated is infinite, regardless of the number of samples from which it is cal-
culated. Usefully means that new information can be obtained by evaluating the PDF at
finer intervals, in contrast to, for example, Parzen windows, for which evaluation at points
finer than the quantisation reveals information only about the smoothing kernel.

In this paper, we extend the method introduced in [2] to demonstrate its applicability
for handling partial pixels arising from non-pixel alignedregions of interest (ROIs). Such
cases are quite common and give rise to the so-called partialvolume effect (PVE), which
is particularly important in medical image analysis. Consider, as an example, MRI, which
is justifiably the leading method for imaging soft tissue, such as those in the brain. Differ-
ent imaging (pulse) sequences can give exquisite contrast between grey and white matter,
or between CSF and grey/white matter. However, in clinical practice, the resolution of
current MRI systems is approximately 1mm3, and this is large compared to the size of
brain structures that need to be viewed and, more importantly, measured. Increasingly,
medical image analysis is quantitative: we seek for exampleto measure the areas and/or
volumes of structures such as temporal lobes which have complex shapes, and we seek
to measure changes that are characteristic of disease progression (eg degenerative brain
disease) or changes wrought by a drug or radiotherapy. Many brain structures have por-
tions that are thinner than the MRI resolution and are, at first sight, blurred out. Indeed,
it has been shown that if one does not analyse the PVE, then theerror in estimates of the
volumes of small or elongated, articulated structures can be as much as 40%. Fortunately,
MRI has the convenient property that the signal resulting from a voxel that is composed
of two or more tissues is the weighted sum of the signal that would result from pure tissue



voxels, the weight being the relative amount of the various tissues. Several algorithms
have been developed for overcoming the PVE, for example [7] but all of them depend on
assumptions about the PDFs of pure tissues (typically that they are Gaussian). Note that,
in most cases, PVE analysis follows segmentation though it is evidently the case that PVE
may affect considerably estimation of the PDFs used in segmentation. In this paper, we
investigate whether the PDF estimation technique introduced by [2] can be extended to
accommodate the partial pixels. More precisely, we aim to demonstrate that the PDF esti-
mation is stable and accurate as a result of subpixel (subvoxel) displacements in the image
and ROI. This is an important ingredient in developing well-conditioned algorithms that
can segment and measure complex structures in images.

2 Estimating a PDF

In this section, we briefly recall the method introduced by [2]. The observation that
images are band-limited and critically sampled leads directly to the Whittaker-Shannon
sampling theory, which states that three pieces of information are necessary to specify the
original band-limited signal at any point: the samples, their order and the pre-filter char-
acteristics. Conventional PDF estimation methods use onlythe first of these. Since the
positions of the sample points (pixels) in standard sampling, are arbitrary with respect to
the image, small changes in their position can give rise to different values; pixel values are
unstable. One way in which this instability can be overcome is to generate many more of
them, for example by upsampling the signal and using these tobuild a histogram. The only
factor which controls the goodness of the histogram are the number of samples we choose
to take and the accuracy of the interpolator. Moreover, we are free to choose an arbitrarily
small bin size given sufficient samples. Upsampling requires the use of interpolation. [2]
notes that many common interpolation schemes proceed by fitting piecewise functions to
the signal samples and re-sampling these at the required points. In this method, however,
the aim is to estimate the signal PDF, we can avoid the re-sampling step and calculate the
PDF of each piecewise section directly in closed-form. Suchan approach is in general
more accurate and more efficient to implement than the over-sampling method. In fact,
its accuracy is dependant only on the accuracy of the piecewise representation, not the
number of samples nor the number of bins.

To calculate the PDF (or CDF) of the piecewise function, the signal is considered a
function of a uniform random variable representing its domain. From standard probability
theory, a function of a random variable creates another random variable whose distribu-
tion may be determined by the Transformation formula or, alternatively, the distribution
method [3]. The algorithm to calculate the PDF/CDF consistsof three main steps:

1. Calculate the polynomial coefficients for the signal samples;

2. Calculate the PDF/CDF for each piecewise section;

3. Populate the appropriate bins for each piecewise section.

The final step is necessary only if an explicit numerical representation of the PDF is
required. Step 1 is standard and will not be discussed further. The details of steps 2 and 3
for 2D Bilinear interpolation are recalled below. In this section (but not the next), we adopt
the convention that the piecewise spans start at zero and areof unit length. Consequently,
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Figure 1: The integration ranges shown graphically for a particular configuration of the
bilinear spline. Shown here is the case for{a,b,c,d} > 0 andb > c.

the PDF of the domain variable is unity over its range:fx(x) = 1, 0≤ x ≤ 1 . Note that
bilinear interpolation will, in general, only approximatethe true band-limited signal and
hence the true PDF. Better approximations can be obtained ifan accurate representation of
the sampling pre-filter is available through prior knowledge of the sensor or alternatively
by empirical estimation [5].

For a 1D signal, each pair of adjacent samples uniquely defines a straight line, which
we denotey(x) = ax+b. Then the PDF is given by:

fy(y) =
1
|a| fx

(

y−b
a

)

=
1
|a| b ≤ y ≤ a+b (1)

This has a straightforward and intuitive implementation: the PDF is simply the super-
position of piecewise constant sections of magnitude1

|a| between domain valuesb and
a+b. The derivation for the two dimensional case requires the introduction of a dummy
variable which must be integrated out in the final step, denotedx2 in the following:

y1(x1,x2) = ax1x2 +bx1 + cx2 +d y2(x1,x2) = x1

x2(y1,y2) =
y1−by2−d

ay2 + c
x1(y1,y2) = y2

The derivative used in the univariate case becomes a Jacobian in the multi-variate case:
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The joint PDF betweeny1 andy2 is given by:

fy1,y2=fx1,x2(y2,
y1−by2−d

ay2 + c
)|J| = 1

ay2 + c
0≤ y2 ≤ 1

by2 +d ≤ y1 ≤ y2(a+b)+ c+d
(3)
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Figure 2: The 6 basic configurations of Equation 4 which determine the integration
ranges.

The inequalities in Equation 3 define the range over which thedummy variable,y2, should
be integrated out. Graphically, the integration must be carried over the range ofy2 defined
by the lines:

y2 = 0, y2 = 1, y2 =
y1−d

b
, y2 =

y1− c−d
a+b

. (4)

For example, Figure 1 shows the required integration graphically a particular case where
the integration proceeds over three ranges:

∫

y1−d
b

0
fy1,y2 .dy2 : d ≤ y1 < d + c

∫

y1−d
b

y1−c−d
a+b

fy1,y2 .dy2 : d + c ≤ y1 < b+d

∫ 1

y1−c−d
a+b

fy1,y2 .dy2 : d +b ≤ y1 ≤ a+b+ c+d

The final result is given by:

1
a ln

(

ay1−d+cb
cb

)

: d ≤ y1 < d + c
1
a ln

(

a+b
b

)

: d + c ≤ y1 < b+d
1
a ln

(

(a+c)(a+b)
ay1−d+cb

)

: d +b ≤ y1 ≤ a+b+ c+d

(5)

Note, that the specific integrals are determined by the values of the coefficients, or more
precisely, the intersections of the lines defined by Equation 4. This complicates the imple-
mentation since there are 24 cases to consider (permutations of 4 intersections). However,
for computational convenience these may be grouped into 6 basic arrangements as shown
Figure 2 where the numbering scheme refers to intersectionsof the various lines. For
example, orderings{2 1 4 3}, {3 4 1 2} and{4 3 2 1} all result in configurations similar
to that of{1 2 3 4}. [2] shows that this method generates remarkably accurate estimates
of PDFs from images. See Figure 5 for examples.
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Figure 3: Polygonal ROIs give rise to partial pixels defined by lines (aside from the ver-
tices). Six cases can arise as shown here: a-d, a-b, a-c, b-c,b-d and c-d. Where the origin
of the pixel is outside the ROI the defined region is complement of that shown.

3 Partial pixels

In this section, we extend the above analysis to include partial pixels - pixels that are
only partially covered by a pre-defined region of interest. In this paper, we restrict our
analysis to polygonal ROIs therefore each partial pixel is split by a single line, except
for the vertices which must be handled separately. The modification is, in principle at
least, quite straightforward and requires simply that the ranges forx1 andx2 are modified
appropriately. However, in practice there are a number of cases that must be handled
explicitly, as illustrated in Figure 3. In all of these casesthe valid range can be defined by
0≤ x1 ≤ 1, 0≤ x2 ≤ m∗x1+k, wherem is the gradient of the line andk is the y-intercept.
Where the origin is outside of the ROI the≤ should be replaced with≥. Alternatively, the
partial patch PDF could be substracted from the full patch PDF. For case b-d, a positive
gradient switches the polarity of the comparison.

As an illustrative example we re-examine the case shown in Figure 1 with partial pixel
case a-d with the origin inside the ROI. Up to Equation 3 the derivation is unchanged, but
now the ranges are defined by:

fy1,y2 = fx1,x2(y2,
y1−by2−d

ay2 + c
)|J|

=
1

ay2 + c
0≤ y2 ≤ 1;0≤ y1−by2−d

ay2 + c
≤ my2 + k

=
1

ay2 + c
0≤ y2 ≤ 1

by2 +d ≤ y1 ≤ amy2
2 +(cm+ak +b)y2 + ck +d

(6)

The effect of the partial pixel is to change the ranges of the final integration which
must now be performed between a line and a quadratic (as a function of y2) as shown in
Figure 3. In this particular case, four ranges are required:
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∫

y1−d
b

0
d ≤ y1 < ck +d

∫

y1−d
b

−B−
√

B2−4A(C−y1)

2A

ck +d ≤ y1 < b+d

∫ 1

−B−
√

B2−4A(C−y1)

2A

b+d ≤ y1 < a(m+ k)+ c(m+ k)+b+d

∫

−B−
√

B2−4A(C−y1)

2A

−B−
√

B2−4A(C−y1)

2A

a(m+ k)+ c(m+ k)+b+d < y1 < ymax
1 (7)

whereA = am, B = cm+ak +b, C = ck +d andymax
1 = y1(−B/2A).

Other cases can be handled in a similar fashion. Bilinear patches at the vertices of the
ROI can be handled by splitting the patch into two parts, one for each edge, and setting the
range ofx1 appropriately. For example, if a vertex is placed atx1 = 0.6 then the ranges
may be set 0≤ x1 < 0.6 and 0.6 ≤ x1 < 1. In all of the experiments presented in this
paper, for simplicity of implementation the majority of thepartial pixel cases are handled
numerically.

4 Experiments

In this section, we present two sets of experiments to examine the performance of six
PDF estimators: histogramming, weighted histogramming, Parzen windowing, weighted
Parzen windowing, bilinear PDF and partial pixel bilinear PDF. The Parzen window meth-
ods are implemented as Gaussian filtered histograms where the sigma of the kernel is set
at twice the bin size. The weighted methods adjust the countsto the histograms according
to the area of the partial pixels. In all cases the aim is to estimate a 256 bin histogram,
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Figure 5: Left: The images used for the experiments. Right: Histograms for the image
and ROI on the top right for the ground-truth,weighted histogramming, weighted Parzen
windowing and bilinear PDF estimators.

however, it should be noted that the proposed technique is not restricted to the quantisa-
tion of the image. In fact, if required the estimate can be left in continuous form and not
discretised into a histogram. Mean average results are reported over 5 ROIs, 5 locations,
4 images and 41 sub-pixel shifts; a total of 5125 PDF estimations.

We measure performance in two ways: stability and accuracy.Ideally, PDF estimators
should be invariant to simultaneous sub-pixel translations of the image and ROI. That is,
the PDF of a ROI in an image and the shifted ROI of an equivalently shifted image should
be identical1. In practice however, this is not the case. We measure PDF stability by
calculating theL1 distance (sum of absolute differences of the histograms) between the
zero shifted histogram for each method and that resulting from the translated image and
ROI. The choice ofL1 is somewhat arbitrary; there are many alternatives available such
as Kullback-Leibler orχ2. Our motivation is that it has a simple interpretation and its
value is bounded between 0, for an identical histogram, and 2, for its complement. The
sub-pixel shifts are generated by 40x upsampling the image using a FIR interpolator with
a Gaussian filter (σ = 0.7pixels). This method can generate sub-pixel shifts in steps of
1
40 of a pixel.

Figure 6(a) shows the stability results for the image and ROIshown in Figure 5. All
the plots start and end with zeroL1 value corresponding to zero and one pixel shift respec-
tively. Over all sub-pixel shifts, the proposed method is consistently the best performer
(legend PDFPartial), while the worst is the standard histogram, with Parzen windowing
in between. Weighting the histogram counts improves the performance for both the stan-
dard histogram and the Parzen windowing. The improvements in the bilinear spline PDF
estimator brought about by considering the partial pixel effects is evident; compare the
PDFNormal and PDFPartial plots.

Stability, however, is not the only factor to consider — an estimate can be stable but
inaccurate. Consider increasing the sigma of the Gaussian kernel used for the Parzen win-
dow. In the limit, the resulting estimate will be very stablebut would not reflect the true
density. In the Machine Learning community this is often referred to as the bias-variance
trade-off. To quantify this effect, we measure the accuracyof the histogram to an estimate

1More generally estimators should be invariant to similarity transformations of the image and ROI.
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Figure 6: (a) The mean stability and (b) accuracy as a function of sub-pixel translation of
6 PDF estimators.

of the ground-truth. To obtain this estimate, the ROI is transformed to the resolution of
the upsampled image and a histogram built. We are assuming that Gaussian filtering is a
good approximation to the camera point spread function [1, 5] and 40x oversampling is
sufficient to obtain a good estimate. Figure 5 shows the ground-truth and as well example
histograms from the various methods.

Figure 6(b) show the corresponding accuracy results for thesame image and ROI. The
bias effect is clear. Both Parzen window estimators performthe worst but the proposed
method is still outperform all other including the normal spline method. The accuracy
margin is somewhat larger than is evident in the stability graph. It is also worth noting
that the accuracy error for the proposed method is largely stable over all shifts indicating
the difference arises from the interpolation and the partial pixels are handled well.

The final experiment examines the performance of the variousestimators as a function
of the fraction of partial pixels. The protocol is identicalto the previous experiments
except that it is repeated for ROIs with different fractionsof partial pixels and the mean
stability and accuracy recorded. The results are shown in Figure 7. For ROIs with a low
proportion of partial pixels, the performance of the proposed technique and that of [2]
appear to be converging one would expect. An increase in the proportion of partial pixels
results in a decrease in performance for all methods, however, the slope is much less for
the proposed method compared to the others.

5 Conclusions

We have presented a method that can estimate accurate and stable PDF estimates in an
ROI containing partial pixels. The method has no parametersthat need to be set and can
generate continuous PDF estimates. In this paper we have concentrated on polygonal
ROIs. This is not a limitation of the method and further work remains to explore more
general parameterisations or special cases such as circles. Also, we have estimated only
1st order, or marginal, statistics. Similar derivations are possible to joint or conditional
distributions or even moments such as mean, variance and kurtosis. Different interpo-
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Figure 7: (a) The mean stability and (b) mean accuracy as a function of the proportion of
partial pixels in the ROI.

lation strategies are also worth investigating since improving this should result in more
accurate estimates or simpler implementations.
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