
Robust Image alignment using improved third-order global
motion estimation

Y. Keller2, A. Averbuch1
1School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

2Department of Mathematics, Yale University, Connecticut, USA
Email: yosi.keller@yale.edu

Abstract

The estimation of parametric global motion using non-linear optimization is a fundamental technique
in computer vision. Such schemes are able to recover various motion models (translation, rotation,
affine, projective) with subpixel accuracy. The parametric motion is computed using a first order
Taylor expansions of the registered images. But, it is limited to the estimation of small motions, and
while large translations and rotations can be coarsely estimated by Fourier domain algorithms, no
such techniques exist for affine and projective motions. This paper offers two contributions: First,
we improve the convergence properties by an order of magnitude using a second order Taylor expan-
sion. A third order convergence rate is achieved, compared to the second order convergence of prior
schemes. Second, we extend the third order algorithm using a symmetrical formulation which further
improves the convergence properties. The results are verified by rigorous analysis and experimental
trials.

1 Introduction

Image registration plays a vital role in many image processing and computer vision applications such as optical
flow computation [16, 6], tracking [4], video compression [8], layered motion estimation [3] and 3D reconstruction
[22] to name a few. A comprehensive comparative survey by Barron et. al. [2] found the family of gradient-
based motion estimation methods (GM) to perform especially well. The purpose of the GM algorithm is to
estimate the parameters vectorp associated with theparametric image registrationproblem: starting from pure
global translation, rotation, affine, and projective motions. These models have been used extensively and are
directly estimated from image spatio-temporal derivatives using coarse-to-fine estimation. They search for the best
parametric geometric transform that minimizes the square of differences between image intensities over the whole
image. Several formulations of the gradient methods were suggested. An updated comprehensive description of
these methods was given in [11]. The registration is computed by relating a pair of images having some overlap
using a first order Taylor series expansion. Each pixel in the common support contributes a linear constraint,
denoted the constant brightness constraint. Thus, an over-constrained linear system is formulated yielding a
robust estimate. Gathering and solving all the equations associated with pixels in the common support, estimates
theglobal motionbetween the images [23].

The estimation of parametric global motion is the focal point of this work and has gained special attention in
the computer vision community. As such schemes estimate a relatively small number of parameters (usually up
to 8) based on a least squares formulation of the entire images, such schemes are robust and can be applied to a
wide range of applications related to image stitching [23] and mosaicing [19]. This robustness was further used
to estimate higher order parametric models that are able to register quadratic surfaces [21] (12 parameters), global
nonlinear illumination changes [7] and barrel lense distortions [1]. A limited class of parametric motions was also
applied to video compression in the MPEG4 compression standard [8]. The focal point in such works is to derive
computationally efficient schemes, where due to the high frame-rate used (15-25 frames per second) the estimated
motion is assumed to be small.

A critical implementation issue concerning the GM is their convergence when estimating large motions. As
the estimated motion grows, the convergence rate decreases and the GM may converge to a local minima. Hence,
GM algorithms are unable to estimate large motions and have to be bootstrapped for example by coarser and more
robust Fourier schemes [15, 20]. But, while the estimation of translations and rotations can be bootstrapped by
Fourier based methods there are no such reliable solutions for affine and projective motions. For example, [9] use
affine invariant texture descriptors to bootstrap wide basis stereo.
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We propose to improve the convergence properties of the GM algorithm using a second order Taylor expansion
of the registered images. We show that the convergence properties of the proposed algorithm are superior to those
of the regular GM for large and small motions. Convergence rates of3 and 3

2 are achieved for small and large
motions, respectively, compared to2 and1 for the regular GM. Further improvement is achieved by combining the
second order expansion with a symmetrical formulation [14]. While no gradient based scheme can achieve global
convergence, we show rigorously and experimentally that the proposed scheme achieves improved convergence
ranges compared to the standard GM schemes.

The paper is organized as follows: the optimization based GM approach to image registration is introduced in
Section 2. The convergence properties of high order optimization schemes are analyzed in Section 3 and the third
order (O3GM) and symmetric third order (O3GM) schemes are presented in Sections 4 and 5, respectively. Their
convergence properties are derived in Section 6 and experimentally verified in Section 7. Concluding remarks and
future work are discussed in Section 8.

2 Gradient methods based motion estimation

GM methodology [11] estimates the motion parametersp by minimizing the intensity discrepancies betweenI1
andI2

p∗ = argmin
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i ,p), S is the set of coordinates of pixels common toI1 andI2 in I1’s
coordinates,p is the estimated parameters vector andf andg represent the motion model. In practice, solving Eq.
1 does not result in perfect intensity alignment due to relative intensity changes and pixels with non-corresponding
pixels within the registered images. Next we follow the formulation of [23, 18] and solve Eq. 1 via a linearization
scheme, based on a pixel-wise first order Taylor expansion ofI1 in terms ofI2 as a function of the parameter vector
p
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is the partial derivative with respect to the motion
parameters given the current estimatep andεn is the estimation error of the parameters at iterationn. As p̃ is
unknown, Eq. 2 can not be solved forεn, instead we neglect the error term and solve forδp
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By gathering the pixel-wise equations we get the systemHδp = I t , whereH i, j =
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, which is solved by least squares. Due to the omission of the error term in Eq. 2, in general we

getδp 6= εn. Hence Eq. 1 is solved iteratively and in order to improve the convergence properties, the iterative
process is embedded in a coarse-to-fine multiscale formulation [11, 14].

3 T-Order Convergence analysis

In this section we analyze the convergence properties of the non-linear least squares scheme used in GM based
image registration. We formulate the optimization as a zero crossing problem solved by a Taylor series based
approximations and derive the convergence rate when using a T-order Taylor approximation. Equation 1 is solved
iteratively by approximatingf (p) at the zero crossing pointp∗ using a T-order Taylor series expansion around the
current estimate of the solutionpk
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whereεn is the estimation error in iterationn, NP is the dimension ofp andRT (pk, p̃) is the T-order error term of
the Taylor series approximation given by

RT (pn, p̃,εn) =
1

(T +1)!
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As both f (p∗) andRT are unknown (p∗ is a minimum point, but one can not assume thatf (p∗) = 0), Eq. 4 can
not be solved directly. Hence it is approximated by neglectingRT and f (p∗)
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and solveH (δpn) = 0 in the least squares sense. Using the above procedure with a first order Taylor expansion
of f (p) (T=1), is commonly known as the Gauss-Newton scheme [10, 5] and Eq. 6 reduces to a linear equation.
This approach is utilized by the GM and SGM whose convergence properties are given by the following Lemma,
proved in [14]

Lemma 1 The convergence process of the GM and SGM schemes can be divided to two distinct phases, character-
ized by the deviation of the parametersp from their optimal valuep∗ and the convergence rate of the optimization
scheme.Near the minimumpk → p∗,‖εn‖ → 0, a quadratic convergence rate is achieved.Away from the
minimum ‖εn‖À 1, a slow linear convergence rate is achieved.

‖εn‖ ≤CL
GM · ‖εn‖+CS

GM · ‖εn‖2

whereCS
GM andCL

GM are the small and large deviation coefficients, respectively.

We study the convergence properties of the T-order Taylor approximation. Recalling thatpn+1 = pn + δpn,
the right-hand-side of Eq. 6 is a T-order Taylor order approximation off (pn+1). Thus,

f (pn+1) = H (δpn)+RT (pn, p̃,δpn) , p̃ ∈ [0,δpn] (7)
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Next, we approximatef (p∗) based on the pointpn+1 using a first order Taylor series expansion
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Following Lemma 1, we study the convergence properties for large and small deviations separately.

Theorem 2 The convergence rate of the T-order approximation based scheme for small deviation is given by
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∥∥∥∥∥∥∥

1
2

NP

∑
k1=1
k2=1

∂ 2 f (p̃)
∂ pk1∂ pk2

(εn+1)k1
(εn+1)k2

∥∥∥∥∥∥∥
¿

∥∥∥∥∥
NP

∑
k=1

∂ f (pn+1)
∂ pk

(εn+1)k

∥∥∥∥∥

3



Thus, Eq. 9 is reduced to
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In the vicinity of the solution, we have thatεn → 0 and δpn → 0. By substituting it in Eq. 6, we get
that the quadratic zero-crossing equation is reduced to a linear equation, which can always be solved such that
‖H (δpn)‖ = 0. Equation 8 is reduced to‖ f (pn+1)‖ ≈CT+1‖δpn‖T+1 and by substituting into Eq. 11 we get
‖ f (p∗)‖+C1‖εn+1‖ ≥CT+1‖δpn‖T+1and by Eq. 6 it follows that
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The convergence rate is then derived by
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For example, the convergence analysis of the Gauss-Newton scheme in Theorem 1 usesT = 1and‖ f (p∗)‖ ≈ 0

and by applying Eq. 13 we get‖εn+1‖ ≤ CT+1
C1

‖εn‖2 which corresponds to the expected quadratic convergence
rate.

Theorem 3 The convergence rate of the T-order approximation scheme for large deviations is given by‖εn+1‖ ≤
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2 , whereC2 andCT+1 are constants and large deviations are characterized by‖εn+1‖ À 1.
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As εn+1 = εn−δpn, we have that

‖εn+1‖ ≤ ‖εn‖+‖δpn‖ ≤ ‖εn‖+
C2
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2
T+1 (16)
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‖εn+1‖ ≤ CT+1
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For the Gauss-Newton scheme we haveT = 1 and substituting in Eq. 16‖εn+1‖
(

1− C2
C1

)
≤‖εn‖which results

in the linear convergence rate discussed in Lemma 1.

Theorem 4 The range of convergence of the T-order approximation based scheme is related to the energy of the
high-order derivatives of the objective functionf .

Proof. The convergence rangeε0 is given by computing the errorεn such that‖εn‖ ≤ ‖εn+1‖ for any‖εn‖ >

‖ε0‖. Using Eq. 17 we get that for the convergence rangeε0 we have‖ε0‖ ≤ ‖εn+1‖ ≈ CT+1
C2

‖εn‖
T+1

2 and we get

‖ε0‖ ≈
T−1

2

√
C2

CT+1
. (18)

Equation 18 implies that‖ε0‖ is maximized asCT+1 → 0. This corresponds to using an approximation order
which is higher than the order of the functionf . For example, solving a quadratic equation set (in the least squares
sense) usingT = 2, allows an infinite convergence range. In practice, given a functionf , CT+1 can be reduced by
smoothingf .

4 Third order gradient methods

This section introduces the third order GM formulation (O3GM) which is integrated into the regular GM algorithm
presented in Section 2. The O3GM replacesonly the basic GM step of the GM. The iterative refinement and
multiscale steps are left intact. We rigorously showed in Section 3 that for nonlinear optimization problems, such
as the GM, the higher the order of approximation, the better the convergence rate and range. In particular, the
registration of images related by large motions, results in large parameter deviations. Thus, the approximation
error grows, lowering the convergence rate down to the point of divergence. The focal point of this work is to
improve the estimation of large deviations, which might otherwise be impossible, where using a higher order
scheme lowers the approximation error, making the estimation of larger motions possible and small deviations
need fewer iterations to converge. The second order approximation results in a set of parabolic equations solved
iteratively. Thus, the proposed algorithm uses two iterative cycles - the first is identical to the iterative refinement
step of the GM, while the second is used to solve the parabolic equations. We minimize Eq. 1 by expanding it in a
second order Taylor series expansion and solving forδ p, an update to the motion parameters vectorp, by solving

I1(x
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i ,y(1)

i ) = I2(x
(2)
i ,y(2)

i ,p)+
Np

∑
j=1

δ p j
∂ I2(x
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∂ p j
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δ p jδ ps
∂ 2I2(x

(2)
i ,y(2)

i ,p)
∂ p j∂ ps

(19)

whereNp is the number of motion parameters. While one can use a higher order approximation than the second
order one in our approach, such schemes will result in an increased computational complexity that might prove
exhaustive. The first and second partial derivatives with respect to the motion parameters are computed using the
chain rule. Equation 19 is evaluated for each pixel common to the imagesI1 andI2 forming the quadratic equation
set{r i}i=1,...,N whereN is the size of the common area. Equation 19 is solved by Newtonian methods where the
iterative solution is given Gauss-Newton optimization

pk = pk −
((

J2D
)T

J2D
)−1(

J2D
)T

r , k = 0, .. (20)

wherer = (r1, . . . , rN)T , J2D is the Jacobian andN is the number of corresponding pixels. As the polynomial
equations set is given explicitly, the computation ofJ2D is fast and accurate up to machine precision.
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5 Symmetric third order GM formulations

The symmetric GM (SGM) formulation was introduced in [14] to improve the convergence properties of GM
algorithms. It utilizes the symmetry of the image registration problem to reduce its approximation error. The error
reductions achieved by the O3GM and SGM are complementary, thus, we integrate both in a unified framework
we call the Symmetric third order GM (SO3GM). The image registration problem is formulated symmetrically
using a parametric motion model defined byp
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. (21)
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+
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(1)
i ,y(1)
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)

+
1
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(
∂ 2I2(x

(2)
i ,y(2)

i ,p)
∂ p j∂ ps

− ∂ 2I1(x
(1)
i ,y(1)

i )
∂ p j∂ ps

)
. (22)

whereNp is the number of motion parameters. Given that the imagesI1 andI2 are related by an unknown motion
p, and as both sides of Eq. 21 are expanded using a second order Taylor expansion, they approximate a middle
point (in the parameters space) which isδ 1 =±p/2 apart from both images. In contrast the O3GM scheme used
a single approximation over the intervalδ 2 = p. Recalling that the approximation error is related to‖δ i‖3, we get

that both sides of Eq. 21 are associated with an error of‖p‖3

8 and the overall error is bounded by‖p‖
3

4 compared to

‖p‖3 for the O3GM. Similar results were derived for the GM scheme in [14]. By constructing the above equation
for all of the pixels in the common support betweenI1 andI2 we derive a quadratic equation set which is solved
by either of the two schemes described in Section 4. In practice, the only implementation difference between the
O3GM and the SO3GM is the construction of the quadratic equation set.

6 Convergence properties of the third order GM

In this section we compute the convergence properties of the proposed scheme based on the analysis given in
Section 3. For the proposed scheme we useT = 2 and compute Eqs. 13 and 17 to evaluate the convergence rates
for small and large deviations, respectively. For large deviations we evaluate Eq. 17 and get

‖εn+1‖ ≤ CT+1

C2
‖εn‖

T+1
2 =

C3

C2
‖εn‖

3
2 (23)

which improves the linear convergence rate achieved by the GM and SGM. For small deviations we evaluate Eq.
13 and have

‖εn+1‖ ≤ CT+1

C1
‖εn‖2 +

‖ f (p∗)‖
C1

=
C3

C1
‖εn‖3 +

‖ f (p∗)‖
C1

(24)

Hence, for images with low optimal alignment error (‖ f (p∗)‖ → 0), the proposed scheme achieves third-order
convergence compared to the second order rate of the GM and SGM schemes. While for‖ f (p∗)‖À 0 the scheme
might diverge. In practice, the input imagesI1 andI2 can be normalized to lower‖ f (p∗)‖ and the cases where
the changes in intensities are extreme (‖ f (p∗)‖ À 0) are handled by multi-sensor [13] and multi modality [17]
registration schemes. Equations 23 implies that‖ f (p∗)‖ influences only the small deviation phase, as for large
deviations the convergence rate is dominated by the approximation error.

To analyze the convergence range‖ε0‖, we study Eq. 18 and compare the range for the GM (T = 1) and
O3GM schemes (T = 2). For the GM we get

∥∥εGM
0

∥∥≈
1
2

√
C2

C2
= 1. (25)

while for the O3GM we get
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∥∥εO3GM
0

∥∥≈ C2

C3
. (26)

An improved convergence rate is achieved forC3 < C2, which corresponds to registering smooth input images.
As the registered images are smoothed to avoid spatio-temporal aliasing [11, 12] and to allow accurate derivative
computation, this condition is fulfilled and no extra smoothing is needed.

The convergence properties of the SO3GM can be derived by considering Eq. 22, which defines the derivatives
of f̂ , the objective function minimized by the SO3GM. Since the SO3GM used the same order of approximation
as the O3GM, we get the same orders of convergence for both small and large deviations. The difference lies in
the ratio ofC3 andC2, the overall energy of the derivatives. Denote byC̃3, C̃2 andC̃1 the corresponding derivatives
norms for the SO3GM. We compare their value toC3, C2 andC1 used by the O3GM and show that the convergence
rate is improved. Using Eq. 22 we get that the norm ofC̃2 is bounded by
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i ,p)
∂ p j

+
∂ I1(x

(1)
i ,y(1)

i )
∂ p j

∥∥∥∥∥≤
1
2

∥∥∥∥∥
∂ I2(x

(2)
i ,y(2)

i ,p)
∂ p j

∥∥∥∥∥+
1
2

∥∥∥∥∥
∂ I2(x

(2)
i ,y(2)

i ,p)
∂ p j

∥∥∥∥∥ = C1.

Hence, we compute the convergence rates and ranges for the SO3GM. For large deviations we get

‖εn+1‖ ≤ C̃3

C̃2
‖εn‖

3
2 =

C3/4
C2/2

‖εn‖
3
2 =

1
2

C3

C2
‖εn‖

3
2 (27)

and for small deviations

‖εn+1‖ ≤ C̃3

C̃1
‖εn‖3 +

‖ f (p∗)‖
C̃1

=
C3/4
C1

‖εn‖3 +
‖ f (p∗)‖

C1
=

1
4

C3

C1
‖εn‖3 +

‖ f (p∗)‖
C1

(28)

Thus, we see that the SO3GM allows better convergence rates, especially for low deviations. Next we show that
the convergence range

∥∥εSO3GM
0

∥∥ is also improved. By substituting̃C2 andC̃3 in Eq. 26 we have

∥∥εSO3GM
0

∥∥≈ C̃2

C̃3
=

C2/2
C3/4

= 2
C2

C3
= 2

∥∥εO3GM
0

∥∥ . (29)

7 Experimental Results

This section describes the performance of the proposed algorithms and verifies the convergence analysis given
in Sections 3 and 6. The same implementations of theiterative refinementandmultiscale embeddingwere used
for the O3GM, SO3GM, SGM and GM algorithms. Thus, the only difference between the schemes is thesingle
iteration module. The affine and projective motion were tested using real images. The images in Fig. 1 were taken
by a photogrammetric aerial camera, while the images in Fig. 2 were taken by a hand held 35mm camera. The
GM algorithm was implemented according to [11] which is considered a state-of-the-art implementation. The first
and second order derivatives were computed using central differences. In order to avoid spatiotemporal aliasing
and allow accurate computation of the spatial derivatives, the images were initially smoothed by a 5 tap Gaussian
filter with a bandwidth ofσ = 2. The same filter was used to construct the multiscale pyramid whose scales were
1 (original scale) and 1/3.

The common support ofI1 andI2 was computed in each iteration by applying the current motion estimate to
the parametric equations defining the bounding rectangular ofI2. Next we identify the intersection points between
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the bounding rectangles ofI1 and (the transformed)I2. Finally we compute the convex hull of their mutual support
and substitute the pixels in it in Eqs. 19 and 22, for the O3GM and SO3GM, respectively. The focal point of
the experiments is to illustrate the improved convergence properties of the proposed scheme when estimating
large motions. Although we also show that the scheme is accurate, in practice, due to its high computational
complexity, it should only be applied when the estimated motion is large. In the vicinity of the true solution (when
the estimated motion becomes small) one should switch to the regular GM which provides a better trade-off of
computational complexity Vs. convergence. Finally, as higher order derivatives are known to be sensitive to noise,
we address the convergence in the presence of noise in Section 7.2.

7.1 Affine and projective motion estimation

The registration of real images using the affine and projective motion models is given in Figs. 1 and 2, respectively.
The initial estimate of the motion was given as translations, computed by aligning the X marks in both images.
We intentionally chose an inaccurate initial estimate, making the residual motion (estimated by the various GM
algorithms) large. The same initial motion was used by all the different schemes. For these real images, the
final alignment error results from the lack of perfect matching, and the existence of non corresponding objects
in both images. In the affine case in Fig. 1, the O3GM outperformed the GM by converging twice as fast.
Better convergence was achieved by the symmetric motion models (SGM and SO3GM) and the best convergence
was achieved by the SO3GM. The initial estimate (based on the translation between the X signs in Fig. 1) was
(δx,δy) = (231,−17). The results of registering the projective images are given in Fig. 2. These images have a
significantly different brightness due to the auto-exposure of the camera. We intentionally left the brightness as is,
to make registration more difficult. The initial estimate was(δx,δy) = (583,−43). The timing results for the affine
case are given in Table 1, where the measurement were taken on a 2.8 GHz PC computer and the algorithm was
implemented using non optimized C++. For these high-order models, the complexity of the proposed algorithms
is higher than the computational complexity of the GM and SGM. Yet, it is applicable in cases where the GM and
SGM diverge, and such examples are shown in Fig. 2.
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Figure 1: Registration results for affine motion. The initial estimate of the motion was given by marked by the red
X. The SO3GM converged 4 times faster than the GM and twice as fast as the O3GM and SGM.

Iteration# Total timing [s] Average iteration timing [s]
GM 22 0.8 0.036
SGM 17 1.1 0.064
O3GM 17 1.2 0.070
SO3GM 12 1.4 0.117

Table 1: Timing results for the affine registration given in Fig. 1

7.2 Sensitivity to noise

Since higher order schemes are known to be sensitive to noise, we tested the convergence in the presence of noise.
White Gaussian noise (WGN) was added to both the image in Fig. 1 withσ = 0,30,60. The GM and SGM
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Figure 2: Registration results for projective motion. The initial estimate of the motion was given by the red X.
The SGM converged better than the O3GM while the SO3GM showed the best convergence properties.
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Figure 3: Estimating affine motion of noisy images. The O3GM and SO3GM allow better registration of noisy
images, compared to the regular GM. The initial estimate is the same as in Fig. 1.

schemes were applied and the results are depicted in Fig. 3. The same initial motion was assumes as in the prior
section. Figs. 3a and 3b show Fig. 1a after adding WGN withσ = 30 andσ = 60, respectively. The initial
estimate of the motion, was chosen such that the residual motion was large. The convergence shown in Fig. 3c,
shows that the O3GM was able to converge better for all noise levels and thus verify the convergence analysis - in
all cases the O3GM and SO3GM converged faster (iteration-wise) than the regular GM and in most cases, it was
able to converge where the regular GM diverged.

8 Conclusions and future work

In this work we presented the O3GM and SO3GM image registration algorithms which enhance the performance
of gradient based registration methods. These algorithms extend the current state-of-the-art schemes and were
shown to have superior convergence range and rate. They are especially suitable for the estimation of large affine
and projective motions which can not be bootstrapped by Fourier domain methods. Future work includes the
application of the O3GM and SO3GM to numerically ill-posed computer vision problems which are based on the
gradient methods, such as wide baseline stereo and 3D reconstruction.
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