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Abstract

We address the problem of estimating statistics in regidmsterest (ROIs)
containing both whole and partial pixels. Such ROls arisgdently in vision
problems such as segmentation and registration. For egam@n where the
control points of an ROI, say the vertices of a polygon, areifidy aligned
with the pixel grid, the connecting edges will rarely do somedical image
analysis, for instance, this can be a cause of significaat.eévtore generally,
any cost function that includes statistics estimated froenimage will often
exhibit irregularities due to such partial pixels.

Our proposed solution addresses this problem by correctipuating
for the partial pixel area. Moreover, the method has no iyitparameters
such as bin widths or kernel sizes. It implicitly addres$esissue of inde-
pendence and gives rise to continuous density estimatesenquality is, in
principle at least, independent of the number of pixels @R©OI. We present
results to compare our proposed method with conventioghhigues such
as weighted histograms and Parzen windowing.

1 Introduction

Probabilistic and statistical methods are of fundamentalrtance in image (and signal)
analysis, but particularly in medical image analysis. Baraple, image segmentation
based on variants to region competition [8] requires itegagstimation of the probability
density function (PDF) inside and outside a putative regfi@ is growing or shrinking
during the segmentation process. The segmentation of MRg@® of the brain into
regions corresponding to grey matter (GM), white matter (\Wd@jebrospinal fluid (CSF)
etc, such as the hidden Markov random field (HMRF) approaebldped by [7], require
either that pdfs for those tissue classes be known in advamaosore usually, that they be
estimated directly from the (3D) image. The simultaneoggremntation and registration
(alignment) of images [6] based on HMRFs also requires ttimaton of PDFs from
images. Examples such as these, and probabilistic mogléichniques such as those
motivated through Bayesian analysis, rely upon the acewaat reliable estimation of
the PDF of some appropriate signal (class).

PDF estimators may be classified using three categorieaneric, non-parametric
and semi-parametric. Parametric techniques are suitdi®eana particular form of func-
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tion can be assumed for application specific reasons. Fongea Rician and Rayleigh
functions are often used in ultrasound signal processinfjth®© non-parametric tech-
nigues, the simplest and most widely used method is thedrmto. Its limitations, prin-
cipally the requirement to pre-specify the number of bihg, arbitrary bin boundaries
and the block-like nature of the resulting PDF estimate head to the development of
a number of alternative methods. For example, Parzen wimdpawoids arbitrary bin
assignments and leads to smoother PDFs. However, a suitblel shape and size must
still be chosen. Finally, semi-parametric techniques siscaussian Mixture Models, in
which the superposition of a number of parametric densitiesused to approximate the
underlying density, offer a useful compromise betweenehe® approaches.

Recently, [2] noted that common to all such methods is theraption that the sam-
ples from which the PDF is estimated are Independent anditadiy Distributed (1ID),
despite the fact that image samples are evidamtyndependent, a fact which is univer-
sally acknowledged, and ignored. However, images (anasyrfrom which we wish to
estimate PDFs are both Band-Limited and (at least) CriyiG&impled (BL-CS). For such
signals, the samples represent the band-limited contmsignal, evaluated and quantised
at some (arbitrary) spatial or temporal points. This diffemdamentally from the 11D as-
sumption in several important ways: the samplesrmteindependent; the samples are
ordered; and knowledge of the samples, their order and thplsay pre-filter are enough
to uniquely specify the band-limited continuous signalatiya(upto quantisation[4]).

Starting from this observation, [2] have developed a gdne@n-parametric tech-
nique for the accurate and stable estimation of PDFs. Thaadas briefly sketched in
the next Section. Their method has several useful progeffiest, the domain resolution
of the resulting estimate is continuous, hence is indepanaiethe number of sample
points and signal quantisation. That is, the number of gagtwhich the PDF can be
usefully evaluated is infinite, regardless of the numberamfijgles from which it is cal-
culated. Usefully means that new information can be obthmeevaluating the PDF at
finer intervals, in contrast to, for example, Parzen winddesswhich evaluation at points
finer than the quantisation reveals information only abbatdmoothing kernel.

In this paper, we extend the method introduced in [2] to destrate its applicability
for handling partial pixels arising from non-pixel alignestjions of interest (ROIs). Such
cases are quite common and give rise to the so-called paotiahe effect (PVE), which
is particularly important in medical image analysis. Cdesjas an example, MRI, which
is justifiably the leading method for imaging soft tissuegtsas those in the brain. Differ-
entimaging (pulse) sequences can give exquisite conteaselen grey and white matter,
or between CSF and grey/white matter. However, in clinicatpce, the resolution of
current MRI systems is approximatelynin®, and this is large compared to the size of
brain structures that need to be viewed and, more impoytamgéasured. Increasingly,
medical image analysis is quantitative: we seek for exarngiaeasure the areas and/or
volumes of structures such as temporal lobes which have learshapes, and we seek
to measure changes that are characteristic of diseaseepsigm (eg degenerative brain
disease) or changes wrought by a drug or radiotherapy. Meaig btructures have por-
tions that are thinner than the MRI resolution and are, atgight, blurred out. Indeed,
it has been shown that if one does not analyse the PVE, thesrttbiein estimates of the
volumes of small or elongated, articulated structures eamsimuch as 40%. Fortunately,
MRI has the convenient property that the signal resultiognfa voxel that is composed
of two or more tissues is the weighted sum of the signal thatevesult from pure tissue



voxels, the weight being the relative amount of the varigssues. Several algorithms
have been developed for overcoming the PVE, for example 7l of them depend on

assumptions about the PDFs of pure tissues (typically tiegt are Gaussian). Note that,
in most cases, PVE analysis follows segmentation thougteitidently the case that PVE
may affect considerably estimation of the PDFs used in satatien. In this paper, we

investigate whether the PDF estimation technique intreduzy [2] can be extended to
accommodate the partial pixels. More precisely, we aim toalestrate that the PDF esti-
mation is stable and accurate as a result of subpixel (s@hvdisplacements in the image
and ROI. This is an important ingredient in developing vweahditioned algorithms that

can segment and measure complex structures in images.

2 Estimatinga PDF

In this section, we briefly recall the method introduced b} [The observation that
images are band-limited and critically sampled leads tir¢o the Whittaker-Shannon
sampling theory, which states that three pieces of infamatre necessary to specify the
original band-limited signal at any point: the samplesirtbeder and the pre-filter char-
acteristics. Conventional PDF estimation methods use i@\first of these. Since the
positions of the sample points (pixels) in standard sargptine arbitrary with respect to
the image, small changes in their position can give risefferéint values; pixel values are
unstable. One way in which this instability can be overcos® igenerate many more of
them, for example by upsampling the signal and using theseilba histogram. The only
factor which controls the goodness of the histogram arethger of samples we choose
to take and the accuracy of the interpolator. Moreover, \gdrae to choose an arbitrarily
small bin size given sufficient samples. Upsampling reguine use of interpolation. [2]
notes that many common interpolation schemes proceed iog fittecewise functions to
the signal samples and re-sampling these at the requiretsptn this method, however,
the aim is to estimate the signal PDF, we can avoid the redgagrgiep and calculate the
PDF of each piecewise section directly in closed-form. Samtapproach is in general
more accurate and more efficient to implement than the auaping method. In fact,
its accuracy is dependant only on the accuracy of the piseergpresentation, not the
number of samples nor the number of bins.

To calculate the PDF (or CDF) of the piecewise function, tigaa is considered a
function of a uniform random variable representing its dornBrom standard probability
theory, a function of a random variable creates anotheraranariable whose distribu-
tion may be determined by the Transformation formula oerabtively, the distribution
method [3]. The algorithm to calculate the PDF/CDF congi§three main steps:

1. Calculate the polynomial coefficients for the signal sksip
2. Calculate the PDF/CDF for each piecewise section;
3. Populate the appropriate bins for each piecewise section

The final step is necessary only if an explicit numerical espntation of the PDF is
required. Step 1 is standard and will not be discussed furlte details of steps 2 and 3
for 2D Bilinear interpolation are recalled below. In thiggen (but not the next), we adopt
the convention that the piecewise spans start at zero arud anit length. Consequently,



Yo=( ¥3-d)/b Yo=( Yy-c-d)/(a+h)

'd idic  ibtd lathcd

'
Y

Figure 1: The integration ranges shown graphically for digalar configuration of the
bilinear spline. Shown here is the case farb,c,d} > 0 andb > c.

the PDF of the domain variable is unity over its randgx) =1, 0 < x< 1. Note that
bilinear interpolation will, in general, only approximatee true band-limited signal and
hence the true PDF. Better approximations can be obtaimedatcurate representation of
the sampling pre-filter is available through prior knowledg the sensor or alternatively
by empirical estimation [5].

For a 1D signal, each pair of adjacent samples uniquely deéirgtraight line, which
we denotey(x) = ax+ b. Then the PDF is given by:

fy(y) = |;fx<)§))

1
= |€| b<y<a+b (1)

This has a straightforward and intuitive implementatione PDF is simply the super-
position of piecewise constant sections of magnit%ﬁiebetween domain valudgs and

a+b. The derivation for the two dimensional case requires threduction of a dummy
variable which must be integrated out in the final step, deahet in the following:

yi(X1,Xo) = axpxo +bxg +oxo+d  ya(Xe, %) = X1

y1— by, —d
X = X =
2(Y1,Y2) W+ C 1(Y1,Y2) =2
The derivative used in the univariate case becomes a Jacioldiae multi-variate case:
ox O
‘\]‘ _ dy1 9y
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The joint PDF betweeg; andys is given by:
-V N 0< y, <1
o (Y2, ay>+c¢ INI= ay,+c  by,+d< y1 <yx(a+b)+c+d ®)
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Figure 2: The 6 basic configurations of Equation 4 which cheilee the integration
ranges.

The inequalities in Equation 3 define the range over whickithemy variabley,, should
be integrated out. Graphically, the integration must beeaiover the range of, defined
by the lines:
yi—d yi—c—d
=0 =1 = == 4

Y2=0, y2=1, ¥ b atb (4)
For example, Figure 1 shows the required integration gcafliyia particular case where
the integration proceeds over three ranges:

y1—d

b

fy y, dy2 d< y1 <d+c
yp—d
b
y1-c d fyy, dy2 @ d+c< y1 <b+d
ﬁfc,d le-,y2~dy2 . d+b< y; <a+b+c+d
1T+IT

The final result is given by:

i%In(ayl_cig+Cb : d< y1 <d+c
Iin(%P) : d+c< y1 <b+d (5)
Un(&982) ¢ d+b< yi <a+btctd

Note, that the specific integrals are determined by the gadfi¢he coefficients, or more
precisely, the intersections of the lines defined by Equatiol his complicates the imple-
mentation since there are 24 cases to consider (permwgati@gnntersections). However,
for computational convenience these may be grouped int@ié barangements as shown
Figure 2 where the numbering scheme refers to intersectibtise various lines. For
example, ordering$2 14 3}, {34 1 2} and{4 3 2 1} all result in configurations similar
to that of {1 2 3 4}. [2] shows that this method generates remarkably accustitaaes
of PDFs from images. See Figure 5 for examples.
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Figure 3: Polygonal ROIs give rise to partial pixels defingdibes (aside from the ver-
tices). Six cases can arise as shown here: a-d, a-b, a-t-t-and c-d. Where the origin
of the pixel is outside the ROI the defined region is completroéthat shown.

3 Partial pixels

In this section, we extend the above analysis to includegbarixels - pixels that are
only partially covered by a pre-defined region of interest.this paper, we restrict our
analysis to polygonal ROIs therefore each partial pixelplst &y a single line, except
for the vertices which must be handled separately. The neadiidin is, in principle at
least, quite straightforward and requires simply that #rees forx; andx, are modified
appropriately. However, in practice there are a nhumber ségdhat must be handled
explicitly, as illustrated in Figure 3. In all of these ca#ies valid range can be defined by
0<x1 <1, 0<x <mxxg+k, wheremis the gradient of the line aridis the y-intercept.
Where the origin is outside of the ROI tkeshould be replaced with. Alternatively, the
partial patch PDF could be substracted from the full patclk.Fior case b-d, a positive
gradient switches the polarity of the comparison.

As an illustrative example we re-examine the case showrgarEil with partial pixel
case a-d with the origin inside the ROI. Up to Equation 3 thévdéon is unchanged, but
now the ranges are defined by:

y1— by, —d
fyLYz = le-Xz(y27 ay, - C )|‘]‘
1 y1—by, —d
_ O<y,<1:0< 229 1k
aprc s LUsT e =M
1 0<y, <1

ay,+c by +d < y; <amy,®+ (cm+ak+b)y, +ck+d
(6)
The effect of the partial pixel is to change the ranges of thal fintegration which

must now be performed between a line and a quadratic (as ddaraf y,) as shown in
Figure 3. In this particular case, four ranges are required:
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whereA = am, B =cm+ak+b, C = ck+d andy™ = y1(—B/2A).

Other cases can be handled in a similar fashion. Bilineaheatat the vertices of the
ROI can be handled by splitting the patch into two parts, one#fch edge, and setting the
range ofx; appropriately. For example, if a vertex is placeckat= 0.6 then the ranges
may be set X x; < 0.6 and 06 < x; < 1. In all of the experiments presented in this
paper, for simplicity of implementation the majority of thartial pixel cases are handled
numerically.

4 Experiments

In this section, we present two sets of experiments to exautia performance of six
PDF estimators: histogramming, weighted histogrammimagzéh windowing, weighted
Parzen windowing, bilinear PDF and partial pixel biline&®™The Parzen window meth-
ods are implemented as Gaussian filtered histograms wheestgima of the kernel is set
at twice the bin size. The weighted methods adjust the cdartke histograms according
to the area of the partial pixels. In all cases the aim is tonede a 256 bin histogram,



Ground-truth Weighted histogramming

Weighted Parzen window Bilinear PDF

Figure 5: Left: The images used for the experiments. Riglistddrams for the image
and ROI on the top right for the ground-truth,weighted his&anming, weighted Parzen
windowing and bilinear PDF estimators.

however, it should be noted that the proposed techniquetieestricted to the quantisa-
tion of the image. In fact, if required the estimate can beife€ontinuous form and not
discretised into a histogram. Mean average results aretezgbover 5 ROIs, 5 locations,
4 images and 41 sub-pixel shifts; a total of 5125 PDF estonati

We measure performance in two ways: stability and accutdeglly, PDF estimators
should be invariant to simultaneous sub-pixel translatioithe image and ROI. That is,
the PDF of a ROl in an image and the shifted ROI of an equivBishifted image should
be identical. In practice however, this is not the case. We measure PDlittay
calculating the#; distance (sum of absolute differences of the histogranisyden the
zero shifted histogram for each method and that resultioig the translated image and
ROI. The choice of7] is somewhat arbitrary; there are many alternatives avaikloch
as Kullback-Leibler ory2. Our motivation is that it has a simple interpretation arsd it
value is bounded between O, for an identical histogram, aridr2ts complement. The
sub-pixel shifts are generated by 40x upsampling the imagmwa FIR interpolator with
a Gaussian filterd = 0.7pixels). This method can generate sub-pixel shifts in steps of
# of a pixel.

Figure 6(a) shows the stability results for the image and &®iwn in Figure 5. All
the plots start and end with zef6 value corresponding to zero and one pixel shift respec-
tively. Over all sub-pixel shifts, the proposed method iasistently the best performer
(legend PDFPartial), while the worst is the standard histog with Parzen windowing
in between. Weighting the histogram counts improves théopeance for both the stan-
dard histogram and the Parzen windowing. The improvemarttssi bilinear spline PDF
estimator brought about by considering the partial pixédat$ is evident; compare the
PDFNormal and PDFPartial plots.

Stability, however, is not the only factor to consider — atireate can be stable but
inaccurate. Consider increasing the sigma of the Gaussianekused for the Parzen win-
dow. In the limit, the resulting estimate will be very stable would not reflect the true
density. In the Machine Learning community this is oftererefd to as the bias-variance
trade-off. To quantify this effect, we measure the accudddiie histogram to an estimate

IMore generally estimators should be invariant to similariansformations of the image and ROI.
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Figure 6: (a) The mean stability and (b) accuracy as a funaifsub-pixel translation of
6 PDF estimators.

of the ground-truth. To obtain this estimate, the ROI is $farmed to the resolution of
the upsampled image and a histogram built. We are assuman@tiussian filtering is a
good approximation to the camera point spread function][&nd 40x oversampling is
sufficient to obtain a good estimate. Figure 5 shows the grdruth and as well example
histograms from the various methods.

Figure 6(b) show the corresponding accuracy results fosdinge image and ROI. The
bias effect is clear. Both Parzen window estimators perftivenworst but the proposed
method is still outperform all other including the normalisge method. The accuracy
margin is somewhat larger than is evident in the stabiligpdr It is also worth noting
that the accuracy error for the proposed method is largalylesiover all shifts indicating
the difference arises from the interpolation and the pastieels are handled well.

The final experiment examines the performance of the vagstisiators as a function
of the fraction of partial pixels. The protocol is identidal the previous experiments
except that it is repeated for ROIs with different fractiaipartial pixels and the mean
stability and accuracy recorded. The results are showngar€i7. For ROIs with a low
proportion of partial pixels, the performance of the pragbsechnique and that of [2]
appear to be converging one would expect. An increase inrthpoption of partial pixels
results in a decrease in performance for all methods, hawtheslope is much less for
the proposed method compared to the others.

5 Conclusions

We have presented a method that can estimate accurate afelRRF estimates in an
ROI containing partial pixels. The method has no paramélertsneed to be set and can
generate continuous PDF estimates. In this paper we hawertated on polygonal
ROIs. This is not a limitation of the method and further woeknains to explore more
general parameterisations or special cases such as cifdtes we have estimated only
1st order, or marginal, statistics. Similar derivations possible to joint or conditional
distributions or even moments such as mean, variance andskar Different interpo-
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lation strategies are also worth investigating since immig this should result in more
accurate estimates or simpler implementations.
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