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Abstract

In a football stadium environment with multiple overhead floodlights, many
protruding shadows can be observed originating from each ofthe targets. To
successfully track individual targets, it is essential to achieve an accurate rep-
resentation of the foreground. Unfortunately, many of the existing techniques
are sensitive to shadows, falsely classifying them as foreground. In this work
an unsupervised learning procedure that determines the RGBcolour distri-
butions of theforeground andshadow classes of feature data is proposed. A
novel skelatonisation and spatial filtering process is developed for identifying
components in the foreground segmentation that aremost-likely to belong to
each class of feature. A pixel classification mechanism is obtained at by ap-
proximating both classes of feature data byN Gaussian parametric models.
To assess our technique’s performance and reliability, a comparison is made
with other published works.

1 Introduction

Detection of moving objects is essential for automatic monitoring of human activity. A
common method for extracting the moving orforeground regions from a video sequence
is known asbackground subtraction [6, 8, 4]. This technique subtracts the incoming
video frames from a reference image acquired during a periodof inactivity and option-
ally updated over time. The resulting pixel or region differences are usually classified as
foreground or background by using astatistical or deterministic approach to detect the
presence of moving objects in the scene.

Shadows cause problems for moving target detection and tracking. The appearance
of neighbouring background is changed, to the extent that itcan be falsely classified as
foreground. Thus, measurements of moving objects are less reliable: this may affect
the performance of object segmentation, classification, and estimation of position. These
problems increase when there are many point light sources,e.g. a floodlit stadium. Each
light source produces a distinct shadow formation at the base of player (see Figure 1).
The underlying motivation of this work is the automatic identification and removal of
these shadows to improve player tracking performance.

Several authors have proposed techniques for identifying shadows in outdoor envi-
ronments. Cucchiaraet al [1] detect shadows by: 1) transforming the feature’s dimen-
sions into the HSV (Hue, Saturation and Value) colour space and 2) classify the feature as
shadow if: a significant difference in brightness is observed with little variation in colour.
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(a) (b) (c) (d) (e) (f)

Figure 1:(a) & (d) illustrate the shadows caused by flood-lights; (b) &(e) illustrate the segmenta-
tion of the foreground with no shadow suppression, (c) & (f) represent the desired segmentation

A similar approach is adopted by McKennaet al [6] for shadow detection. The feature’s
membership to the models is used to determine the presence ofshadows. Horprasertet
al [4] develop their own computational colour model for feature analysis. Their feature
space is used to classify a feature into one of four possible classes. A feature is classified
as a shadow in much the same way as that proposed by Cucchiaraet al[1]; the relative
colour and brightness changes are analysed to determine when a shadow overcasts a sur-
face. The novelty of this colour space is adopted in the worksof Bowdenet al [5] to
classify shadows in a similar manner. Each of these techniques use information relating
to a shadows appearance to derive the classification criteria. We propose a technique that
exploits the geometric properties of people shadows to develop an unsupervised method
for feature sampling. This methodlearns the appearance of both the shadow and fore-
ground features, providing a more reliable mechanism for feature classification.

2 Pixel Classification

The aim of the proposed algorithm is the successful classification and removal of shad-
ows resulting from floodlights present in the football stadium. The algorithm works by
exploiting information relating to the shadow’sshape, size, orientation, luminosity, orig-
inating position andappearance model [7] to determine the colour distributions of both
the foreground and shadow classes. In this section we discuss the unsupervised process
of obtaining the foreground and shadow feature data, the parametric modelling of the
feature data, and the pixel classification mechanism. For reliable foreground detection,
a background model is required that can adapt to any changes in the environment. Ex-
amples of common changes include the amount of direct sunlight, wind-blown trees and
periodically rotating advertising boards. Given this requirement, an adaptive background
subtraction technique based upon the work of Stauffer and Grimson [8] is used.

2.1 Shadow Feature Sampling

The first step towards identifying shadows is the analysis ofthe foreground segmentation
recovered from background modelling. Whether any of the changed pixels in the fore-
ground feature space were the result of shadows is unknown. The following discusses
how information about a shadow’s shape, orientation, location and size can be used to
identify themost-probable shadow components within the segmentation mask.



2.1.1 Skeletonisation

We propose to exploit information relating to the spatial distribution of the foreground
features, to develop a process for identifying the shadow features. In a football stadium,
the light sources positioned in the stadium corners result in four shadows that propagate
from the base of each player. Each shadow has a similar shape and size to that of the
attached player and is orientated towards each of the opposing light sources. Given this
information it is desirable to label a foreground player’s feature components using infor-
mation relating to its shape. An object’s skeleton providesan intuitive, compact represen-
tation of a shape that can be used to determine an objects sub-parts and their connectivity
[3]. Using a skelatonisation algorithm similar to that proposed by Zhang and Suen [9],
skaletonisation of the foreground is performed to obtain the medial axis of the foreground
players and their shadows -see Figure 2(b). The sub-parts of the medial axis provide a
more reliable information source even during periods of player occlusion. An example
of a typical skelatonisation result can be seen in Figure 2(c). From the skelatonisation
result, it can be seen that shadows exhibit lengthy skeletalsub-parts with a non-vertical
orientation in the image plane (Figure 2(d)). In the remainder of this paper a skeleton is
considered to be comprised of nodes that form inter-connected branches - see Figure 2.
Occasionally the term leaf will be used to describe a skeleton’s surface branches.

(a) Segmentation Mask (b) Skeleton Mask (c) Node Labelling (d) Shadow branches

Figure 2: Examples of (a) Segmentation mask, (b) Skelatonisation, (c) Node groupings into
branches and (d) Desired shadow branches.

2.1.2 Skeletal Medial Axis Analysis

A skeleton’s medial axis is comprised of numerous branches,each representing groupings
of foreground and/or shadow nodes (Figure 2(c)). To determine a set of shadow sample
locations in the current video frame, we attempt to identifythe skeleton branches that
result from shadows. By assuming that people stand vertically in the image-plane, spatial
filtering and appearance models [7] are used to identify the shadow braches. This process
is implemented in the following three steps:-

Medial Axis Simplification - To reduce the complexity of the skeletons we attempt to
remove the leaves below a certain size (S). Due to the fact that a person’s image-plane size
depends on their location w.r.t the camera, the value ofS should be related to the leaf’s
position. In the works of Rennoet al [7] a technique was developed that automatically
computes a person’s image-plane bounding-box model. We apply this model here to set
the value ofS to the model’swidth attribute, since it is reasonable to assume that any
leaf belonging to shadow will extend outside of a person’sreal bounding-box model - see
Figure 3(a).



(a) People Bounding-boxes (b) Unwanted leafs (c) Node Connectivity (d) Trimmed Skeletons

Figure 3:Examples of (a) Bounding-box models overlaid onto foreground objects, (b) Illustration
of the unwanted leafs on the skeleton mask, (c) labelling of anode to its neighbour count and (d)
Trimmed skeletons with and the areas of class ambiguity.

To determine the skeleton leafs that constitute noise (Figure 3(b)), a connectivity
based node labelling scheme is applied that assigns a label to each node; this label being
equivalent to the number of its neighbouring nodes -see Figure 3(c). Leaves are spawned
from the nodes that have a label value of one; its nodes are determined as those connected
nodes that lie in the path to a node with a label value greater than two or another spawn
node. A candidate leaf is deleted if:-
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where ji is the average vertical image coordinate of theith branch. jh andΩ andϕ are
theimage horizon, bounding-boxwidth model and theperson class respectively [7]. This
procedure ensures that most of the unwanted skeleton leafs are removed - Figure 3(d).

Spatial Filtering - A spatial filtering process is employed to determine the class mem-
berships for each node of the skeletons. This is achieved by accentuating the appearance
of the skeletons vertical branches through the applicationof two spatial filters: 1) 5x5
kernel representing five 1D Gaussians and 2) 5x5 kernel representing an average operator.
Each of the filter processes is followed by a thinning process: a logical AND of the result-
ing filtered skeleton and the original skeleton mask. The Gaussian filter accentuates the
vertical branches; the smoothing operator softens noise regions resulting fromnot-quite-
vertical branches and branch intersections as well as increasing the similarity between
non-vertical skeleton branches. The resulting skeleton node intensities are put into a his-
togram and the intensity threshold (τ) identified as: the intensity bin in the histogram with
the highest frequency. The spatial filtering process can be seen in Figure 4.

Shadow Node classification -Applying τ as the class threshold for the filtered skeletons
and selecting the non-zero nodes that are belowτ, yields the shadow nodes of the skele-
tons (Figure 2(d)). Each node represents a possible shadow feature sample location in
the current video-frame. There remains one problem with thesample nodes: intersection
points where branches of differing classes meet represent the origins of regions where
unknown boundaries between foreground and shadow exist. Due to the fact that node
class values are undeterminable in these regions, circularexclusion areas around each of
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Figure 4:The spatial filtering process used to determine the foreground and shadow components

the intersection locations (Figure 3(d)) are defined. To reflect scale in the image-plane,
the diameters of the exclusion regions are defined asS(i). Any shadow nodes that reside
in any of the exclusion zones are removed to leave the candidate shadow sample points
X ={x1, ...,xn}. The sample points inX represent themost-probable locations of the
shadow features in the current video-frame.

2.1.3 Shadow Sampling

Sampling of the shadow feature data is achieved by storing pixels from the current video-
frame from the locations identified inX. For each new video-frame, sampling is repeated
until a set ofNα shadow training feature vectors is obtained. The set of shadow features is
denoted byα, whereα ={f1, ..., fNα } andf is the feature vector representative of a pixel’s
{R,G,B} values.

2.2 Foreground Feature Sampling

To determine the features in the segmentation mask that constitute real foreground, it is
desirable to remove any feature resulting from a shadow. Empirical analysis reveals that
the majority of the shadow features form a single cluster in the feature space (Figure
5a), surrounded by a sparse field of outlying feature vectors; these are assumed to be the
result of erroneous labelling during shadow sampling -see Section 2.1. TheGaussian is a
good statistical model for clustered data and easily parameterised using the mean (µ) and
covariance (Σ) of the feature data. Using the shadow feature data, atri-variate Gaussian
model is developed that to obtain the probability density function :-

p(f|µ ,Σ) =
1

(2π)
3
2
√

|Σ|
exp

(

−
1
2
(f − µ)T Σ−1(f − µ)

)

(3)

To determine a feature’s membership to the shadow feature model requires a decision
boundary between the Gaussian model and the feature space. In this work the shadow
Gaussian model is approximated to a hyper-ellipsoid, enabling a decision boundary to be
defined in units of the Gaussian’s standard-deviation (σ ) - see Figure 5c. TheMahanalo-
bis distance metric is used to determine the normalised distance betweena feature and
the Gaussian mean vector. Assuming that 95% of the shadow feature data is accurate, the
classification distance threshold (D) is set to: the number of standard-deviations from a



distribution’s mean value that encompasses 95% of the feature data (D ≈ 2.7); rejecting
the remaining 5% as noise.

{

(f − µ)T Σ−1 (f − µ)
}

1
2

< D (4)

(a) (b) (c)

Figure 5: (a) Distribution of the sampled shadow features, (b) Hyper-Ellipsoid approximation of
distribution of (a) and (c) Demonstration of the mahanalobis distance showing that point 1 is closest
to the distribution’s mean value, regardless of the euclidean distances of each feature

Classification according to (4) is performed for those features identified in the seg-
mentation mask -see Figure 6(a). Those features classified as shadow are removedfrom
the segmentation masksee Figure 6(b) and the remaining points grouped into regions of
connected components. Regions of a size lower than that of the system noise floor are
removed. The remaining regions undergo a morphological filtering process that consists
of one iteration of closing and three iterations of eroding.Closing fills small holes in the
regions resulting from mis-classification by (4) and eroding ensures that the majority of
non-foreground components are removed -see Figure 6(c,d). The remaining region com-
ponents of the segmentation maskY, whereY ={y1, ...,yn} represent the locations of the
foreground features in the current video-frame -see Figure 6d.

(a) (b) (c) (d)

Figure 6: Segmentation mask processing - (a) Shadow classification, (b) Shadow suppression,
(c) Component grouping and region analysis followed by closing and (d) Erosion of the regions
resulting in the remaining foreground samples

Sampling of the foreground features is performed in the samemanner as for that for
shadows -see Section 2.1.3. A feature vector for each of the points specified in Y is
sampled from the current video-frame to develop the foreground feature training setβ ,
whereβ ={f1, ..., fNβ }. As with shadows, the sampling process is repeated for each new
video-frame until a set ofNβ features is obtained.



2.3 Feature Modelling and Classification using Gaussian Mixtures

Tri-variate Gaussian mixtures models are used to approximate the shadow (α) and fore-
ground (β ) feature data. The Gaussian mixture models for both shadow (θα ) and fore-
ground (θβ ) are determined using the technique proposed in Figueiredoet al [2]. Their
work demonstrates an unsupervisedexpectation maximisation algorithm that hypothesises
the optimal: 1) number of component densities within each mixture required to encapsu-
late the feature data (K), 2) the parameters for each of the Gaussian distribution functions
φi = {µi,Σi} and 3) the prior probabilities (i.e. mixing parameters) of the component
Gaussian modelsω . The probability of observing the featuref given the mixture model
θ is

P(f|θi) =
K

∑
i=1

ωi ×η (f,φi) , (5)

whereη is the probability density function for a Gaussian parameterised byφ - see
equation 3. UsingBayes theorem, theconditional andprior probabilities are combined
to compute theposterior probability, that is, the probability that the Gaussian density
functionθi is responsible for generating data pointf.

P(θi|f) =
p(f|θi)P(θi)

P(f)
≡

p(f|θi)P(θi)

∑J
j=1 p(f|θ j)P(θ j)

(6)

The classification of each feature identified in the originalsegmentation mask (see -
Figure 2a ) is determined by themaximum a posteriori probability rule. The posterior
probabilitiesP(θα |f) andP(θβ |f) for each class of Gaussian mixture are computed. Fea-
ture classification is achieved by labelling the feature as the class (α,β ) of the Gaussian
mixture that achieved the largest posterior probability value - see equation 7

θi = arg max
i∈(α ,β )

{P(θi|f)} (7)

In this paper the class prior probabilitesP(θα) andP(θβ ) are assumed to be equal (=0.5).

3 Shadow Classifiers

In this section we propose the use of three previously published shadow classification al-
gorithms [6, 1, 4] for comparative and evaluative purposes.Each of the classifier variants
is to be applied to the segmentation mask developed during our background subtraction
process [8].

3.1 Classifier A : HSV colour space conversion

This classifier uses the same criteria for classifying shadows originally proposed by Cuc-
chiara et al [1]. Their shadow classification is applied to the ungrouped features detected
in our segmentation mask. Each flagged feature in the segmentation mask as well as our
background model is transformed into the HSV colour space.



(a) (b)

Figure 7:Video Datasets of (a) Middlesborough and (b) Newcastle - at Fulham (Camera 2)

3.2 Classifier B : Normalised RGB and Gradient models

This classifier is based upon the technique for classifying shadows proposed by McKenna
et al [6]. The implementation of this technique remains relatively unchanged except for
their background subtraction process. This is replaced by the technique used in this paper
to determine the features constituting changed features. Classification of pixels is deter-
mined using the published criteria for those pixels flagged in our segmentation mask.

3.3 Classifier C : Computational Colour Model

This classifier is based upon a technique for feature classification proposed by Horprasert
et al [4]. Our implementation of this technique is adapted to onlyuse the colour model
for shadow classification purposes.

4 Evaluation

An objective evaluation methodology requires the availability of ground-truth data. This
enables quantitative performance measures and therefore direct comparisons between the
proposed methods. In addition any differences between realand ground-truth segmen-
tations provide interesting insights into algorithm performance. This section briefly de-
scribes the ground-truth data format and the quantitative evaluation metrics that are used.
The four described shadow classification methods were applied to the two flood-lit foot-
ball sequences (shown in Figure 7), each of 1000 frames. The performances of each
classifier were evaluated using the above metrics.

The ground truth is generated manually for every target within each frame of the video
sequence. The characteristics maintained in the ground-truth are the objects bounding-
box position and id. The bounding box represents the image plane coordinates that en-
capsulate the targets. Examples of the ground truth can be seen in Figure 8.

Two evaluation metrics are proposed to measure classifier performance by directly
comparing the segmentation result to the ground truth data.The first metric determines
how much of the shadow is removed by:-

DR =
(

1−
(

N f p/N f p
0

))

×100 (8)



Figure 8:Target postures with the ground-truth overlayed.

whereN f p
0 and andN f p are the number of false-positives (shadow and background noise)

before and after shadow classification respectively. The second metric computes the ac-
curacy of the segmentation after the identified shadows havebeen removed by using the
signal to noiseSNR ratio:-

SNR= 20 log10

(

Nt p/N f p)

whereNt p andN f p are the number of true and false positives. True positives relate to
the number of correctly classified foreground features withrespect to the ground-truth.

Numerical results are tabulated in Table 4. An example of theresults are also shown quali-
tatively in Figure 9(c-f). In terms of the shadow detection rate performance, the proposed
method is effective, correctly detecting 93% of input shadows (on average). The other
methods vary from between 55 to 84%. The SNR represents the overall accuracy of the
classifiers by measuring their impact upon both foreground and shadow segmentations.
A high SNR of 10dB is achieved by the proposed classifier indicating a high percentage
of foreground to shadow in the signal. Classifier (b) performs poorly achieving a SNR of
4.3 indicating poor segmentation of shadow and foreground.

Datasets
Algorithm Middlesborough: Camera 2 Newcastle: Camera 2

DR(%) SNR(dB) DR(%) SNR(dB)
Detection [8] 0 -2.2 0 -2.6
Cucchiaraet al [1] 74 10.3 75 10.0
Horprasertet al[4] 84 10.5 79 11.1
McKenna & Jabri [6] 57 4.3 55 4.6
Proposed Classifier - Sect 2 93 10.6 91 9.8

Table 1:Shadow classifier performance

5 Conclusions

In this paper a novel shadow classification method was presented and compared to three
published methods for shadow classification, in the specificdomain of floodlit football
games. The evaluation of the classifiers comprised the amount of shadow removed, and
the SNR of foreground to any remaining shadow and backgroundnoise. The proposed
method is shown to be highly effective at separating objectsfrom their shadows. It is



(a) (b) (c)

(d) (e) (f)

Figure 9:empirical results of shadow classification:- (a) Original Image, (b) Segmentation Mask,
(c-e) Classifier’s A-C respectively -see Section 3 and (f) Proposed Classifier.

completely unsupervised, and works well across a variety ofsensor types, camera lo-
cations and match conditions without the need for ad hoc refinement of parameters. It is
sufficiently efficient to be included in processes running atreal-time frame rates. In future
we expect to generalise the method to work in other scenarios, i.e. outside the football
stadium.

References
[1] R. Cucchiara, C. C. Grana, M. Piccardi, and A. Prati. Detecting moving objects, ghosts, and

shadows in video streams.IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(10):1337–1342, October 2003.

[2] M. Figueiredo and A.K. Jain. “Unsupervised learning of finite mixture models”.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(3):381–396, March 2002.

[3] P. Gollina and W.E.L. Grimson. “Fixed Topology Skeletons”. In IEEE Trans. Computer Vision
and Pattern Recognition, Vol 1, pages 1010–1017, Hilton Head Island, USA, June 13-15 2000.

[4] T. Horprasert, D. Harwood, and L.S. Davies. A robust background subtraction and shadow
detection. InAsian Conference on Computer Vision, Taipei, Taiwan, January 8-11 2000.

[5] P. KaewTraKulPong and R. Bowden. “An Improved Adaptive Background Mixture Model
for Real-time Tracking with Shadow Detection”. In2nd European Workshop on Advanced
Video-Based Surveillance Systems, pages 149–158, Kingston upon Thames, UK, Sept 4 2001.

[6] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler. Tracking groups of people.
Computer Vision and Image Understanding, 80(1):42–56, October 2000.

[7] J-P.R. Renno, J. Orwell, and G.A. Jones. Learning surveillance tracking models for the self-
calibrated ground plane. InBritish Machine Vision Conference, Cardiff, UK, September 2002.

[8] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time tracking.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2,
pages 246–252, Fort Collins, Colorado, June 23-25 1999.

[9] T.Y. Zhang and C.Y. Suen. “A Fast Parallel Algorithm for Thinning Digital Patterns”.Commun.
ACM, 27(3):236–240, March 1984.


