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Abstract

A powerful and popular approach for estimating radial lens distortion param-
eters is to use the fact that lines which are straight in the scene should be
imaged as straight lines under the pinhole camera model. This paper revis-
its this problem using the division model to parameterise the lens distortion.
This turns out to have significant advantages over the more conventional pa-
rameterisation, especially for a single parameter model. In particular, we
demonstrate that the locus of distorted points from a straight line is a circular
arc. This allows distortion estimation to be reformulated as circle-fitting for
which many algorithms are available. We compare a number of suboptimal
methods offering closed-form solutions with an optimal, iterative technique
which minimises a cost function on the actual image plane as opposed to ex-
isting techniques which suffer from a bias due to the fact that they optimise
a geometric cost function on the undistorted image plane.

1 Introduction
Virtually all algorithms based on camera geometry assume that the camera can be approx-
imated by the pinhole model. In reality, however, almost all lenses suffer from small or
large amounts of distortion. Failing to compensate for the distortion can lead to severe
errors for instance when making metric measurements from images [4], performing self-
calibration [16] or computing homographies or matching tensors from multiple views.

Typically lens distortion is split into two components, radial and tangential, of which
the radial component is most significant. Radial distortion is a nonlinear transformation
of the image along directions from the image centre to the pixel in question, giving either
barrel or pin-cushion distortion, as illustrated in fig. 1. We neglect the tangential com-
ponent and focus on single-parameter radial distortion models since studies [2, 18] have
noted that this is sufficient with standard lenses for many tasks in machine vision.

Broadly speaking, methods for calculating distortion parameters may be split into
three groups (see e.g. [15]). The first, the plumbline method, assumes the presence of
straight lines in the scene [2, 5, 1, 9, 14]. Distortion parameters are sought which lead
to the lines being imaged as straight in the undistorted image. Intuitively, this source
of information is very strong, provided straight lines can be reliably detected. The sec-
ond class of approach assumes the availability of correspondences between points in the
scene with known 3D coordinates and their projections [18, 19]. With a large number of
points this should also be accurate, yet the need for a calibration object or scene limits
the flexibility of this approach. The final method seeks distortion parameters that produce
multiple-view matching constraints with low residual [8, 12, 16]. Although flexible in
the sense that no knowledge of the scene is required, this scheme is not applicable with a
single static camera mounted for instance on a wall.
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Figure 1: The transformation (solid line) of a rectangle (dotted line) under pin-cushion
(left) and barrelling (right) radial distortion.

Our application is in sports analysis where multiple static cameras cover e.g. a football
pitch. Correcting distortion is necessary before computing distances on the ground plane,
and for creating mosaics from two or more cameras mounted on the same tripod. This
scenario is well served by the plumbline method. Markings on the pitch provide excellent
input since they can be detected reliably, and are known in advance to be straight.

In [8] Fitzgibbon demonstrated that a less conventional parameterisation of radial dis-
tortion, the division model leads to linear techniques for the simultaneous estimation of
lens distortion and multiple view matching relations such as fundamental matrices or ho-
mographies. Inspired by his work, we have applied the same distortion model to the
plumbline method, with considerable benefit. Various closed-form methods are derived
both when considering a single or multiple lines in the image. Moreover, with the division
model, we show that the locus of distorted points forms a circular arc. Thus the problem
of distortion calibration is equivalent to circle-fitting, for which an optimal iterative so-
lution is easy to implement. We show that both our closed-form and iterative methods
perform better than an “industry-standard” technique [5] since that algorithm is biased
because it optimises a distance in the undistorted as opposed to the original image plane.

The remainder of the paper is organised as follows. Sec. 2 reviews relevant literature.
Sec. 3 contains the proof that a distorted line is a circular arc. Algorithms and experiments
on synthetic data for single and multiple lines are presented in secs. 4 and 5 respectively.
Fully automatic distortion correction on sports imagery is illustrated in sec. 6 before sec. 7
draws conclusions and discusses future work.

More details about this work may be found in [13].

2 Previous work
The most commonly used model for radial distortion is the polynomial model (e.g. [2, 5])

p = x(1+λ1r2 +λ2r4 + . . .) , q = y(1+λ1r2 +λ2r4 + . . .) (1)

where (p,q) is an undistorted point which satisfies the pinhole camera model, and (x,y)
is the corresponding distorted point in the actual image. {λ1, λ2...} are the coefficients
of radial distortion and r2 = x2 + y2 is the radial distance from the principal point. The
assumption here is that the principal point is known and at (0,0), that skew is zero, and
that the aspect ratio is unity. The latter two assumptions are reasonable for most digital
cameras, and for the purpose of estimating radial distortion, it is safe to set the principal
point to the centre of the CCD array (trying to estimate it can be ill-conditioned).

In [8] Fitzgibbon used the division model to parameterise the distortion,

p =
x

1+λ r2 , q =
y

1+λ r2 . (2)

For barrelling distortion, λ < 0. If λ is small, the division and single-parameter polyno-
mial models are more or less equivalent, which is easily shown by performing a binomial



expansion of eqn (2). In fact, fitting the division model to real image data proved if any-
thing slightly superior to the conventional polynomial model in experiments in [8, 10].

For estimating distortion coefficients from images of straight lines, the most popular
method is to conduct a non-linear optimisation (e.g. Devernay and Faugeras [5]). At each
iteration the current estimate of distortion coefficients is used to remove the distortion,
and the cost function is then the sum of squared distances from each i of Nj undistorted
points pi, j to each j of M straight lines l j fitted by orthogonal regression, i.e.

FDF =
M

∑
j=1

Nj

∑
i=1

d ( l j , pi, j )2 . (3)

Although optimal with respect to the undistorted points, it is not optimal with respect to
the points in the original image, there is a bias towards coefficients which “shrink” the
undistorted image to give a lower cost function. [14] addressed this issue with an itera-
tive scheme based on minimising the distance between measured points and the distorted
line. Yet to make the problem tractable their cost function was only approximate, and the
method was still rather expensive. Our circle-fitting approach is similar in spirit, but both
faster and more accurate due to our exact knowledge of the locus of distorted points.

Ahmed and Farag [1] proposed closed-form solutions for estimating radial distortion
from straight lines. One method exploits the notion that the slope of the best-fit line to the
distorted points is usually close to the slope of the unknown undistorted line. [6] extends
the approach by considering model selection and outlier elimination.

3 Distorted straight lines are circular arcs
In this section we prove that under the division model of eqn (2), the distorted images
of straight lines form circular arcs. Following [8], eqn (2) may be written, up to a scale
factor s, in homogeneous coordinates as

s p = s


 p

q
1


 =


 x

y
1+λ (x2 + y2)


 =


 x

y
1


+λ


 0

0
r2


 = x+λz . (4)

The undistorted point, p, must lie on a straight line denoted l = (l1 l2 l3)� in homogeneous
coordinates, therefore l�p = 0. Inserting the expression for p from eqn (4) yields

l1x+ l2y+ l3(1+λ (x2 + y2)) = 0 . (5)

Assuming (i) that the line does not pass through the origin, l3 �= 0, and (ii) the presence
of radial distortion, λ �= 0, we may divide by λ l3, and by completing the square it is easy
to show that this represents the equation of a circle (x− x0)2 +(y− y0)2 = R2 where

x0 = − l1
2λ l3

, y0 = − l2
2λ l3

, R2 =
l2
1 + l2

2

4λ 2l2
3

− 1
λ

= x2
0 + y2

0 −
1
λ

. (6)

The circle degenerates to a line if either λ = 0 or l3 = 0.
Alternatively the proof and degeneracies may easily be seen by rewriting eqn (5) as

the equation of a conic in homogeneous coordinates,

x�Cx = 0 , C =


 c1 0 c2

0 c1 c3
c2 c3 c4


 , (7)



where x = (xi yi 1)� and in this case C is not a general conic but a circle.
Interestingly, the images of lines are also circles for paraboloid catadioptric cameras

[11] where rays reflected off a parabolic mirror are projected orthographically. Indeed,
one may show that such an imaging system gives rise to a projection equation of the
same form as with a system comprised of a perspective camera followed by barrelling
distortion parameterised by the division model. It is intriguing that two imaging systems
which appear so different in their geometry can give rise to similar projection equations.

4 Estimating lens distortion from a single line
In this section we develop a number of techniques for estimating the radial distortion
coefficient from a single line. Methods for multiple lines will be discussed later in sec. 5.

4.1 Optimal Circle-Fitting approach (OCF)
Using the result from sec. 3, and assuming isotropic, Gaussian noise in the actual image
plane, the optimal value of λ and the line parameters l may be found by fitting a circle to
the data in the original image, minimising the sum of squared distances, di, from each i
of N points to the circle

F1 =
N

∑
i=1

d2
i =

N

∑
i=1

(√
(xi − x0)2 +(yi − y0)2 −R

)2

. (8)

Although a problem with three parameters {R,x0,y0} it is well known that the problem
reduces to a two-parameter minimisation by writing the radius R as a function of the
circle centre {x0,y0} by setting the partial derivative of F1 with respect to R to zero, and
inserting the result into the cost function in eqn (8). After minimising this function, the
radial distortion parameter λ may be found from the rightmost equation in eqns (6). In the
remainder of this paper this method will be referred to as Optimal Circle-Fitting (OCF).

Although one would expect this optimisation to be stable, a good initial estimate of the
circle parameters is useful to ensure convergence to the correct minimum, and to reduce
the number of iterations. We will therefore derive sub-optimal closed-form solutions.
Additionally, such solutions will be much faster than carrying out the non-linear minimi-
sation, and if sufficiently accurate might avoid the need for iterative methods altogether.

4.2 Linear Solution # 1 (LS1)
A first linear approach, which we will denote LS1, is inspired by the algorithm of Fitzgib-
bon [8] for simultaneously computing the lens distortion and fundamental matrix. For
each point i on the line, eqn. (5) gives

(xi yi 1)l+λ (0 0 r2
i )l = 0 . (9)

Stacking equations from N points together gives

(D1 +λD2)l = 0 (10)

where D1 and D2 are N × 3 matrices. Premultiplying eqn (10) by D1 does not alter the
solution, and yields a generalised eigenvalue problem

(D1
�D1 +λD1

�D2)l = 0 . (11)



Given the small size of the matrices, and the simple form of D2, it is readily shown by
setting the matrix determinant to zero that the solution for λ is

λ =
−d3(d2d5 −d4d3)−d5(d3d2 −d5d1)−d6(d1d4 −d2

2)
e1(d2d5 −d4d3)+ e2(d3d2 −d5d1)+ e3(d1d4 −d2

2)
(12)

where the coefficients on the right hand side are given by matrices D1
�D1 and D1

�D2 as

D1
�D1 =


 d1 d2 d3

d2 d4 d5
d3 d5 d6


 , D1

�D2 =


 0 0 e1

0 0 e2
0 0 e3


 . (13)

It turns out that the method derived above is equivalent to Coope’s linear method for
circle-fitting [3]1. Although, he derived it through a change of coordinates, his method is
most easily explained via the use of homogeneous coordinates which readily turn circle-
fitting into a linear problem via the conic equation in eqn (7).

4.3 Linear Solutions # 2 and # 3 (LS2 and LS3)
We now present two further linear methods based on circle-fitting.

Eqn (7) may be rewritten as a set of linear equations Ac = 0 in the unknowns c =
(c1 c2 c3 c4)� where row i of the N × 4 matrix A is

[
r2

i 2xi 2yi 1
]
. Recalling that C

and hence c is only defined up to a scale factor, we may apply the constraint that ‖c‖ = 1,
in which case the solution that minimises algebraic error is found from the least singular
vector of A. This procedure is commonplace in the literature on circle and conic fitting.
We denote this by Linear Solution # 2 (LS2).

Applying instead the constraint c4 = 1 gives the set of equations Bc′ = −1 where B
contains the first three columns from A and c′ = (c1 c2 c3)�. The solution to this over-
determined set of equations may be found using the pseudo-inverse. It is safe to apply
this constraint since c4 = 0 implies that l3 = 0 and the straight line and circle pass through
the origin, yet in practise we will not use any lines close to the origin since they provide
very little information (they remain straight even with arbitrarily large amounts of radial
distortion). We call this method Linear Solution # 3 (LS3).

4.4 Closed-Form, Approximate Geometric solution (CFAG)
With noise, ε = l�p represents the signed distance ε between point p and the line l,
provided l2

1 + l2
2 = 1 and the third coordinate of p is unity. With a one-parameter division

model, it turns out that it is possible to generate a closed-form solution that minimises an
approximation to the geometric cost function of eqn (3) commonly used in the literature,

F2 =
N

∑
i=1

(
l� (xi +λzi)

)2 ≈
N

∑
i=1

ε2
i (14)

subject to the constraint that l2
1 + l2

2 = 1. As before l = (l1 l2 l3)� describes the line in
homogeneous coordinates, xi is each point, also in homogeneous coordinates, (xi yi 1)�,
and zi = (0 0 r2

i )
�. It is only an approximation to eqn (3) because the third coordinate

of the points (xi +λzi) is 1+λ r2
i which is close to, but not identical to, unity. However,

it turns out that this induces a bias towards expanding the undistorted image plane which
counteracts the bias of eqn (3) which shrinks the undistorted image plane.

1In section 2 of his paper, his matrix B is our D1, his vector d is the third column of our D2, and his vector of
unknowns y is simply l/(λ l3). Thereafter it easily follows that his set of equations is identical to our eqn (10).



The derivation, given in full in [13], is not entirely trivial and is omitted here due to
lack of space. Instead we merely state the result which is

λ = −e1 l1 + e2 l2 + e3l3
f l3

, l1 = ±sign(α1)

√
1∓ α2√

4α2
1 +α2

2√
2

(15)

l2 =
√

1− l2
1 , l3 =

−(e1e2 −d2 f )(l2
1 − l2

2)− (e2
2 − e2

1 +(d1 −d4) f )l1l2
(e2e3 −d5 f )l1 − (e1e3 −d3 f ) l2

(16)

α1 = −e2
3d2 + e2e3d3 + e1e3d5 − e1e2d6 −d3d5 f +d2d6 f , (17)

α2 = e2
3(d1 −d4)−2e3(e1d3 − e2d5)+(e2

1 − e2
2)d6 +[d2

3 −d2
5 − (d1 +d4)d6] f , (18)

where dk and ek were defined in eqns (13) and f is the (3,3) element of the matrix D2
�D2.

There are two solutions, representing the maximum and minimum of the cost function.

4.5 Experiments
We now present experiments on synthetic data comparing the five algorithms presented
in this section and the iterative method of Devernay and Faugeras [5] discussed in sec. 2.

A first experiment (fig. 2a-c) tests robustness to increasing levels (standard deviation
σ ) of isotropic Gaussian noise applied to the distorted points. The true distortion λtrue is
constant at −10−7 which represents a fairly small amount of barrelling distortion, typical
of lenses we often use. We generated lines of random orientation, length 300 – 768
pixels, and distance from the origin of 40 – 384 pixels. Data points along each line were
separated by 1 pixel, giving many points from which to compute λ . Points outside a
960× 960 image plane were removed. Results from 2000 trials are shown as (a) RMS
relative error in recovery of λ : (λ −λtrue)/λtrue), (b) RMS residual distance from image
points to circles found from each method, and (c) RMS error in the predicted location
of undistorted image points, relative to those obtained with λtrue and without noise. For
evaluating (c) a regular grid of points across the entire image was used. In a second set of
experiments, (fig. 2d), noise was constant at 1 pixel, and now the amount of distortion λ
varied at logarithmic intervals from extreme barrel to extreme pin-cushion distortion.

Almost all algorithms give good results, confirmed especially by the fact that the
residuals in fig. 2b are indistinguishable from the theoretical lower bound which here is
well approximated by σ/

√
2. (The factor of

√
2 arises because we added noise such that

the expected distance between original and noisy points was σ in a random direction, yet
for these experiments it is only the direction perpendicular to the line which is relevant.)
The performance of Linear Solutions #2 and #3 (LS2, LS3) is remarkable, and little seems
to be gained by applying the the optimal solution (OCF). We confirmed that there is a bias
in the geometric solution of Devernay and Faugeras (DF). Our Closed-Form Approximate
Geometric solution (CFAG) is better since its two biases almost cancel each other out. Yet
both DF and CFAG prove inferior to Linear Solutions #2 and #3.

Notice, however, the very poor performance of Linear method # 1 (LS1), equivalent
to Coope’s method of circle-fitting, which disappears off the graphs for anything other
than very small noise levels. This may be explained by splitting the cost function of that
method into the product of two components, as in [3],

F3 =
N

∑
i
|R−‖xi −x0‖2 |× |R+‖xi −x0‖2 | , (19)

where xi = (xi,yi)�,x0 = (x0,y0)� are inhomogeneous coordinates and ‖·‖2 indicates the
Euclidean distance. The first component is the orthogonal distance to the circle, which
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Figure 2: Experiments on synthetic data, estimating radial distortion from a single line.
(a-c) represent experiments with constant λ =−10−7 and varying noise, (d) with varying
λ and constant noise of 1 pixel. Algorithm key: DF (Devernay Faugeras [5]), LS1–3
(Linear Solution # 1–3, this paper), CFAG (Closed-Form Approximate Geometric, this
paper), OCF (Optimal circle-fitting, this paper)

is clearly desirable to minimise. The second term is the distance from the point xi to the
furthest point on the circle. The problem is that our application is based on very small
arcs, such that a considerable decrease in the radius of the circle yields a reduction in the
second term capable of overpowering the increase in orthogonal distance in the first term.

5 Estimating lens distortion from multiple lines
5.1 Optimal technique based on circle-fitting (OCF)
The optimal circle-fitting approach readily extends to the case where multiple straight
lines are detected. Now the cost function is a sum over all points on all of M lines,

F4 =
j=M

∑
j=1

Nj

∑
i=1

d2
i, j , (20)

where d2
i, j is the orthogonal distance from point i out of Nj on the jth circle to that circle.

We have 2M +1 degrees of freedom, 2 for each line and 1 for λ . The non-linear minimi-
sation may for instance be parameterised in terms of {x0,y0} for each circle and λ . It is
easy to show that the Jacobian is sparse since the circle centre for line j′ does not depend
on points from a circle j �= j′. This may be used to provide a speed-up, in the first instance



by computing the Jacobian explicitly rather than relying on numerical differentiation, and
second by using sparse techniques (as in bundle-adjustment [17]).

5.2 Closed-Form Multiple Line solution (CFML)
With multiple lines it is harder to produce closed-form solutions without over-parameter-
ising the problem (which essentially corresponds to finding a separate value of λ for each
line). We will, however, derive one closed-form solution. Although suboptimal, it turns
out that this method has desirable properties, and in practise yields excellent performance.

While [1] argued for assuming the orientation of the line is known, we instead assume
that the distance from the origin, l3 is known. We minimise the cost function

F5 =
j=M

∑
j=1

Nj

∑
i=1

(
l j
� (xi, j +λzi, j)

)2
(21)

subject to the constraint that l3, j is known for each line j. The derivation of an expression
for λ is relatively straightforward, and may be found in [13]:

λ = −
∑ j=M

j=1 l2
3, j

(
e1, j(d2, jd5, j−d3, jd4, j)+e2, j(d2, jd3, j−d1, jd5, j)

d4, jd1, j−d2
2, j

+ e3, j

)

∑ j=M
j=1 l2

3, j

(
e1, j(d2, je2, j−d4, je1, j)+e2, j(d2, je1, j−d1, je2, j)

d4, jd1, j−d2
2, j

+ f j

) (22)

The subscript j denotes the line, the coefficients dk, j and ek, j depend only on the measure-
ments and were defined in eqn (13), though we now have one matrix D1, j for each line,
and the same applies to D2, j. f j is the (3,3) element of the matrix D2, j

�D2, j.
Eqn (22) may be interpreted as a set of equations l2

3, j g j λ = l2
3, j h j where each

equation j represents a solution for λ derived from one line, and g j and h j are known and
depend only on image measurements, and not on the unknowns l j or λ . Thus the only
effect of the l3, j is to weight the equations from each line. Lines close to the origin (small
l3, j) have little influence on the solution, as do short lines (small Nj). Note also that with a
single line, M = 1, the solution is independent of l3. Thus, we would be free to set l3 = 1,
which is essentially what Linear Solution # 3 for a single line does (sec. 4.3).

We obtain estimates for l3, j via orthogonal regression on the line parameters in the
distorted image plane. Experiments will show that this crude method is remarkably ac-
curate, even when large amounts of distortion clearly give inaccurate estimates of l3, j.
A second approach (not explored experimentally in this paper) is to perform orthogonal
regression on an undistorted image where λ has been estimated from one line only using
one of the closed-form solutions discussed in sec. 4.

This also suggests an iterative scheme whereby the latest value of λ is used to undis-
tort the image, after which the l3, j are found by orthogonal regression. Then λ may be
recomputed using these values and so forth. In practise we did not find this fruitful, pre-
sumably because results are already so accurate, so we do not report those results further.

5.3 Experiments
In figs. 3a and b we repeat the experiments of sec. 4.5, but now using 20 lines to compute
the solutions. Comparing with figs. 2a and d, using multiple lines improves results. Our
two new algorithms, optimal circle-fitting (OCF) and Closed-Form Multi-Line (CFML)
are compared to the Devernay-Faugeras scheme (DF) and the linear solution of Ahmed
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Figure 4: Fully-automatic correction of radial distortion on sports imagery.

and Farag (AF, [1] sec.4.2). Our novel techniques are clearly superior, and the closed-
form solution is excellent, despite the crude estimates of l3, j. AF performed poorly, but
we did not implement the refinement stages they suggest, and their scheme can handle any
number of distortion coefficients. Yet we doubt that their ad-hoc cost functions would be
as effective as ours, and their linear solution is actually rather computationally expensive.

6 Application: sports images
We now demonstrate fully automatic correction of radial distortion in a practical appli-
cation. Markings from a football pitch are automatically detected via a second-order
Gaussian derivative operator. A potential problem is that each line may be split into sep-
arate fragments due to occlusions. Moreover, the detection procedure finds not only pitch
markings, but also other lines. We apply RANSAC [7] which can both eliminate outliers
and link multiple fragments of the same line. The minimal solution for RANSAC may
be provided by any of the closed-form solutions, and the final value for λ is found by
applying Linear Solution # 3 to the final set of inliers. Currently we only search for a
single line. An example image is shown in fig. 4a along with the detected sideline of the
pitch. Due to occlusions (people) the sideline is split into four segments, but the robust
fitting scheme automatically identifies the segments as arising from the same straight line.
The corrected image is given in fig. 4b while a graph showing the original and corrected
points is provided in fig. 4c. Clearly, the distortion has been removed very well indeed.



7 Discussion
This paper revisited the plumbline method for estimating radial distortion by using the
division model to parameterise the distortion. A number of techniques were developed,
including closed-form solutions, some of which gave excellent performance, and an iter-
ative scheme which is optimal under Gaussian noise in the actual image plane. This latter
algorithm is based on the insight that the locus of a distorted straight line becomes the
arc of a circle. Such an optimal method does not appear available when using the stan-
dard parameterisation for distortion, nor are closed-form solutions as easy to derive. We
showed the superiority of our approaches over conventional methods on synthetic data,
and a real-world application for sports imagery was also presented.

Although this paper assumed known aspect ratio and zero skew, it is possible to relax
these constraints and even estimate these parameters from the observed distortion. This is
an interesting topic for future research. With non-unity aspect ratio, the circle becomes an
ellipse with principal axes in the x and y directions, and it is not difficult to derive linear
or optimal iterative techniques.With non-zero skew the orientation of the ellipse changes.
The principal point can easily be added to the unknowns in the optimal nonlinear algo-
rithm. It remains an open question whether the recovery of these additional parameters
will prove reliable or worthwhile in the presence of noise.

Another extension is to go beyond the single-parameter model by including two or
more terms in the denominator in eqn (2). We have confirmed the existence of linear
solutions in this case, but the locus of distorted points is no longer as simple, so optimal
methods may not easily be obtained.
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