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Abstract

Statistical shape models are often learned from examples based on landmark
correspondences between annotated examples. A method is proposed for
learning such models from contours with inconsistent bifurcations and loops.
It is evaluated on the task of segmenting tibial contours in knee radiographs.
Results are presented using various features, distance weighted K−nearest
neighbours and differing eigenspace shape constraints.

1 Introduction
Statistical models of shape based on point distribution have enjoyed considerable success,
particularly for segmentation, tracking and recognition of biological shape variation, e.g.
face and medical image analysis. The original active shape model formulation and most
recent methods based upon it rely on explicit inter-image correspondence being estab-
lished between landmark points. These points often lie on identifiable contours in the
images, their positions being determined either manually or (semi-)automatically [6].

Consider the image contours annotated in Figure 1. Shown are four examples from a
lipreading application and four from a radiographic image analysis application. In both
cases, contours can contain loops. Furthermore, the number of loops and the positions of
the bifurcation points relative to the object’s image projection vary in a complex way. Cor-
responding landmarks cannot be straightforwardly identified in these images. The use of
bifurcation points as landmarks, for example, leads to undefined correspondence matches
and unmeaningful variation. An alternative approach would be to treat each contour as

Figure 1: Shape examples annotated with looping contours. Top: a lipreading application.
Bottom: radiographs of the tibia. Note that the number of loops and their positions vary.
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Figure 2: Anatomy of the knee. Figure 3: Clinical x-ray (enhanced).

two contours, each sharing the two endpoints but taking inner and outer paths around the
loops. Modelling these contours independently results in a poorly constrained search in
which both contours often find the same side of a loop or only one of the contours lo-
calises a section where there is no loop. Even if the contour landmarks are concatenated
to form a single landmark vector representation, the result will be two contours that in
general will not be collinear where the expert annotation (ground-truth) would only indi-
cate a single contour, a rather unsatisfactory state of affairs. In general, inner and outer
contours would have differing landmarks on sections where the contours are collinear.

In this paper, the double contour active shape model (DCASM) is proposed. Double
contours are parameterised in terms of one contour’s landmarks along with a suitably
constrained warp to the other contour. Correspondence is thus established between the
contours. The method simplifies to a standard active shape model (ASM) in the case of a
contour without bifuractions and can thus be considered to be a generalised ASM.

The paper also discusses other aspects of these models including the local appear-
ance features used and the often overlooked effect of dimensionality on tests for shape
plausibility. A distance weighted K-nearest neighbour (K-NN) method is proposed for
local appearance matching and this is compared with the commonly used Mahalanobis
distance.

The DCASM is evaluated here for the task of segmenting tibial contours in x-ray im-
ages of the knee, a useful step towards automated radiographic assessment of osteoarthri-
tis (OA). Some background on this application is provided in the next Section.

2 Osteoarthritis
OA is the most common joint disease and the most common cause of disability in older
people [8], resulting in significant economic costs for society. It is characterised by an
imbalance of the synthesis and degeneration of the articular cartilage. In most cases of
knee OA, the cartilage covering the tibial plateaux and the femoral condyles is being de-
stroyed (see Figure 2). Two-dimensional x-ray imaging is the most widely used modality



for OA diagnosis and progression assessment. Cartilage is not visible in x-ray images so
the primary radiographic sign used is the joint space between the lateral (medial) femoral
condyle and the lateral (medial) tibial plateau. Joint space decreases as cartilage is de-
stroyed. Other signs include the formation of osteophytes (bony spurs), cysts and sub-
chondral sclerosis. Unfortunately, there are no standardised methods for measuring these
signs. Physicians normally use only the minimum joint space width (JSW) to measure
joint space narrowing, resulting in large inter- and intra-observer variation [2]. The use of
active shape models to segment the femur and tibia in the knee joint in order to measure
OA signs has not been attempted previously to the authors’ knowledge.

3 Active Shape Models
Before introducing the DCASM, the standard ASM is first briefly described. Given a
training set of S images in which the objects of interest are suitably annotated, statistical
shape and appearance models can be estimated [5]. Correspondence must be established
between training examples and this is often done manually by annotating landmark points.
Alternatively, contours can be annotated and landmarks on the contours determined au-
tomatically based, for example, on minimum description length criteria [6]. The training
examples are then aligned, typically using Procrustes analysis to determine translation, ro-
tation and scale parameters that minimise distances between the corresponding landmarks
in a least-squares sense. A shape is described by its N landmark points {(xn,yn)}N

n=1. Each
training example can be written as a 2N element vector xs = (x(s)

1 ,y(s)
1 , . . . ,x(s)

N ,y(s)
N )>.

Sample mean and covariance matrices are:

x =
1
S

S

∑
s=1

xs C =
1

S−1

S

∑
s=1

(xs−x)(xs−x)> (1)

Let Φ = (φ1|φ2| · · · |φD) denote the matrix whose columns are the D eigenvectors corre-
sponding to the D largest eigenvalues λ1, . . . ,λD of C. Any example of the training set,
xs, can be approximated by

xs ≈ x+Φbs , (2)

where bs is the D dimensional model parameter vector, computed by

bs = Φ
>(xs−x) . (3)

The number D of eigenvectors to retain is usually calculated as the smallest D that satisfies
fv ∑

2N
n=1 λn ≤∑

D
d=1 λd , where the parameter fv is the proportion of the total variance of the

data which can be explained, usually ranging between 0.900 and 0.995.
The appearance model describes the image structure around each landmark. It is usual

to use fixed-length, one-dimensional profiles orthogonal to the contour. For each example
and each landmark a fixed number of pixels on and to either side of the contour are sam-
pled. Cootes and Taylor [5] originally proposed the use of normalised first order derivative
profiles. Typically, the profile distribution is modelled as a multivariate Gaussian. Thus,
the Mahalanobis distance can be used as a measure of the quality of fit of a profile.

Active shape model search is iterative and local. It is usually initialised with the mean
shape and translation, rotation and scale parameters reasonably close to their ‘true’ values.
At each iteration, points on and to either side of the contour along the normal direction are



considered. Profiles centred at each of these points are sampled and their Mahalanobis
distances calculated. The landmark position is updated as the point with minimal Ma-
halanobis distance. After processing all landmarks, the closest plausible shape is found
by projecting onto the eigenspace (Equation (3)). Plausible shapes are usually defined as
those for which every shape parameter bd is between −3

√
λd and 3

√
λd . Search is iter-

ated a fixed number of times or until the shape model has converged. Search results can
be improved if a multi-resolution, coarse-to-fine search is adopted with case appearance
models learned for each resolution. The segmentation result at each resolution is used to
initialise the search at the next resolution.

Several improvements to the standard ASM have been proposed. For example, more
complex features characterising texture have been used for appearance modelling [12].
Active appearance models which model 2D appearance as well as shape variation using
PCA are useful in applications such as human face analysis [4] although they often result
in lower accuracy localisation of contours than ASM [3]. When a linear model of shape
variation is inadequate, non-linear models have been used, e.g. [9, 10].

4 Double Contour ASM
In order to model double contours such as in Figure 1, each example is treated as two
contours that share their endpoints and take inner and outer paths at bifurcations. One
of these contours is used as a reference contour and the double contour is represented in
terms of landmarks on this reference contour along with a constrained warp to the other
contour. The warp defines corresponding landmarks on the other contour. In order for
these to be positioned so as to form a good representation of shape, the warp must be
suitably constrained. A warp suitable for certain radial shapes is to displace along the line

between the centre of gravity of the reference contour (x,y) =
(

1
N

N
∑

n=1
xn,

1
N

N
∑

n=1
yn

)
and

the corresponding landmark (xn,yn) (see Figure 4(a)). Another possibility is displacement
along the normals. Note, however, that both can yield inappropriate landmarking. In the
case of the example applications in Figure 1, a suitable warp can be achieved by parallel
displacement of the landmarks, i.e. by translating each of the N reference landmarks,
(xn,yn), a distance δn in a shared direction θ . For the tibia, θ can be defined as an approx-
imation to the dominant bone axis (see Figure 4(b)). This is because contour loops occur
only at the tibial plateaux. Separations in this direction are always well defined. Specif-
ically, the orientation of the line connecting the two bifurcation points for each loop in
each training example is computed. The direction θ can then be set normal to the angular
mean of these orientations. This leads to a suitable warp for the lipreading application, for
example. In the case of the tibia where the loops can clearly be distinguished as medial
or lateral, θ was set to the orientation of the angular bisector of the median lateral and
median medial bifurcation lines.

Each example Ss is represented by a 3N element shape vector xs and the dominant
axis θs,

Ss = (xs,θs) where xs = (x(s)
1 ,y(s)

1 ,δ
(s)
1 , . . . ,x(s)

N ,y(s)
N ,δ

(s)
N )> (4)

The correspondence between the reference contour and the other contour is explicitly
given by the direction of the dominant axis and the separation, δn, for each landmark
point. Therefore, only the landmarks on the reference contours of each shape now need



(a) (b)

Figure 4: Two landmark warps: (a) radial and (b) parallel.

to be brought into correspondence. This can be achieved using the minimum description
length method [6].

A naive approach to aligning two shapes would be to treat a vector x as defining a
shape in 3D space and to align them in this 3D space. This does not work because the
3D transformations (rotation and translation) do not treat the separation dimension ap-
propriately. Both contours should be taken into account during alignment. Furthermore,
care must be taken to weight the effect of the two contours and the effect of landmarks on
either side of a bifurcation equally. This is achieved by converting the double contour rep-
resentation into a vector x̃ of 2D image vectors for both the reference contour landmarks
and those outer contour landmarks at which the separation in at least one example shape
is non-zero. More formally, let I = {i1, . . . , iM} denote the set of indices where the separa-
tions are not always zero, thus im ∈ I ⇐⇒ ∃s : δ

(s)
im 6= 0. The coordinates of the landmarks

on the outer contour are calculated as x̃im = xim + δim sinθ and ỹim = xim −δim cosθ . The
concatenated shape vectors

x̃ = (x1,y1, . . . ,xN ,yN , x̃i1 , ỹi1 , . . . , x̃iM , ỹiM )>

are then aligned as in the standard model using Procrustes analysis.
Principal components analysis can be applied to the shape 3N-vectors x of Equa-

tion (4) analogously to standard ASM (Equations (1)–(3)). Furthermore, this model is
well defined in the sense that any shape x generated by Equation (2) can have a non-zero
separation δn at landmark n only if the contours are separated at this landmark in at least
one training example. When all separations are zero for all training examples, a standard
(single contour) ASM is recovered.

4.1 Local Appearance Models and Search
The local appearance can be modelled and searched as in the standard ASM at landmarks
where no double contour is possible. At landmarks with non-zero separation, it makes
sense to use profiles in the direction of the dominant axis instead of perpendicular to
the contour. This is because these landmark points are constrained to move in this di-
rection during search. Adopting another direction would necessitate a complicated and
numerically unstable recalculation of the displacement at each search step. The dominant
axis direction is often similar to the contour normal direction so the resulting appearance
models are similar.



Possible approaches are to use (i) long fixed-length profiles which cover the corre-
sponding landmarks on both contours, (ii) variable length profiles which cover the cor-
responding landmarks on both contours plus a fixed number of pixels to either side of
the contour, or (iii) two separate, shorter profiles centred at the inner and outer contour
landmarks. A disadvantage of the first two approaches is that the profiles are longer, re-
quiring more training examples. The third approach was adopted here. A drawback of
this approach is that the local appearance models at the inner and outer contour are treated
as independent when in fact they are likely to be quite strongly coupled. (Note that a re-
lated limitation applies to standard ASM models which model the appearance of adjacent
landmark independently).

When the number of training examples is limited, appearance models learned sep-
arately for each landmark can become unreliable. A windowing method is therefore
adopted in which training profiles from nearby landmarks are pooled in order to esti-
mate the appearance model. More specifically, for each landmark, profiles from the W
adjacent landmarks to its left and the W landmarks to its right on the contour are used in
addition to profiles at the landmark itself in order to estimate the local appearance model.
This windowing is used for all landmarks (single and double contour).

Behiels et al. [1] reported significantly better segmentation of bones in x-ray im-
ages using alternative features. Therefore, several different features were compared here,
namely raw intensity, unnormalised gradient, normalised intensity, normalised gradient,
scaled intensity and scaled gradient1.

In standard ASM, Mahalanobis distance is used for measuring the quality of fit of a
new profile to the learned ones. This does not take into account information about the
appearance distributions off the contour. Furthermore, the underlying assumption that the
profiles can be modeled as Gaussian is often not well satisfied. De Bruijne et al. [7] used
a K-nearest neighbour classifier constructed using examples of profiles both on and off
the contour to estimate the probability that a given profile lies on a contour. Note that
such an estimate can only take K + 1 different values. In this paper, distance weighted
K−NN is used instead. For every landmark, on contour profile examples are sampled
as for standard ASM. In addition, off contour examples are obtained by sampling profiles
translated in the profile direction.

The distance between two profiles p1 = (p(1)
1 , . . . , p(1)

J ) and p2 = (p(2)
1 , . . . , p(2)

J ) is
taken to be the sum of absolute differences: d(p1,p2) = ∑

J
j=1 |p

(1)
j − p(2)

j |. The goodness
of fit of a new profile p f whose K nearest neighbours are p1, . . . ,pK is defined as

f (p f ) =
K

∑
k=1

wk where wk =

{
0 if pk is an off example

1
d(p f ,pk)2 if pk is an on example (5)

In the unlikely event of an on example exactly matching p f , the goodness of fit is taken
to be maximal. Multi-resolution ASM search is used along with the modifications needed
to accommodate the double contour model.

1For g = (g1, . . . ,gM), the normalised vector is ĝ =
(

g1
∑

M
m=1 gm

, . . . , gM
∑

M
m=1 gm

)
and the scaled vector is g̃ =(

g1−ming
maxg−ming , . . . , gM−ming

maxg−ming

)
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Figure 5: The effect of dimensionality, D, on the proportion of plausible shapes in the
training set using (a) samples from a Gaussian distribution with diagonal covariance ma-
trix (10,000 examples), and (b) annotated face shapes (240 examples).

5 Shape Plausibility
PCA shape models are used to define a set of plausible shapes and generated shapes are
constrained to membership of this set. The definition of this set is therefore important for
performance. In the absence of an informative prior over the distribution of implausible
shapes, plausible shapes can be defined as those with parameters b, such that p(b) ≥ pt ,
where p(b) is a probability density function estimated from the training set and pt is a
suitable threshold chosen so that some fixed proportion of the data, γ , will exceed it [5].
Assuming a Gaussian distribution, the required decision boundary is a hyperellipsoid, and
the decision rule becomes

D

∑
d=1

b2
d

λd
≤ T (6)

where T is a threshold. This threshold limits the Mahalanobis distance and should vary
with the dimensionality, so setting T to a constant is clearly inappropriate (see Figure 5).
Given independent bd parameters, the probability of plausibility using the popular uni-
variate limits method is

P(|b1| ≤ B
√

λ1, . . . , |bD| ≤ B
√

λD) = (P(|b1| ≤ B
√

λ1))D (7)

The univariate probability under assumed Gaussianity is readily available, e.g. P(|bd | ≤
2
√

λd)≈ 0.9544. In a 40-dimensional eigenspace, the corresponding probability of plau-
sibility becomes just 0.15 and this test for plausibility is clearly no longer appropriate.

The more principled method of constraining b to a hyperellipsoid is, to the authors
knowledge, rarely used. The squared sum of independent standard Gaussian distributed

variables is χ2 distributed. Therefore, ∑
D
d=1

b2
d

λd
is χ2 distributed with D degrees of free-

dom. The threshold T can therefore be chosen as the γ-quantile of this χ2 distribution
in order to have a proportion γ of plausible shapes in the training set. This quantile can
be computed numerically. Figure 5 illustrates that using this method the proportion of
shapes that are plausible is approximately invariant to changes in dimensionality even for
a real-world, non-Gaussian shape distribution.



Figure 6: Tibia DCASM modes of variation for the largest 3 eigenvalues.

(a) Manual annotation (b) Initialisation(cropped) (c) Segmentation using
Mahalanobis distance

(d) Segmentation using
weighted K−NN

Figure 7: DCASM tibia segmentation (W = 10, scaled gradient, K = 10).

6 Empirical Evaluation
The methods described were applied to a data set of 30 standard clinical x-rays of the
knee. Images of left knees were mirrored so that they appeared as right knees. All images
were manually annotated and leave-one-out validation was used for evaluation. A highly
approximate, manual initialisation was provided for each image. Different images showed
different portions of the shaft of the tibia. The inner contours were used as reference
contours. Training sets were appropriately truncated (i.e. their endpoints determined)
and brought into correspondence using the MDL approach [6] with added curvature [11].
Each DCASM estimated was used to perform segmentation of its ‘left out’ test image.

A commonly used measurement for contour segmentation accuracy is the point-to-
contour error defined as the average Euclidean distance from the obtained landmark posi-
tions to the annotated contour (which is treated as ground truth). Let Es denote this error
for the sth test example. Overall performance was characterised using the median test
error, E = medsEs. This gives a more meaningful indication of accuracy than the mean
due to occasional gross segmentation failure.

The resulting modes of variations for the tibia are shown in Figure 6 for the largest
three eigenvalues. A typical overall segmentation result with initialisation is shown in
Figure 7 for the Mahalanobis distance as well as weighted K−NN.

Figure 8 plots the segmentation errors obtained using Mahalanobis distance and weighted
K−NN with K = 10. Plots are given for window parameter values of W = {0,2,4,6,8,10}
for each of the 6 feature types. The overall lowest median error of 2.95 pixels (min = 1.98,
max = 25.07) was achieved using weighted K-NN with K = 10, W = 10 and scaled gra-
dient features (see Figure 9). The distribution of the segmentation results for this case is
shown in Figure 10.

Feature type had a significant influence on accuracy. Weighted K-NN achieved better
accuracy than Mahalanobis distance although the difference was small for the best feature
types. The windowing parameter W and the K parameter had relatively little effect on
accuracy.
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Figure 8: Effect of profile feature and window size on tibia median error. (a) Mahalanobis
distance. (b) Weighted K−NN (K = 10). (Note differing ordinate scales).
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Figure 9: Effect of K and window size
on median error using scaled gradient.
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Figure 10: Histogram of segmentation
errors Es when using K−NN regression
(K = 10, scaled gradient, W = 10).

The results reported above were obtained using D = 11 eigenvectors and setting the
shape constraint parameter as B = 3 in Equation (7). The χ2 distribution was not ini-
tially used to set the shape constraint since the experimental results in Figure 5 suggested
that the benefit might not be significant at this dimensionality. An experiment was subse-
quently performed using weighted K−NN (K = 10, W = 6 and scaled gradient features).
When χ2 was used to set the shape constraint such that T = 21.3 (γ = 0.97 = 0.997311),
the median error dropped from 3.07 pixels (min = 2.08,max = 37.60) to 2.87 pixels
(min = 1.86,max = 51.91). Preliminary experiments suggest that this improvement is
similar in magnitude for other reasonable parameter settings.

7 Conclusions
The DCASM was introduced as a method for modelling and segmenting contours with
inconsistent loops and bifurcations. Its performance was evaluated on the task of segment-
ing tibia contours in knee x-rays. The method should be more broadly applicable since
occlusions, rotations in depth of non-convex objects in optical images, and projections of
non-convex objects in transmissive imaging modalities often result in such contours.

The finding that scaled gradient features were most effective and that normalised in-
tensity was least effective using Mahalanobis distance stands in contrast to Ref. [1] in
which scaled intensity seemed to perform best for segmenting the cranial end of the fe-
mur. This demonstrates that even for similar applications, the optimal appearance models
can vary and be difficult to find. The use of weighted K-NN resulted in far less sensitiv-



ity to feature type. Future work is planned to develop improved appearance models and
search methods for the knee osteoarthritis application.
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