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Abstract

In a football stadium environment with multiple overheaatlbights, many
protruding shadows can be observed originating from eatheotfargets. To
successfully track individual targets, it is essentialdbiave an accurate rep-
resentation of the foreground. Unfortunately, many of tkistang techniques
are sensitive to shadows, falsely classifying them as foregd. In this work
an unsupervised learning procedure that determines the 0GHBIr distri-
butions of theforeground andshadow classes of feature data is proposed. A
novel skelatonisation and spatial filtering process is el for identifying
components in the foreground segmentation thatast-likely to belong to
each class of feature. A pixel classification mechanism iaiobd at by ap-
proximating both classes of feature dataNbysaussian parametric models.
To assess our technique’s performance and reliabilitynapesison is made
with other published works.

1 Introduction

Detection of moving objects is essential for automatic rarinig of human activity. A
common method for extracting the movingforeground regions from a video sequence
is known asbackground subtraction [6, 8, 4]. This technique subtracts the incoming
video frames from a reference image acquired during a pefadactivity and option-
ally updated over time. The resulting pixel or region diffieces are usually classified as
foreground or background by usingsttistical or deterministic approach to detect the
presence of moving objects in the scene.

Shadows cause problems for moving target detection ankitigac The appearance
of neighbouring background is changed, to the extent thedritbe falsely classified as
foreground. Thus, measurements of moving objects are @sble: this may affect
the performance of object segmentation, classificatiod estimation of position. These
problems increase when there are many point light soueagsa floodlit stadium. Each
light source produces a distinct shadow formation at the lodglayer (see Figure 1).
The underlying motivation of this work is the automatic itlBoation and removal of
these shadows to improve player tracking performance.

Several authors have proposed techniques for identifjiag@ws in outdoor envi-
ronments. Cucchiaret al [1] detect shadows by: 1) transforming the feature’s dimen-
sions into the HSV (Hue, Saturation and Value) colour spade?a classify the feature as
shadow if: a significant difference in brightness is obsémvih little variation in colour.
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Figure 1:(a) & (d) illustrate the shadows caused by flood-lights; (kjekillustrate the segmenta-
tion of the foreground with no shadow suppression, (c) &€fresent the desired segmentation

A similar approach is adopted by McKenaizal [6] for shadow detection. The feature’s
membership to the models is used to determine the presersteadbws. Horpraseet

al [4] develop their own computational colour model for featanalysis. Their feature
space is used to classify a feature into one of four possiases. A feature is classified
as a shadow in much the same way as that proposed by Cuceh&f]; the relative
colour and brightness changes are analysed to determineawteadow overcasts a sur-
face. The novelty of this colour space is adopted in the wofkBowdenet al [5] to
classify shadows in a similar manner. Each of these teclksigse information relating
to a shadows appearance to derive the classification eritéfé propose a technique that
exploits the geometric properties of people shadows toldpvan unsupervised method
for feature sampling. This methddarns the appearance of both the shadow and fore-
ground features, providing a more reliable mechanism fatuie classification.

2 Pixel Classification

The aim of the proposed algorithm is the successful claasific and removal of shad-
ows resulting from floodlights present in the football stadi The algorithm works by
exploiting information relating to the shadovelsape, size, orientation, luminosity, orig-
inating position andappearance model [7] to determine the colour distributions of both
the foreground and shadow classes. In this section we dishesunsupervised process
of obtaining the foreground and shadow feature data, thenpatric modelling of the
feature data, and the pixel classification mechanism. Hiabte foreground detection,
a background model is required that can adapt to any changés ienvironment. Ex-
amples of common changes include the amount of direct sunlignd-blown trees and
periodically rotating advertising boards. Given this riegonent, an adaptive background
subtraction technique based upon the work of Stauffer aimdgen [8] is used.

2.1 Shadow Feature Sampling

The first step towards identifying shadows is the analyste@foreground segmentation
recovered from background modelling. Whether any of thengkd pixels in the fore-
ground feature space were the result of shadows is unknowe.fdllowing discusses
how information about a shadow’s shape, orientation, lonaand size can be used to
identify themost-probable shadow components within the segmentation mask.



2.1.1 Skeletonisation

We propose to exploit information relating to the spatiatdbution of the foreground
features, to develop a process for identifying the shadatufes. In a football stadium,
the light sources positioned in the stadium corners resutiir shadows that propagate
from the base of each player. Each shadow has a similar smapsize to that of the
attached player and is orientated towards each of the apgtight sources. Given this
information it is desirable to label a foreground playe€atiure components using infor-
mation relating to its shape. An object’s skeleton provaemtuitive, compact represen-
tation of a shape that can be used to determine an objecisastband their connectivity
[3]. Using a skelatonisation algorithm similar to that pospd by Zhang and Suen [9],
skaletonisation of the foreground is performed to obtagniedial axis of the foreground
players and their shadowssee Figure 2(b). The sub-parts of the medial axis provide a
more reliable information source even during periods of@iaocclusion. An example
of a typical skelatonisation result can be seen in Figurg. 2tcom the skelatonisation
result, it can be seen that shadows exhibit lengthy sketetadparts with a non-vertical
orientation in the image plane (Figure 2(d)). In the remairaf this paper a skeleton is
considered to be comprised of nodes that form inter-comaddatanches - see Figure 2.
Occasionally the term leaf will be used to describe a skeleturface branches.

(a) Segmentation Mask (b) Skeleton Mask (c) Node Labelling d) Shadow branches

Figure 2: Examples of (a) Segmentation mask, (b) SkelatonisationN@xle groupings into
branches and (d) Desired shadow branches.

2.1.2 Skeletal Medial Axis Analysis

A skeleton’s medial axis is comprised of numerous branased) representing groupings
of foreground and/or shadow nodes (Figure 2(c)). To detegraiset of shadow sample
locations in the current video frame, we attempt to identify skeleton branches that
result from shadows. By assuming that people stand vdsticethe image-plane, spatial
filtering and appearance models [7] are used to identifyllaglew braches. This process
is implemented in the following three steps:-

Medial Axis Simplification - To reduce the complexity of the skeletons we attempt to
remove the leaves below a certain sie Due to the fact that a person’s image-plane size
depends on their location w.r.t the camera, the valu® stiould be related to the leaf’s
position. In the works of Rennet al [7] a technique was developed that automatically
computes a person’s image-plane bounding-box model. Wy #gip model here to set
the value ofSto the model'swidth attribute, since it is reasonable to assume that any
leaf belonging to shadow will extend outside of a persoees bounding-box model - see
Figure 3(a).
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(a) People Bounding-boxes  (b) Unwanted leafs  (c) Node Caivity  (d) Trimmed Skeletons

Figure 3:Examples of (a) Bounding-box models overlaid onto foregobabjects, (b) lllustration
of the unwanted leafs on the skeleton mask, (c) labelling mdde to its neighbour count and (d)
Trimmed skeletons with and the areas of class ambiguity.

To determine the skeleton leafs that constitute noise (Ei@(b)), a connectivity
based node labelling scheme is applied that assigns a tabath node; this label being
equivalent to the number of its neighbouring nodsseFigure 3(c). Leaves are spawned
from the nodes that have a label value of one; its nodes agendigied as those connected
nodes that lie in the path to a node with a label value grehgar two or another spawn
node. A candidate leaf is deleted if:-

[xa® - %0 < 59 @
whereX;' andX,' are the image coordinates for each ofittieleaf end points, an&is
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wherej; is the average vertical image coordinate of ithebranch. j, andQ and¢ are
theimage horizon, bounding-boxvidth model and theperson class respectively [7]. This
procedure ensures that most of the unwanted skeleton leaferaoved - Figure 3(d).

Spatial Filtering - A spatial filtering process is employed to determine thesctaem-
berships for each node of the skeletons. This is achieveddsnduating the appearance
of the skeletons vertical branches through the applicasfovo spatial filters: 1) 5x5
kernel representing five 1D Gaussians and 2) 5x5 kernelseptig an average operator.
Each of the filter processes is followed by a thinning procas$sgical AND of the result-
ing filtered skeleton and the original skeleton mask. ThesSian filter accentuates the
vertical branches; the smoothing operator softens nogiens resulting frormot-quite-
vertical branches and branch intersections as well asasirg the similarity between
non-vertical skeleton branches. The resulting skeletateniotensities are put into a his-
togram and the intensity thresholg) {dentified as: the intensity bin in the histogram with
the highest frequency. The spatial filtering process careba 81 Figure 4.

Shadow Node classification -Applying 7 as the class threshold for the filtered skeletons
and selecting the non-zero nodes that are balpyields the shadow nodes of the skele-
tons (Figure 2(d)). Each node represents a possible shaskiwré sample location in
the current video-frame. There remains one problem witts#imeple nodes: intersection
points where branches of differing classes meet reprebenbrigins of regions where
unknown boundaries between foreground and shadow exise t®the fact that node
class values are undeterminable in these regions, cirentdnsion areas around each of
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Figure 4:The spatial filtering process used to determine the foregt@and shadow components

the intersection locations (Figure 3(d)) are defined. Teectfbcale in the image-plane,
the diameters of the exclusion regions are define§;asAny shadow nodes that reside
in any of the exclusion zones are removed to leave the catedémdow sample points
X ={Xy,...,Xn}. The sample points iX represent thenost-probable locations of the
shadow features in the current video-frame.

2.1.3 Shadow Sampling

Sampling of the shadow feature data is achieved by storxejgirom the current video-
frame from the locations identified . For each new video-frame, sampling is repeated
until a set ofNy shadow training feature vectors is obtained. The set of@h#gatures is
denoted byx, wherea ={f1,...,fn, } andf is the feature vector representative of a pixel’s
{R,G,B} values.

2.2 Foreground Feature Sampling

To determine the features in the segmentation mask thatittdageal foreground, it is
desirable to remove any feature resulting from a shadow.iizapanalysis reveals that
the majority of the shadow features form a single clustehim feature space (Figure
5a), surrounded by a sparse field of outlying feature vertbese are assumed to be the
result of erroneous labelling during shadow samplisge-Section 2.1. Th&aussianis a
good statistical model for clustered data and easily patenised using the meap) and
covarianceX) of the feature data. Using the shadow feature dati;\ariate Gaussian
model is developed that to obtain the probability densityction :-

1

1
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To determine a feature’s membership to the shadow featudenequires a decision
boundary between the Gaussian model and the feature spatkis Work the shadow
Gaussian model is approximated to a hyper-ellipsoid, émglal decision boundary to be
defined in units of the Gaussian’s standard-deviatmn(see Figure 5¢. TheMahanal o-
bis distance metric is used to determine the normalised distance betadeature and
the Gaussian mean vector. Assuming that 95% of the shadowdedata is accurate, the
classification distance thresholB)(is set to: the number of standard-deviations from a

p(F|11,%) = auleauo @)



distribution’s mean value that encompasses 95% of therediata D ~ 2.7); rejecting
the remaining 5% as noise.

(4)

(b) ©

Figure 5: (a) Distribution of the sampled shadow features, (b) Hyfkipsoid approximation of
distribution of (a) and (c) Demonstration of the mahanaali$tance showing that point 1 is closest
to the distribution’s mean value, regardless of the euahdgistances of each feature

Classification according to (4) is performed for those fesdtidentified in the seg-
mentation mask see Figure 6(a). Those features classified as shadow are renfiorad
the segmentation maske Figure 6(b) and the remaining points grouped into regions of
connected components. Regions of a size lower than thaeadytstem noise floor are
removed. The remaining regions undergo a morphologicatifilfy process that consists
of one iteration of closing and three iterations of erodi@psing fills small holes in the
regions resulting from mis-classification by (4) and ergdémsures that the majority of
non-foreground components are removeek-Figure 6(c,d). The remaining region com-
ponents of the segmentation maskwhereY ={y1,...,yn} represent the locations of the
foreground features in the current video-fransee Figure 6d.

(d)

Figure 6: Segmentation mask processing - (a) Shadow classificatrSlfadow suppression,
(c) Component grouping and region analysis followed byinpsnd (d) Erosion of the regions
resulting in the remaining foreground samples

Sampling of the foreground features is performed in the sar@ener as for that for
shadows -see Section 2.1.3. A feature vector for each of the points spetifin Y is
sampled from the current video-frame to develop the foregddfeature training set,
wheref ={f, ""fNB}' As with shadows, the sampling process is repeated for eagh n
video-frame until a set dfig features is obtained.



2.3 Feature Modelling and Classification using Gaussian Mixires

Tri-variate Gaussian mixtures models are used to approximate the shadaxy énd fore-
ground @) feature data. The Gaussian mixture models for both shaégjvand fore-
ground @) are determined using the technique proposed in Figueiedo[2]. Their
work demonstrates an unsuperviggpectation maximisation algorithm that hypothesises
the optimal: 1) number of component densities within eacktuné required to encapsu-
late the feature dat&({, 2) the parameters for each of the Gaussian distributinatfons
@ = {u;, %} and 3) the prior probabilities (i.e. mixing parameters) ld tomponent
Gaussian model®. The probability of observing the featurgiven the mixture model
Ois

K

wheren is the probability density function for a Gaussian paramsse by - see
equation 3. Usind3ayes theorem, the conditional andprior probabilities are combined
to compute theposterior probability, that is, the probability that the Gaussian sign
function g is responsible for generating data pdint

p(flé)P(6) p(fl6)P(6)

elf) = =
PEIN= =5 57116, P(6) ©)

The classification of each feature identified in the origisedmentation mask gee -
Figure 2a ) is determined by thmeaximum a posteriori probability rule. The posterior
probabilitiesP(8, |f) andP(6p|f) for each class of Gaussian mixture are computed. Fea-
ture classification is achieved by labelling the featurehasclass ¢, 8) of the Gaussian
mixture that achieved the largest posterior probability&a see equation 7

6 =arg r(na};g{P(&If)} (7)

In this paper the class prior probabilitegd, ) andP(6g) are assumed to be equal (=0.5).

3 Shadow Classifiers

In this section we propose the use of three previously pdtishadow classification al-
gorithms [6, 1, 4] for comparative and evaluative purpo&egh of the classifier variants
is to be applied to the segmentation mask developed duringaxkground subtraction
process [8].

3.1 Classifier A : HSV colour space conversion

This classifier uses the same criteria for classifying shadwriginally proposed by Cuc-
chiara et al [1]. Their shadow classification is applied ® tingrouped features detected
in our segmentation mask. Each flagged feature in the segtimninask as well as our
background model is transformed into the HSV colour space.
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Figure 7:Video Datasets of (a) Middlesborough and (b) Newcastle ulitdim (Camera 2)

3.2 Classifier B : Normalised RGB and Gradient models

This classifier is based upon the technique for classifyiregiews proposed by McKenna
et al [6]. The implementation of this technique remains reldyivenchanged except for
their background subtraction process. This is replacetiéyechnique used in this paper
to determine the features constituting changed featurksssification of pixels is deter-
mined using the published criteria for those pixels flaggeolir sesgmentation mask.

3.3 Classifier C : Computational Colour Model

This classifier is based upon a technique for feature cleasn proposed by Horprasert
et al [4]. Our implementation of this technique is adapted to ardg the colour model
for shadow classification purposes.

4 Evaluation

An objective evaluation methodology requires the avaligtof ground-truth data. This
enables quantitative performance measures and theréfeot comparisons between the
proposed methods. In addition any differences betweenargilground-truth segmen-
tations provide interesting insights into algorithm penfi@ance. This section briefly de-
scribes the ground-truth data format and the quantitatiatuation metrics that are used.
The four described shadow classification methods wereegp i the two flood-lit foot-
ball sequences (shown in Figure 7), each of 1000 frames. €Hermances of each
classifier were evaluated using the above metrics.

The ground truth is generated manually for every targetiwigach frame of the video
sequence. The characteristics maintained in the growrti-aéire the objects bounding-
box position and id. The bounding box represents the imageeptoordinates that en-
capsulate the targets. Examples of the ground truth candweisé-igure 8.

Two evaluation metrics are proposed to measure classifiéorpgance by directly
comparing the segmentation result to the ground truth dete. first metric determines
how much of the shadow is removed by:-

DR — (1— (NfP/ng)) % 100 @)



Figure 8:Target postures with the ground-truth overlayed.

whereNg Pand andN P are the number of false-positives (shadow and backgrouiseéno
before and after shadow classification respectively. Thersg metric computes the ac-
curacy of the segmentation after the identified shadows haga removed by using the
signal to noiseSNR ratio:-

SNR = 20 log;o(N'P/N'P)

whereN™ andNP are the number of true and false positives. True positivieseréo
the number of correctly classified foreground features wegpect to the ground-truth.

Numerical results are tabulated in Table 4. An example ofeékalts are also shown quali-
tatively in Figure 9(c-f). In terms of the shadow detectiaterperformance, the proposed
method is effective, correctly detecting 93% of input shasl¢on average). The other
methods vary from between 55 to 84%. The SNR represents gralbaccuracy of the
classifiers by measuring their impact upon both foregrourdishadow segmentations.
A high SNR of 10dB is achieved by the proposed classifier gttitig a high percentage
of foreground to shadow in the signal. Classifier (b) perfopuorly achieving a SNR of
4.3 indicating poor segmentation of shadow and foreground.

Datasets
Algorithm Middlesborough: Camera 2 Newcastle: Camera 2
DR(%) | SNR(dB) DR(%) | SNR(dB)
Detection [8] 0 -2.2 0 -2.6
Cucchiareet al [1] 74 10.3 75 10.0
Horprasertt al[4] 84 10.5 79 111
McKenna & Jabri [6] 57 4.3 55 4.6
Proposed Classifier - Sect2 93 10.6 91 9.8

Table 1:Shadow classifier performance

5 Conclusions

In this paper a novel shadow classification method was ptedemd compared to three
published methods for shadow classification, in the speddimain of floodlit football
games. The evaluation of the classifiers comprised the anufishadow removed, and
the SNR of foreground to any remaining shadow and backgrowisk. The proposed
method is shown to be highly effective at separating objércim their shadows. It is
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Figure 9:empirical results of shadow classification:- (a) Originaklge, (b) Segmentation Mask,
(c-e) Classifier's A-C respectivelysee Section 3 and (f) Proposed Classifier.

completely unsupervised, and works well across a varietyeoor types, camera lo-
cations and match conditions without the need for ad hocemfent of parameters. It is
sufficiently efficient to be included in processes runningegat-time frame rates. In future
we expect to generalise the method to work in other scendrésoutside the football

stadium.

References

[1] R. Cucchiara, C. C. Grana, M. Piccardi, and A. Prati. D#ig moving objects, ghosts, and
shadows in video stream$EEE Transactions on Pattern Analysis and Machine Intelligence,
25(10):1337-1342, October 2003.

[2] M. Figueiredo and A.K. Jain. “Unsupervised learning aiité mixture models”|EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(3):381-396, March 2002.

[3] P.Gollina and W.E.L. Grimson. “Fixed Topology Skelesdnin |EEE Trans. Computer Vision
and Pattern Recognition, Vol 1, pages 1010-1017, Hilton Head Island, USA, June 13-15 2000.

[4] T. Horprasert, D. Harwood, and L.S. Davies. A robust lgaokind subtraction and shadow
detection. InAsian Conference on Computer Vision, Taipei, Taiwan, January 8-11 2000.

[5] P. KaewTraKulPong and R. Bowden. “An Improved Adaptivackground Mixture Model
for Real-time Tracking with Shadow Detection”. Bmd European Workshop on Advanced
Video-Based Surveillance Systems, pages 149-158, Kingston upon Thames, UK, Sept 4 2001.

[6] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wé&er. Tracking groups of people.
Computer Vision and Image Understanding, 80(1):42-56, October 2000.

[7] J-P.R. Renno, J. Orwell, and G.A. Jones. Learning sliaveie tracking models for the self-
calibrated ground plane. British Machine Vision Conference, Cardiff, UK, September 2002.

[8] C. Stauffer and W.E.L. Grimson. Adaptive background tuig models for real-time tracking.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2,
pages 246—252, Fort Collins, Colorado, June 23-25 1999.

[9] T.Y.Zhang and C.Y. Suen. “A Fast Parallel Algorithm fdnifining Digital Patterns"Commun.
ACM, 27(3):236—240, March 1984.



