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Abstract

In this paper we present a new physically motivated curve descriptor based
on the solution of Helmholtz’s equation. The descriptor satisfies the six prin-
ciples set by MPEG-7: it has a good retrieval accuracy, it is compact, it
can be applied in general contexts, it has a reasonable computational com-
plexity, it is robust and provides an hierarchical representation of the curve
from coarse to fine. Moreover this descriptor generalizes straightforwardly
to three dimensional surfaces. We tested the performance of the descriptor
in the context of affine invariant curve matching using themultiview curve
dataset(MCD), which consists of 40 curves (extracted from the MPEG-7
shape dataset) imaged under 14 different points of view. The results we ob-
tained show that the proposed descriptor satisfies the MPEG-7 requirements
and presents some advantages over some of the commonly used curve de-
scriptors.

1 Introduction

The quest for efficient curve descriptors has been one of the leading themes in the com-
puter vision community. In general, good curve descriptors should be invariant under
an appropriate class of geometric transformations (like, for example, rotation-scaling-
translation or affine), robust in the presence of noise, efficient to compute and easy to
compare. Zhang et al. [13] classified the curve description approaches into two groups:
contour-basedandregion-basedmethods. Each of these groups is further subdivided into
two subgroups containingglobalor structuralapproaches. Some of the recently proposed
descriptors fall in the contour-based category, as thecurvature scale space(CSS) descrip-
tor [8] (which has been standardized in the MPEG-7 framework) and theshape context
matrices[1]. Some others belong to the class of region-based methods, like the descriptors
based onmoments(geometric [3], Zernike and Legendre [11]), onregion frequency rep-
resentations(Fourier descriptors [12]), onmedial axis transform[9] and onshock graphs
[10]. The goal of this paper is to develop a curve descriptor that satisfies the six principles
set by MPEG-7 and a few other requirements, such as being rotation-scaling-translation
(RST) invariant, having a clear physical interpretation and being easily extendable to the
3D case (for surface description). Note that we are interested in describing Jordan curves
(i.e. curves that are closed and do not cross themselves).

The approaches mentioned before do not always fully satisfy the MPEG-7 require-
ments. The computation of the CSS descriptors is quite demanding, the algorithm con-
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verges slowly if the curve is very complex (i.e. many points of the curve have a large
curvature) and depends on some empirical parameters that need to be fine tuned. The com-
parison of CSS descriptors is not so simple and the method cannot be extended straight-
forwardly to the 3D case. Shape context matrices provide local curve descriptors that are
not very compact (matrices) and their comparison is not very fast. Moreover an extension
to 3D surfaces would increase both the size of descriptors and the complexity of the al-
gorithm. Moment invariants of higher orders do not have a clear physical interpretation
and the matching procedure requires a normalization process to compensate for the dif-
ferent dynamic range of the moments of different orders. Shock graphs are very suitable
in contexts where the similarity between curves is defined it terms of structure, but are not
the ideal solution if the notion of equivalence is defined within the class of some specific
geometric transformation. Also in this case the computational complexity for extracting
the descriptors and matching them is very high.

This paper is structured as follows. Section 2 introduces our proposed descriptor, it
discusses its analytical properties and presents the numerical scheme used to compute the
descriptor. Section 3 will describe a preprocessing step that aims at extracting theshape
of a curve in order to obtain an affine invariant matching algorithm. Section 4 shows
some experimental results to evaluate the performance of the descriptors and finally the
conclusions are presented in Section 5.

2 The Curve Descriptor

In 1966 the mathematician M. Kac published his famous paper entitled “Can One Hear the
Shape of a Drum?” [5]. Kac was interested in understanding whether the knowledge of a
drum’s modes of vibration was sufficient for univocally inferring its geometric structure.
The problem posed by Kac can be related to the problem of identifying curve descriptors.
In fact, if we imagine that the curve we want to label defines the contour of a drum, it
is reasonable to think that the spectrum of such curve (in terms of modes of vibration)
could be an appealing descriptor, given the fact that it can be easily made RST invariant
and has a strong physical characterization. To this purpose the answer to Kac’s question
becomes crucial, i.e. we would like to have the normal modes of vibration of a drum to
identify univocally its geometry (so that we can establish a bijection between the space of
the Jordan curves modulo a given transformation and the curve descriptors).

The problem posed by Kac remained unsolved until 1992 when the mathematicians
C. S. Gordon, D. L. Webb and S. Wolpert proposed a pair of isospectral drums having
the same area and perimeter but different contours. In other words “One Cannot Hear
the Shape of a Drum” [4]. Even though for our purposes this fact is unfortunate, since
it implies that there may exists curves that are not related by an RST transformation and
nonetheless have the same spectrum (i.e. the same descriptor), the experiments presented
in Section 4 will show how this problem has a limited impact in real life scenarios.

In the following subsections we will describe in detail the proposed curve descriptor
and the numerical scheme used to compute it.

2.1 The Helmholtz’s Equation

Let Γ be a Jordan curve corresponding to the boundary ofΩ, an open subset ofR2. The
vibration of the membrane of a drum whose contour is defined byΓ is expressed by the



functionw(x, t) : Ω̄×R→ R which solves the wave equation:

4w− 1
v2

∂w
∂ t

= 0

where4 denotes the Laplacian operator,t indicates time andv is a characteristic constant
associated to the drum. This equation can be solved via separation of variables, assuming
that w can be decomposed in a spatial part and in a temporal part according tow(x) =
u(x)q(t). It can be shown that the spatial part solves theHelmholtz equation, an elliptic
partial differential equation given by:

4u−λu = 0 (1)

whereλ is a suitable scalar. The corresponding boundary problem with Dirichlet condi-
tions is:

4u−λu = 0 (2a)

u(x) = 0 for x ∈ Γ (2b)

As explained in [2], the pairs{λk,uk} that solve the problem (2) are such that:

• All the eigenvalues are real and positive:0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . with λk → ∞ as
k→ ∞

• The real eigenfunctionsuk can be chosen to form an orthonormal basis ofL2(Ω)

Our idea is to use the firstNλ eigenvalues to build an RST-invariant descriptor for the
curveΓ, as follows from the definition and lemma:

Definition 1. Let Γ be a Jordan curve and letλ1, . . . ,λNλ be the firstNλ eigenvalues that
solve(2). The Helmholtz curve descriptor (HCD) associated toΓ is defined as:

F(Γ) def=
[

λ1
λ2

λ1
λ3

. . . λ1
λNλ

]T
∈ RNλ (3)

Lemma 1. Consider the two Jordan curvesΓ1 andΓ2 related by an RST transformation:

Γ2 = {x2 ∈ R2 : there existsx1 ∈ Γ1 such thatx2 = sRx1 + t}

wheres∈R is the scaling factor,R∈SO(2) is a rotation matrix andt ∈R2 is a translation
vector. ThenF(Γ1) = F(Γ2).

Proof. The lemma can be shown easily using the variational characterization of the eigen-
values. Letu1, . . . ,uk−1 be the first orthonormal eigenfunctions of (2a). Let’s define for
h = 1,2 the subspaces:

Sh
k =

{
w : w∈C2(Ωh), w 6≡ 0, w(x)|x∈Γh = 0, 〈w|ul 〉= 0 for 1≤ l ≤ k−1

}

These subspaces contain all the functions (continuous up to the second derivative) defined
overΩh, not identically equal to zero inΩh, equal to zero on the boundaryΓh and orthog-
onal to the firstk−1 eigenmodes of (2a). The notation〈·|·〉 denotes the inner product on



Discretization Grid

(a)

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

8677 non zero elements (∆ = 30)

L Matrix Sparsity Pattern

(b)

Figure 1: Image (a) shows an example of the discretization mesh used for the finite dif-
ference method. Figure (b) shows the structure of the matrixL.

Ω: 〈 f |g〉 =
∫

Ω f (x)g(x) dx. It can be shown that thekth eigenvalue can be obtained by
minimizing the Rayleigh quotient:

λh,k = min
w∈Sh

k

‖∇w‖2

‖w‖2

Sincex2 = sRx1 + t we can write:

λ2,k = min
w∈S2

k

∫
Ω2
‖∇w(x2)‖2

2 dx2∫
Ω2

w(x2)2 dx2
= min

w∈S1
k

∫
Ω1

s2‖∇w(x1)‖2
2 s2 dx2∫

Ω1
w(x2)2 s2 dx2

= s2λ1,k

It is clear that if we take the ratios that define the HCD components the scaling factors2

is cancelled out, and therefore we have thatFi(Γ1) = Fi(Γ2) for any1≤ i ≤ Nλ −1.

As mentioned before, it has been theoretically proven that there exist different curves
that have the same spectrum. However this event is quite rare (where the notion of “rare”
can be formalized more precisely) as the experiments presented in Section 4 will confirm.
The similarity between the descriptors is defined in terms of their Euclidean distance:

d(F(Γ1),F(Γ2)) = ‖F(Γ1)−F(Γ2)‖2 (4)

The choice of this distance function implicitly defines an hierarchical comparison of the
curves. Because of the different dynamic ranges of the HCD components (it can be
shown that the entries ofF(Γ) decay according to1/i2, wherei is the component index)
the coarse structure of the curve (captured by the first components ofF(Γ)) is naturally
weighted more than the finer details (represented by the last components ofF(Γ)).

2.2 Numerical Scheme

The second order finite difference scheme we used to solve (2) provided a good com-
promise between accuracy and computational complexity. The step size of theN×N
discretization mesh is calculated according to:

h =
maxx∈Γ ‖x−m(Ω)‖

∆



wherem(Ω) is the center of gravity of the regionΩ and∆ is a parameter that defines
the mesh resolution. The spatial derivatives are approximated by the second order central
difference formula:

∂ 2u
∂x2 (x)≈ u(x+h,y)−2u(x,y)+u(x−h,y)

h2

∂ 2u
∂y2 (x)≈ u(x,y+h)−2u(x,y)+u(x,y−h)

h2

Using these assumptions the problem can be represented in a linear algebra fashion ac-
cording to:

Lu−λu = 0

where the linear operatorL is given by the sparse symmetric matrix:

L = h−2




A IN 0 . . . 0
IN A IN . . . 0
0 IN A . . . 0
...

...
...

. . .
...

0 0 0 . . . A



∈ RN2×N2

A =




−4 1 0 . . . 0
1 −4 1 . . . 0
0 1 −4 . . . 0
...

...
...

.. .
...

0 0 0 . . . −4



∈ RN×N

Note thatIN is theN×N identity matrix and the vectoru ∈ RN2
is such that:

uNp+q = u(xp,yq)

wherexp andyq are the mesh point coordinates. The size of the problem can be reduced
by removing the entries of vectoru that correspond to points outside of the domainΩ
(and consequently the corresponding row/columns in the matrixL). Figure 1 shows an
example of the discretization mesh and of the matrixL for a certain curveΓ. In our imple-
mentation the eigenvalues/eigenvectors are computed using the Fortran library ARPACK
[6] (accessed through Matlab) that takes advantage of the sparse and symmetric structure
of L.

3 Achieving Affine Invariance

The descriptors we have introduced in Section 2 are RST-invariant. However very often it
is necessary to match curves in an affine invariant fashion. As an example consider planar
curves imaged from two different viewpoints using a distant1 camera. In this case the
perspective distortion can be approximated by an affine transformation. We will briefly
summarize a procedure that allows to map a curve in a normalized coordinate system
where affine-related curves become congruent modulo a geometric rotation. For a more
thorough discussion containing also the proof of Theorem 1 refer to [14].

Let’s first introduce the following quantities:

• Let V(Ω) def=
∫

Ω dx2 be the area ofΩ, wheredx2 is the infinitesimal area element.

• Let m(Ω) def= 1
V(Ω)

∫
Ω x dx2 be the centroid ofΩ.

1Where distant has to be intended with respect to the camera focal length.
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Figure 2: Image (a) shows the mesh points that discretize the domainΩ (·) and the points
modified by the morphological noise operator (◦). Plot (b) shows the fluctuation of the
eigenvalues in presence of morphological noise for a given curve. Plot (c) displays the
RMSE of the eigenvalues for a set of 10 shapes averaged over 20 realizations of the
morphological noise.

• Let Σ(Ω) def= 1
V(Ω)

∫
Ω [x−m(Ω)] [x−m(Ω)]T dx2 be the covariance ofΩ.

We now have all the ingredients to define the shape of a Jordan curve:

Definition 2. Let Γ be a Jordan curve. The shape ofΓ is defined as:

S(Γ) def=
{

s∈ R2 : s= Σ(Ω)−
1
2 [x−m(Ω)] for x ∈ Γ

}
(5)

This definition is important because it allows us to relate affine-transformed curves,
as stated in the following theorem:

Theorem 1. Let Γ1 andΓ2 be two Jordan curves related by an affine transformation:

Γ2 =
{

x2 ∈ R2 : ∃x1 ∈ Γ1 such thatx2 = Ax1 +b
}

whereA∈ R2×2 is a non-singular matrix andb ∈ R2. Then the shapes ofΓ1 andΓ2 are
geometrically congruent via a2-dimensional rotation.

Therefore if we want to use the descriptors introduced in Section 2 in the context of
affine-invariant matching we just have to extract the shape of a curveΓ and calculate the
RST-invariant descriptors ofS(Γ).

4 Experimental Results

4.1 Numerical Stability in Presence of Noise

In this subsection we are interested in studying the numerical stability of the eigenvalues
of the Laplacian in presence of noise. The descriptors we proposed are based on the first
Nλ smallest eigenvalues which capture the slowest modes of vibration of the domainΩ
and therefore are the less sensitive in presence of small boundary variations. On the other
hand the smallest eigenvalues of a matrix are those more affected by the finite precision
mathematical operations.
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Figure 3: Precision recall curve calculated over the MCD for the Helmholtz curve de-
scriptors for different numbers of bits used to represent the descriptors (a) and for differ-
ent mesh steps (b). In both examplesNλ = 17. The dashed line shows the performance of
CSS curve descriptors calculated using MPEG-7 XM software.

To evaluate the effect of small morphological changes in the curve we choose a set of
10 normalized curves and applied to each curve a noise morphological operator that mod-
ifies with probability0.8 the membership of the mesh points in a 8-pixel neighborhood
(i.e. the fact that a point(xp,yq) belongs toΩ or not). The average RMSE of the eigen-
values (with respect to the noise free curve) has been calculated. The results for∆ = 30
(which are shown in Figure 2) demonstrate that the eigenvalues with larger indices are
those more affected by the morphological noise. This can be explained observing that
these eigenvalues are related to faster modes of vibration. However the effect of the mor-
phological noise does not produce drastic variations of the value of the eigenvalues and
consequently of the components of the descriptors.

4.2 Precision Recall Performance

The MCD comprises 40 curve categories, each corresponding to a curve drawn from an
MPEG-7 curve class. Each category in the dataset contains 14 curve samples that cor-
respond to different perspective distortions of the original curve. To construct the MCD
we printed on white paper 40 curves taken from the MPEG-7 dataset. For each curve 7
samples were taken from different view angles using a digital camera. The contours were
extracted from the iso-intensity level set decomposition of the images [7]. By adding ran-
dom rotations and reflections to these samples, the number of samples in each category is
doubled to 14. Some of the curves comprising the MCD are shown in Figure 5.

The performance of the descriptors is evaluated using the precision-recall curve cal-
culated over the MCD. Each curveΓ is used in turn as the query. LetA(Γ,T) denote the
set ofT retrievals (based on the smallest distances (4) fromΓ in the descriptor space)
andR(Γ) the set of 14 images in the dataset relevant toΓ. Theprecisionis defined by

P(Γ,T) def= |A(Γ,T)∩R(Γ)|
T , and therecall by C(Γ,T) def= |A(Γ,T)∩R(Γ)|

14 , where|·| denotes car-
dinality. The precision recall curve is plotted by averaging precision and recall over allΓ,
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Figure 4: Precision recall curves for different HCD lengths (a). Figure (b) shows the
performance of the 12 bytes long descriptor. The dashed line shows the performance of
CSS curve descriptors calculated using MPEG-7 XM software.

Query Retrievals 

Figure 5: Retrieval results obtained using 10 random queries from the MCD. The curve
scale has been normalized for visualization purposes. The experiment was carried out
using the following parameters:∆ = 30, Nλ = 13, 8 bits. The crosses mark retrievals that
do not belong to the correct category.



for different values ofT (in all the plots the point corresponding toT = 14 is represented
by a thick circle).

Figure 3(a) shows the precision recall curves for different numbers of bits used to
represent the components of the descriptors. In this experimentNλ = 17. Using 8 bits the
size of the HCD is16 bytes and the performance is very close to the case where a double
precision representation is used. From Figure 3(b) we deduce that the mesh resolution
does not affect considerably the descriptor performance.

The precision recall curves plotted in Figure 4(a) show how most of the information
about the curve structure can be condensed in a 12-dimensional curve descriptor. Note
that not always the strong perspective distortions that characterize the MCD can be ap-
proximated by an affine transformation. Therefore the experiments carried out using this
dataset measure also the robustness of the descriptors in presence of non modelled curve
transformations. This is confirmed by the results shown in Figure 4(b), where using a 12
dimensional curve descriptors quantized using 8 bits (∆ = 30) we have that forT = 14
the precision is higher then 85% and the recall higher then 86%. This means that in more
than 85% of the cases a curve in the top 14 retrievals is from the same class of the query.

Figure 5 shows the retrieval results obtained using 10 random queries from the MCD.
It is interesting to note that for the categoryapple(second row) the “wrong” curves that
are retrieved share a similar shape and this is true also for the mismatched curves in the
category “guitar” (last row), where the four mismatches belong to the category “key”.

5 Conclusions

In this paper we proposed a new curve descriptor that satisifies the six principles set by
MPEG-7. The experimental results on the MCD show that:

• The HCD has a good retrieval accuracy and if applied to the shape of a curve it can
deal with affine transformed curves.

• The HCD is very compact (satisfactory performances can be obtained with descrip-
tors that are only 12 bytes long; the average size of the CSS descriptor is 14 bytes
per curve) and has a strong physical characterization.

• The HCD can be applied in general contexts, since the algorithm parameters do
not need to be fine tuned (the experiments show a low performance fluctuation for
relevant changes in the mesh step).

• The computational complexity is limited, both for the descriptor calculation and
(especially) for the descriptor comparison.

• The descriptors can tolerate non-modelled geometric curve distortions (in fact the
shape extraction procedure does not always compensate for the strong perspective
distortion of the curves contained in the MCD).

• The Euclidean distance function and the decreasing dynamic range of the descriptor
coefficients naturally provide an intrinsically hierarchical comparison of the curves.

Moreover the proposed descriptor as well as the shape extraction procedure generalize
straightforwardly to 3D surfaces. Future work involves the extension of this descriptor to
3D surfaces and a more quantitative evaluation of the problem of isospectral shapes.
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