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Abstract

In building a surveillance system for monitoring people behaviours, it is
important to understand the typical patterns of people’s movement in the en-
vironment. This task is difficult when dealing with high-level behaviours.
The flat model such as the hidden Markov model (HMM) is inefficient in
differentiating between signatures of such behaviours. This paper exam-
ines structure learning for high-level behaviours using the hierarchical hid-
den Markov model (HHMM). We propose a two-phase learning algorithm in
which the parameters of the behaviours at low levels are estimated first and
then the structures and parameters of the behaviours at high levels are learned
from multi-camera training data. Our algorithm is then evaluated using data
from a real environment, demonstrating the robustness of the learned struc-
ture in recognising people’s behaviour.

1 Introduction
Building automated surveillance systems using multiple cameras has been the focus of
much research [1, 5, 9, 10, 11]. In these systems, the crucial task is detecting and mon-
itoring human behaviours. Due to noise from cameras and the complexity of people’s
behaviours, especially high-level behaviours, this task is difficult and requires sophisti-
cated methods. We consider high level behaviours that can be refined. For example,
the high-level behaviour print can be constructed from three low-level behaviours: (1)
go to computer, (2) go to printer, and (3) go to paper store. A person executing the
behaviour print can first go to computer, then go to printer, and then go to computer
again to issue new print commands. If the printer has run out of paper, the person has
to go to paper store, then go to printer to fetch more paper. Understanding the structure
of the high-level behaviours is important for recognising both high-level and low-level
people’s behaviours reliably. However, the structures of the high-level behaviours are not
easy to specify manually. Efficient approaches for tackling this problem require discover-
ing the behaviour structure automatically from the training data.

The hidden Markov model (HMM) has been used in much research for learning and
recognising simple behaviours [4, 7]. However, this flat model is inefficient for modelling
high-level behaviours because they cannot characterise the hierarchical nature inherent in
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behaviours. Recent approaches using hierarchical probabilistic models such as the lay-
ered hidden Markov model (LHMM) [13], stochastic context free grammar (SCFG) [15],
the abstract hidden Markov model (AHMM) [3] or the hierarchical hidden Markov model
(HHMM) [6, 2] are robust in modelling and recognising high-level behaviours. Osen-
toski et al. [14] present a behaviour tracking system, in which the behaviours are modelled
by the AHMM [3]. The model’s parameters are learned from the training data using the
expectation maximisation (EM) algorithm. But the special landmarks in the environment
are not be exploited for defining a richer class of behaviours. Liao et al. [10] introduce a
surveillance system to learn people’s daily behaviours using GPS sensors. The AHMM
is used in the system for representing the behaviours. First, the EM algorithm is used
to learn the people’s goals and important locations. The remaining parameters are then
estimated using the Monte Carlo EM [17] method. The work of Osentoski et al. and
Liao et al. does not explicitly define the structure of the high-level behaviour. The system
proposed by Nguyen et al. [11] does not have this limitation because of the use of the
abstract hidden Markov memory model (AHMEM) − an extension of the AHMM − for
modelling the behaviour hierarchy. However, the behaviour structures in this system are
specified manually by observing the typical movements of people executing each specific
high-level behaviour, and not automatically learned from the training data.

This paper aims to use the HHMM [6, 2] for tackling two issues: (1) modelling high-
level behaviours in indoor environments and (2) discovering the structure of high-level
behaviours from the training data given multiple cameras. Each high-level behaviour is
initialised as a fully connected structure of all behaviours at the lower level (Fig. 1(a)).
The task is to prune this fully connected structure using the training data (Fig. 1(b)) and
to learn the probability of the structural links. We argue that the use of the HHMM for
structure discovery of high-level behaviours allows us to recognise both the high-level
and low-level behaviours more reliably. The novelty of this paper lies in the introduction
of a two-phase learning algorithm to discover the behaviour structures and to estimate
the probabilities for the links within these structures. We evaluate the two-phase learning
algorithm using real data.
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Figure 1: (a) The initial structure of a high-level behaviour. All behaviours at the lower
level (π1, π2, π3, and π4) are fully connected. (b) The structure of the high-level behaviour
learned from the training data where some links are pruned from the initial structure.

The layout of the paper is as follows. Section 2 presents the techniques used in mod-
elling the behaviour hierarchy for the system. Section 3 describes the algorithm for learn-
ing the structures of high-level behaviours. The experimental results in a real environment
are given in Section 4, followed by our concluding remarks in Section 5.



2 The Behaviour Hierarchical Model
2.1 The environment and behaviours
The environment is divided into a set of discrete states. Some landmarks are specified in
the environment. An example of the environment, which is a room, is shown in Fig. 2(a).
The room is monitored by two static cameras. The special landmarks in the room are: the
door, TV chair, fridge, coffee machine, stove, cupboard, and dining table. Note that the
coffee machine and the fridge are at the same location. There are 24 states in the room,
which are numbered 1, 2,. . . , 24. The size of each state is about 1m × 1m. The x-axis,
y-axis, original coordinates, and the states of the environment are shown in Fig. 2(b).
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Figure 2: (a) The room viewed from two static cameras. (b) The states in the room and
primitive behaviours 1, 2, 3 and 4.

The system aims to recognise two classes of behaviours: primitive behaviours and
complex behaviours. The primitive behaviour represents a person’s action of going from
a specific landmark in the environment to another. Fig. 2(b) shows examples of four prim-
itive behaviours: (1) door to cupboard, (2) cupboard to fridge, (3) fridge to DN table,
and (4) DN table to cupboard. The complex behaviour is defined from a set of primitive
behaviours and can be refined into different sequences of the primitive behaviours. For
example, the complex behaviour have coffee can be a sequence of primitive behaviours
(1), (2), (3), and (4).

2.2 Parameters for the primitive behaviour
Each primitive behaviour π1 has a starting landmark and an ending landmark. It is speci-
fied by the following parameters:

(1) The initial state probability Iπ1
(s): the probability that π1 starts from the state s.



Iπ1
(s) is assigned a high value if s is near the starting landmark of π 1; otherwise Iπ1

(s) is
assigned a small value.

(2) The movement model Aπ1
(s,s′): the probability that the person moves from the

current state s to the next state s′. We assume that a person can only move from the current
state to one of the neighbouring states after each time slice. Thus, Aπ1

(s,s′) = 0 if s’ is
not a neighbouring state of s.

(3) The ending state probability Eπ1
(s): the probability that π1 terminates at the state

s. Eπ1
(s) is high if s is near the ending landmark; otherwise Eπ1

(s) is low.

2.3 Parameters for the complex behaviour
Each complex behaviour π2 is defined from a set of primitive behaviours. The structure of
π2 can be represented by a diagram in which the nodes represent the primitive behaviours.
The complex behaviour π2 has the following parameters:

(1) Iπ2
(π1): the probability that π2 selects the primitive behaviour π1 to start its

execution.
(2) Aπ2

(π1
,π1′): the probability that π2 selects the next primitive behaviour π1′ to

execute when the current primitive behaviour π1 terminates.
(3) Eπ2

(π1): the probability that π2 terminates when the current primitive behaviour
π1 terminates.

The complex behaviour π2 is executed as follows. First, π2 selects a primitive be-
haviour π1 from the distribution Iπ2

(π1) to start its execution. Then, π1 is executed
until it terminates. At this time, π2 can terminate with probability Eπ2

(π1). If π2 does
not terminate, it continues to select another primitive behaviour π 1′ from the distribution
Aπ2

(π1
,π1′) for execution. The loop continues until π2 terminates.

3 Discovering the Structure of the Complex Behaviours
Usually, the structure of a complex behaviour π2 is unknown. The important question is
to learn the structure of π2 from the training data obtained from multiple cameras. To ad-
dress this issue, we use the HHMM, which is an extension of the well-known HMM. The
HHMM with its inherent hierarchical structure is suitable for representing the behaviour
hierarchy and dealing with noise from multi-camera data. Moreover, efficient learning
algorithms exist to estimate the model parameters from a set of observation sequences.
For this study, the behaviour hierarchy is first mapped to an HHMM, and then the EM
algorithm is used to learn the behaviours.

3.1 The hierarchical hidden Markov model
The hierarchical hidden Markov model (HHMM) [6, 2] is an extension of the HMM [16]
to include a hierarchy of hidden states. A special end state is introduced at each level
to signal when control of the activation is returned to the state at the higher level. An
HHMM has the following components: a topological structure ζ , an observation alpha-
bet Y and a set of parameters θ . The topology ζ specifies the depth of the model, the
state space at each level, and the parent-children relationship between two consecutive
levels. The states at the lowest level are called production states. The states at higher



levels are called abstract states. Only production states can generate observations. The
set of parameters θ consists of the observation model By|p, the initial distribution Id,p∗ ,
the transition probability Ad,p∗

i, j and the ending distribution Ad,p∗
i,end, where y ∈ Y is an ob-

servation, p is a production state, p∗ is an abstract state at level d, and i, j are children of
p∗. The parameter By|p is the probability of observing y given that the production state is
p. Id,p∗ is the initial distribution over the set of the children of p∗. Ad,p∗

i, j is the transition
probability from child i to child j. Ad,p∗

i,end is the probability that p∗ terminates given its
current child i terminates. A representation of the HHMM as a dynamic Bayesian net-
work (DBN) is provided in [2], which defines a joint probability distribution (JPD) over
the set of all variables {pd

t ,ed
t ,yt | ∀(t,d)}, where pd

t is the state at level d and time t, ed
t

represents whether pd
t terminates or not, and yt is the observation at time t.

3.2 Mapping the behaviour model to the HHMM
We use the HHMM to model the primitive and complex behaviours of a person over time.
Fig. 3 shows the DBN representation of the model at two consecutive time slices. The
nodes π1

t and π2
t represent the primitive and complex behaviours at time t, respectively.

The nodes e1
t and e2

t represent the end status of the primitive and complex behaviours,
respectively. e1

t and e2
t can be either True or False. Note that, the complex behaviour

cannot terminate when the primitive behaviour is still continuing, thus e1
t = False ⇒ e2

t =
False. The state st represents the current position of the person. The observation of st is
ot = (xt ,yt), where (xt ,yt) are the person’s coordinates that are returned from the tracking
system of multiple cameras. We use a mixture of Gaussians for the observation model,
where the mixture variable ct represents the camera generating the observation ot . The
conditional probabilities for the links in the HHMM are obtained from the parameters of
the primitive and complex behaviours as follows:

Pr(e2
t |π2

t ,π1
t ,e1

t ) =

{

Eπ2
t (π1

t ) if e1
t = True

δe2
t ,False otherwise

Pr(e1
t |π1

t ,st) = Eπ1
t (st)

Pr(π2
t+1|π

2
t ,e2

t ) =

{

δπ2
t+1,π2

t
if e2

t = False
I(π2

t+1) otherwise

Pr(π1
t+1|π

2
t+1,π

1
t ,e2

t ,e1
t ) =











δπ1
t+1,π1

t
if e1

t = False
Aπ2

t+1(π1
t ,π1

t+1) if e1
t = True, e2

t = False
Iπ2

t+1(π1
t+1) if e1

t = True, e2
t = True

Pr(st+1|π1
t+1,st ,e1

t ) =

{

Aπ1
t+1(st ,st+1) if e1

t = False
Iπ1

t+1(st+1) otherwise

where δi, j the Kronecker delta symbol, defined by δi, j = 1 if i = j, otherwise δi, j = 0;
I(π2

t+1) is the prior distribution of the complex behaviours.

3.3 Learning the structure of complex behaviour
The structure of a complex behaviour π2 is initialised such that it is fully connected to
all primitive behaviours. The probabilities for the links are initialised uniformly. We aim
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Figure 3: Two time slices of the DBN representation of the behaviour model.

to learn the probabilities for the links from the training data, then prune the links that
are assigned too small probabilities. To do this task, we need to estimate the parame-
ters of π2 − that is, Iπ2 , Aπ2 , and Eπ2 . Assuming that the complex behaviour does not
terminate during our examining time, we can ignore the ending probability E π2 . The re-
maining parameters (Iπ2 and Aπ2) can be obtained from the parameters θ of the HHMM.
Thus, the task of discovering the complex behaviour structures can be done by learning
the parameters θ of the HHMM. First, the observation models − that is, Pr(o|s,c) and
Pr(c|s) (Fig. 3) − are estimated by manually extracting the true position and the camera
corresponding to observations. Then, the remaining parameters of θ are learned from the
training data using one-phase or two-phase learning algorithms. Note that the training
data is a set of observation sequences O = {O1, O

2,. . . , O
K}, where O

k (1 ≤ k ≤ K)
is the trajectory of a person executing a complex behaviour in the environment: O k =
(x1,y1),(x2,y2),. . . ,(xTk ,yTk ).

One-phase learning algorithm. The parameters θ of the HHMM are estimated from
the training data in one integrated step using the junction tree algorithm [8] or the Asym-
metric Inside-Outside (AIO) [2]. This method requires a large amount of training data to
estimate θ correctly.

Two-phase learning algorithm. The algorithm has two phases: (1) learning the
movement model for each primitive behaviour π1 − that is, Pr(s′|π1

,s) − and (2) learn-
ing the remaining parameters of θ from the training data. The details of each phase are
outlined below:

The movement model of π1 is learned in a similar manner to [12]. The movement
model of π1 and the observation models form a hidden Markov model with mixture of
Gaussians (Fig. 3). The movement model is compressed into a 3× 3 matrix specifying
the probability that a person executing π1 moves to the neighbouring states (including
the current state). Given a direction to reach the ending landmark of π 1, the matrix can
be rotated to apply the probabilities. We use the EM algorithm with the compressed
parameters [12] to learn the movement model from a set of training observation sequences
of π1. The idea of this algorithm is that, after each iteration, the derived movement model
is compressed into a 3×3 matrix, and then is expanded to the full movement model before
being used in the next iteration.



After obtaining the observation models and movement model, we use the EM algo-
rithm to learn the remaining parameters for the HHMM. The EM has two steps: the
Expectation step (E-step) and the Maximisation step (M-step). The E-step calculates the
expected sufficient statistic (ESS) for θ . Methods used to calculate the ESS include the
junction tree algorithm [8], the AIO algorithm [2] or the Rao-Blackwellise particle filter
(RBPF) [3]. For the three-level HHMM in our system, an exact method such as the junc-
tion tree algorithm is most suitable. In the M-step, the result of calculating the ESS for θ
is normalised to obtain a new value for θ .

We derived the parameters Iπ2 and Aπ2 of the complex behaviour π2 from the parame-
ters θ of the HHMM. Then, the structure of π2 is created from Iπ2 and Aπ2 after removing
the elements that are assigned too small values.

4 Experimental Results
4.1 Implementation
The system is implemented in the environment in Fig. 2(a) and (b). The set of primitive
behaviours are:

(1) door to cupboard (5) door to TV chair (9) stove to fridge
(2) cupboard to fridge (6) TV chair to cupboard (10) DN table to stove
(3) fridge to DN table (7) fridge to TV chair (11) stove to DN table
(4) DN table to cupboard (8) door to stove (12) cupboard to TV chair

The set of complex behaviours are have coffee, have snack, and have meal. Each
complex behaviour is initialised as a fully connected structure of the 12 primitive be-
haviours. The probability of that a complex behaviour selects a primitive behaviour to
start its execution and the probability on the links of the behaviour structures are ini-
tialised uniformly.

4.2 Learning observation model and movement model
We collect a set of 1127 tuples (position, camera, observation) to learn the observation
models − that is, Pr(o|s,c) and Pr(c|s). The observations are obtained from the multiple
camera tracking system. The person’s position and camera corresponding to an observa-
tion are obtained by manually analysing the video data. The observation model for the
state s = 1, which is calculated from the set of tuples (position, camera, observation), is:

Pr(o|s = 1,c = Camera 1) = N(o;(1.35,1.55),

[

0.016 0
0 0.031

]

)

Pr(o|s = 1,c = Camera 2) = N(o;(1.55,1.44),

[

0.046 0
0 0.045

]

)

Pr(c = Camera 1|s = 1) = 0.47
Pr(c = Camera 2|s = 1) = 0.53

For each primitive behaviour, we collect 15 training observation sequences corresponding
to that behaviour. The movement model of the primitive behaviour is learned from these
training sequences. Fig. 4 shows the movement models of behaviours door to cupboard
and door to stove learned from the training sequences.
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Figure 4: The movement models of primitive behaviours door to cupboard and
door to stove learned from the training suquences.

4.3 Learning the structure of complex behaviours
The training data to learn the structure of the complex behaviours have coffee, have snack
and have meal are obtained from 45 scenarios. In each scenario, a person executes one
of the three complex behaviours. The person’s trajectory is obtained from the tracking
system. As a result, we have 45 observation sequences. Note that the label of each
sequence − that is, the name of the corresponding complex behavour − is available for
the learning process.

The structures of the complex behaviours is learned from the training data using the
two-phase algorithm in Section 3.3. Table 1 shows the results of learning the complex
behaviour have coffee. The columns and rows corresponding to primitive behaviours
5, 6, 8, 9, 10, 11, and 12 are not shown in the table because the complex behaviour
have coffee always starts by executing primitive behaviour 1 and the probabilities that
primitive behaviours 5, 6, 8, 9, 10, 11, or 12 are executed by behaviour have coffee are
insignificant.

We prune the elements of Iπ2 and Aπ2 that are assigned too small values to derive
the structure of behaviours. Fig. 5(a) shows the structure of the complex behaviour
have coffee. Note that primitive behaviour 3 (fridge to DN table) can be executed af-
ter primitive behaviour 7 (fridge to TV chair) terminates because the TV chair is near the
fridge. Fig. 5(b) and (c) show the structure of the complex behaviours have snack and
have meal, respectively.

Iπ2
(π1) Aπ2

(π1
,π1′)

Primitive behaviours π1′ = 1 2 3 4 7
π1 = 1 1.00 0 1.00 0 0 0

2 0 0 0 0.96 0 0.04
3 0 0 0 0 1.00 0
4 0 0 1.00 0 0 0
7 0 0 0 0.99 0 0

Table 1: The parameters of behaviour π2 = have coffee learned from the 45 labeled ob-
servation sequences.
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Figure 5: The structures of the complex behaviours (a) have coffee, (b) have snack, and
(c) have meal learned from the 45 labeled observation sequences.

4.4 Evaluating the performance of the learned complex behaviours
We test the system to recognise the behaviours in 30 test sequences using the learned
complex behaviours. From the recognition results, we compute the accuracy rate and
correct duration that are defined as follows. First, the winning complex behaviour of an
observation sequence is the complex behaviour that is assigned the highest probability at
the end of the sequence. Then, the accuracy rate is the ratio of the number of observation
sequences, of which the winning complex behaviour matches the ground truth, to the total
number of test sequences. The correct duration is defined as the total of the time period, in
which the primitive behaviour assigned the highest probability matches the ground truth,
to the length of the observation sequence. The accuracy rate and correct duration refer to
the recognition performance at the complex behaviour level and the primitive behaviour
level, respectively.

We compare the reliability of the two-phase algorithm with the one-phase algorithm
in learning the structures of the complex behaviours. We use the complex behaviours
learned by the two algorithms to recognise the behaviours in the 30 test sequences. The
test results are shown in Table 2. The accuracy rate of the model learned by the two-phase
algorithm is equal to that of the model learned by the one-phase algorithm. However, the
correct duration when using the two-phase algorithm is much higher than the correct
duration when using the one-phase algorithm (86.5% versus 21.3%). This means that
the two-phase algorithm is more efficient than the one-phase algorithm in discovering the
structure of the complex behaviours.

5 Conclusion
We have presented the techniques of using the HHMM for representing the behaviour
hierarchical model. We propose the use of the two-phase algorithm for discovery of the
structures of complex behaviours. Given a set of primitive behaviours and complex be-
haviours, the system is able to learn the behaviour structures and compute the appropriate
parameters from multi-camera training data. The experimental results in a real environ-



Accuracy rate Correct duration
Model learned by the
two-phase algorithm

100% 86.5%

Model learned by the
one-phase algorithm

100% 21.3%

Table 2: The accuracy rate and correct duration in recognising the people’s behaviours
with different models.

ment demonstrate that the use of the model learned by the two-phase algorithm outper-
forms the one-phase algorithm in behaviour recognition.
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