
Two–level MRF Models for Image Restoration
and Segmentation

Mariano Rivera James C. Gee
Centro de Investigacion en Matematicas University of Pennsylvania

Guanajuato, GTO 36240 MEXICO Philadelphia, PA 19104, USA

Abstract

We present a new general Bayesian formulation for simultaneously restor-
ing and segmenting piecewise smooth images. This implies estimation of
the associated parameters of the classes within an image, the class label for
each image pixel and the number of classes. The intensity image is mod-
elled by parametric models based on regularized networks. The method fits
the regions (or classes) with complex spatial intensity distributions with an
identifiable group of simple models. Prior information is introduced in form
of a two-level Markov random field (MRF). The low–level MRF models the
information required to recover piecewise restorations, while the high-level
MRF constraints the segmentation. The high–level MRF supports a merging
process of simple intensity models into classes.

1 Introduction
In this paper, we present a unified method for image segmentation and restoration formu-
lated using Bayesian statistics [1]–[3]. Before establishing the restoration–segmentation
problem, we introduce our image observation model. We assume a two steps image
model, this model is illustrated in figure 1–(a). In the first step, the hidden imagef̂ is
generated by parametric intensity models and then, in a second step, the observed datag
are produced. These steps are followed detailed:
I) Generation Step. We consider that the real imagêf , in the regular latticeL, is an
assemble ofK disjoint regions,R= {R1,R2, ...,RK}. Then, we suppose that the intensity
value of the imagêf within each regionRq is generated by means of a parametric model
Φ̂q. Therefore, we have a set of parametricintensity models(IM), Φ̂ =

{
Φ̂1,Φ̂2, ...,Φ̂K

}
,

with the corresponding parametersΘ = {Θ1,Θ2, ...,ΘK}. Thus, letr a pixel in the regular
lattice,L, then the pixel value,̂fr , is generated bŷfr = Φ̂ĉr (Θĉr , r) , whereĉr is the index to
the region that corresponds to the pixelr (i.e. ĉr ∈ {1,2, ...,K}). For instance, a piecewise
constantf̂ results of assuming the simple IM:Φ̂q (Θq, r) = mq, wheremq is the intensity
value for all the pixelsr ∈ Rq. More practical parametric IM are: polynomials [5], basis
models [6], splines [8] or radial basis functions [9].
II) Observation Step. Now, as we said,̂f is not directly observed, but the datag is. The
relationship betweeng and f̂ is expressed bygr = [H f̂ ]r +ηr , whereH is a known linear
operator andη represents independent additive noise.

Without lost of generality, we only consider the restoration case of denoising, i.e. we
assumeH = Id. Therefore, the image generation–observation model (GOM) is

gr = Φ̂ĉr (Θĉr , r)+ηr . (1)
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Figure 1:(Top) Generation-observation image model with exact intensity modelsΦ̂ and (Bottom)
generation step with approximated intensity modelsφ . See text for more details.

The segmentation task can be seen as the solution of the inverse problem expressed by
(1). This is, the computation of the label mapĉ. However, this task requires of the exact
knowledge of the IM’s,Φ̂, and of the respective parameter values,Θ. In the general
case, the IM and their parameters are not known and they need be estimated. This is a
difficult estimation task; one must consider very variate forms of models. For example,
in the case of natural images, intensity models for the sky, walls of bricks, paths, forest,
etc. Fortunately, the task can be simplified if one approaches the GOM (panel 1–(a))
by substituting the generation stage by the one shown in panel 1–(b). In the new GOM,
the true unknown set of IM,̂Φ, is approximated by a setΦ = {φ(θ1),φ(θ2), ...,φ(θK)},
whereφ is a generic parametric andθ j is the parameter set corresponding to thej th region.
Then, the image pixelfr is generated with:

fr = φ (θcr , r) , (2)

where the labelcr selects the appropriated parameter set. Note thatc, in general, differs
from the true segmentation,ĉ. Now, we introduce the residual,n = f̂ − f , that represents
superfluous details in each class that do not provide useful information. Note that, by de-
pending on the application: an image detail is spurious or it is not. For example, moles in
the face are important features in the face recognition task, however, moles may introduce
ambiguity in the face detection task. Other example ofn is the texture in objects, as the
bricks in a wall. Then the image generation model (1) is rewritten as:

gr = φ (θcr , r)+nr,cr +ηr . (3)

In the current work, we present a parametric restoration–segmentation method based on
Bayesian regularization and Markov Random Fields (MRF) [3]. The method is a generic
edge–preserving regularization method and at the same time, the method produces a seg-
mentation of the feature processed (intensity in this case). However, in order to motivate
the segmentation method, we first present and discuss the case of parametric filtering.
The parametric filtering method is based on the minimization of an energy functional
associated to a MAP criterion. This energy function is close related with others previ-
ously reported in nonparametric restoration, particularly with robust or edge–preserving
regularization [10]-[17]. However, instead of estimate the restoration,f , we compute the



parameters set of the IMφ and the label map,c. The label fieldc, computed by this way,
is consistent with the prior that promotes piecewise smooth restorations (i.e. an edge–
preserving filter). This low-level (pixel–level) prior models intra–pixel interactions and it
does not necessarily promotes smooth segmentations. Thusc can be different from the
real segmentation field,̂c. This is better understood with an example: we suppose that our
IMs are too rigid (for instance we use constant models) for adjust a well defined region
without observable discontinuities (as the sky in the image of figure 2), then a parametric
filtering produces a smooth quantization of the image and, at the same time, such region is
over–segmented by effect of the quantization. Therefore, we introduce a additional MRF
that codifies the intra–label (or intra–region) interaction and allows to group subregions,
c’s, into a region,ĉi . The grouping process, based on the high–level MRF is inspired on
techniques of grouping based on graph theory [18][19].

In the seminal work of Darrell and Pentland [5], simple multi–layered models (based
on polynomials) were used for representing and segmenting smooth piecewise gray scale
images or optical flow fields for regions containing multiple motions. More recently,
other authors have reported different approaches or applications of layered models. For
example, layered models were proposed for: computing the optical flow [6] and tracking
[7]. Differently to those schemes, the feature of interest inside thej th region is only
generated with the modelφ j determined byc; the final segmentation,̂c, is estimated by
grouping the over–segmented regions defined byc. It is important to note that, in our
formulation, the computation ofc is not a critical stage and can be achieved with fast
greedy optimization algorithms.

The rest of the paper is organized as follows: section 2 presents the MAP parametric
restoration method, section 3 presents the extension of the parametric restoration formu-
lation for effectively segmenting complex image, a practical implementation is presented
in section 4 and finally, the conclusions are given in section 5.

2 MAP Parametric Restoration
In this section, we present the MAP criterion for estimating a parametric representation
of the imagef (see figure 1-(b)). The objective is to compute the label field,c, and the
parameters,θ such that maximize the posterior distribution of the restorationP( f (θ ,c) |
g) instead ofP(c,θ | g), as in a segmentation problem [1]–[3].

The MAP estimator is computed by maximizing the posterior probability distribution:
P( f | g) ∝ P(g | f )P( f ). The likelihood,P(g | f ), promotes fidelity of the restoration to
the data. On the other hand, the prior distribution,P( f ), is modelled by a low–level MRF
(at pixel pairs level) with a Gibbs distribution. Then we obtains the posterior probability
distribution: P( f | g) ∝ exp(−U f ( f ;g)). WhereU f is a, well-known, robust regularized
cost function [11, 12]:

U f ( f ;g) = ∑r∈L ρ1 ( fr ,gr)+λ ∑〈r,s〉ρ2 ( fr , fs) . (4)

where〈r,s〉 = {(r,s) : (r,s) ∈ L, |r − s| < 2} is the set of first horizontal, vertical and
diagonal neighbor pixels andλ is a “lumped” hyper–parameter of the Gibbs distribution.
The robust potentials,ρ1 andρ2, are used in order to reject outliers and preserves intensity
edges, respectively. [10]–[17].

Differently to the robust filtering case of (4), in our case, the restorationf is expressed
by the parametric intensity model (IM),φ , with specific parametersθcr for the support



region,cr [see (2)]. The selection of the generic intensity modelφ is important for the
success of the multi–layer strategy. Too simple intensity models fail to represent regions
with complex spatial distributions of the feature of interest, while more realistic models
have a large number of parameters that need to be estimated. We use a regularized network
(RN) [20], with linear interpolation functions, as the generic intensity model,φ , see [9].
In the RN formulation, the intensity value of the pixelr is computed with:

fr = φ (θcr , r)
de f
= ∑ j θcr , jΨ j (r) , (5)

whereΨ j (r) represents thej th interpolation function evaluated at the pixelr whose con-
tribution is controlled by the parameterθcr , j—control point in the RN formulation. Now,
the prior distribution,P( f ) should express oura priori knowledge: a) The restoration,
f , is piecewise smooth and b) each layer,q∈ {1,2, ...,K} defined by∑ j θq, jΨ j (r), is a
smooth surface. Last two priors can be expressed in terms of MRF theory. As result, a
regularization membrane potential is added to the parametric version of (4):

Uφ (θ ,c;g) = ∑
r∈L

ρ1 (φ (θcr , r) ,gr)+λ ∑
〈r,s〉

ρ2 (φ (θcr , r) ,φ (θcs,s))

+ γ ∑
q

∑
〈r,s〉

(φ (θq, r)−φ (θq,s))
2 , (6)

whereλ and γ are “lumped” hyper–parameters of the Gibbs distributions. The robust
potentialρ1 has a similar behavior than in (4). Howeverρ2 controls the number of re-
gions (the granularity) of the restoration, see experiment of Figure 2. In the experiments
reported in this work: the control points are distributed in a coarse grid. The parametric
flexible IM (5) can represent the smooth variation of complex regions with a few number
of control points (parameters). If the number of control points is increased, then the IM
can better adjust the local smooth variations in the region. One can use more control points

such that that each pixel in the image is represented by a “parameter”:φ (θr , r)
de f
= θcr ,r .

The implication of this case is studied in section 4.
In the current work, we implement the same robust potential for both the likelihood

and prior potentials:ρ1 (x,y) = ρ(x− y;k1) andρ2 (x,y) = ρ(x− y;k2), whereρ can be
either the Andrew function,ρ(z;k) = 1− exp

(−(z/k)2
)
, or the Geman-McClure func-

tion, ρ(z;k) = (z/k)2/
(
1+(z/k)2

)
. In the case of non-parametric restoration (4), the

robust potentials determine the convexity of the cost function and hence the convergence
to a global minima [11, 12]. In our experiments with parametric restoration, we do not
distinguish a significant difference in the performance by using any of the mentioned
potentials.

The MAP label field,c∗, and the model parameters,θ ∗, are computed by iteratively
performing alternated minimizations of (6) with deterministic algorithms in each step.
Given thatU(θ ,c;g) is bounded by zero and it is decreased in each step, thus, the conver-
gence to a local optimum is guaranteed. A good initialization is thus required to steer the
algorithm toward the desired solution. The model parameters are updated by performing
a few iterations of a half-quadratic minimization algorithm. Specifically, we use three
iterations of the weighted version of the Gauss-Seidel algorithm detailed in Ref. [12].
Note, however, that the labelling step corresponds to a combinatorial problem. In this
work, we implement such minimization with either of the next two algorithms:



Figure 2:Edge preserving filtering with (a)-(d) flat and (e) flexible intensity models.

I) Iterated conditional modes (ICM) algorithm [2]. Such approach involves local com-
putations and is thus computationally fast. The ICM tends toward undesirable classifica-
tions is mitigated here by our use of robust potentials in the data term.
II) Multiway graph cut [21, 22, 23]. The energy function (6) satisfies the requirements
to be minimized by a graph cut scheme. We implement theα–β multiway cut algorithm
proposed in [23], in such case, the graph capacities between pixel-nodes are computed
with wrs = W− ρ2 (φ(θcr , r),φ(θcs,s)) and capacities to the sources withwqs = W−
ρ1 (φ(θq, r),gr); whereW is a large constant that guaranty positive capacities (in our
implementationW = 1).

Note that the exact MAP estimator forc can, however, be computed in each iteration
with more computationally expensive algorithms as simulated annealing [3].

2.1 Experiments of parametric edge–preserving filtering
Figure 2 shows the result of an experiment designed for illustrating the performance of
the cost function (6) in the edge preserving filtering task and the behavior of the method
to changes in the parameterk2, the one that controls the robust interaction between re-
stored pixels. First row shows the restorations and second row shows the respective edges
between subregions. Column 2a shows the maximum likelihood estimation used as as
initial guess. Columns 2b to 2d show the results computed by increasing the robustness
of the intra-pixel potential, i.e. withk2 equal to0.01, 0.1 and1.0, respectively. The other
parameters,k1 = 0.2, λ = 1.5 andK = 10were not modified. The algorithm for labelling
was the multiway graph cut with Andrew’s potential functions. The method preserves
the real intensity edges in the filtered image and the number of subregions is effectively
controlled by the parameterk2: a smallk2 value preserves details while a largek2 value
reduces the number of regions and promotes large regions.

Flat intensity models have been extensively used in image segmentation because of its
simplicity and ease of computation. However, intensity gradients produce a “staircase”
effect and the restoration appear over-segmented. On the other hand, flexible intensity
layers are proper for regions with intensity gradients [column 2e], however edges with
low contrast are over–smoothed. Then, in order to effectively compute a segmentation,
additional work should be done either with flat or flexible intensity models. We will focus
such task in section 3, meanwhile we present an experiment with flexible intensity model



Parameters
λ k1 k2

(a) 0.01 2 0.10
(b) 0.01 1 0.10
(c) 0.01 1 0.01

Figure 3:Effect of the scale parameter in the Edge-preserving filtering task with flexible intensity
models, see text. Filtered images (first row) and label fields (second row).

and analyzes the effect of the scale parameters,k1 andk2. Figure shows the results com-
puted10 flexible models each one with9×9 control points (parameters), and a stiffness
γ = 2 (see [17] for details).Ψ was a bilinear interpolator the potentials were the Geman–
McClure function and the labelling step was achieved with the ICM algorithm. The data
corresponds to a magnetic resonance of a coronal slice of the head. First row, panels 3-(a)
to 3-(c), shows the filtered images and second row the corresponding label fields. The
left side show a summary of the parameters used. We select by hand the parameters in
column 3-(b) (central column) such that a good subjective result was obtained; this sub-
jective criteria was to preserve the main structures. Now, column 3-(a) shows the effect
of reducing the data term robustness. So that, more details are preserved and the granu-
larity is low. On the other hand, if the edge detection is increased (keeping fixed the data
term robustness) small details are also preserved but the solutions appear more granular,
column 3-(c)).

3 MAP Restoration and Segmentation
The experiments on subsection 2.1 illustrated the performance of the parametric restora-
tion method. In those experiments, we appreciated that edges can effectively be preserved
in the “restorations” or filtered images. Those results are comparable with non-parametric
edge preserving regularization methods as the reported in Refs. [14]-[17]. However, it
is important to note that the computed label maps (see second row in figure 3) need be
refined in order to effectively estimate the segmentation map,ĉ, the real GOM (figure
1-(a)). For example, in panel 3–(b), the brain region is smooth, but there were needed at
least two intensity models. So these subregions should be merged.

In this section, we extend the parametric restoration method presented in section 2
for effectively compute a segmentation. A graph–based interpretation motivates an ap-
proach for weighting the edges of the graph that represent the relationship (or similarity)
between subregions. This more general approach is derived in the same form as the origi-
nal formulation: with base on MRF and Bayesian Regularization. In the graph paradigm,



Figure 4: High-level MRF. Nodes represents the models and the edges,l , represent the intra–
models interaction. Models pairs with high interaction are candidates to be grouped. (a) Global
models (GM) and (b) local models (LM).

the intensity models are represented by nodes and the inter–model interaction processes
is modelled by the weights,l , see figure 4. We estimate the fieldl as a hidden variable
of our system and establish a formal mechanism for introducing prior knowledge in its
computation.

The approach implements the segmentation by merging labels with high affinity. In
the new formulation, the edges,l i j ∈ [0,1], need be estimated. Differently to standard
graphics–based region grouping algorithms [18, 19, 24] or heuristics merging procedures
[25], we incorporatel i j in our MRF formulation to explicitly model the degree of in-
teraction or affinity between the pair of modelsi and j. The join posterior probability
distribution for the restoration,f (c,θ), and the interaction coefficientsl , corresponds in
this case to:

P( f , l | g) ∝ P(g | f , l)P( f | l)P(l) , (7)

where we propose to use a conditional probability,P( f | l), such that its negative–log,
∑〈r,s〉ρ2 (φ (θcr , r) ,φ (θcs,s)) l2

cr cs
, expresses the relationship between the low-level and

high-level MRF’s andlpq measures of the interaction between two given regions or mod-
els 〈〈p,q〉〉 (nodes), where〈〈,〉〉 denotes a high-level “clique.” Therefore, the local en-
ergy of the particular low-level clique〈r,s〉 results from the potential of the clique〈r,s〉
and the interaction degree between the modelscr and cs. The prior distribution forl ,
penalizes the merging process of the given pair of regions (IM)〈〈p,q〉〉: − logP(l) =
µλ ∑〈〈p,q〉〉 (1− lpq)

2; whereµ is a positive parameter. Thus, (7) is of the form:P( f , l |
g) ∝ exp(−Ul (c,θ , l ;g)) andl is computed as the minimizer ofUl (c,θ , l ;g), for a givenc
andθ in an additional step of our iterative algorithm, with the closed formula:

lpq =
µ |〈〈p,q〉〉|

µ |〈〈p,q〉〉|+∑〈cr ,cs〉=〈〈p,q〉〉ρ2 (φ (θcr , r)−φ (θcs,s))
, (8)

where|〈〈p,q〉〉| is the cardinality of the set of first neighboring pixels with labelsi and
j—note that〈〈·〉〉 is a symmetric operator. Examining (8), one can see thatlpq ∈ [0,1]:
lpq ≈ 1 if the sum that ranges over all the cliques〈cr ,cs〉 = 〈〈p,q〉〉 is small (i.e., the
affinity between modelsp andq is small) andlpq≈ 0 if the number of highly interacting
low–level cliques increases. The availability of the interaction processes,l , thus enables
an alternative segmentation approach in which models are grouped.

Figure 5 compares minimization algorithms for the MAP parametric segmentation.
First column shows the restoration and second column shows the edges between models
superposed on the original synthetic noisy data, a piecewise constant (of image256×
256pixels) with 3 gray levels corrupted with gaussian noise). Row 5a shows the results
computed (after 1500 sec.) with the simulated annealing (SA) algorithm using the exact



Figure 5: MAP parametric restoration (first row) and segmentation (second row). (a) Simulated
annealing (SA) with exact IM, (b) SA withK = 10. (c) Proposed method with ICM labelling and
merging. (d) Proposed method with multiway cut labelling.

3 intensity models (IM). Row 5b shows the partial result of one labelling step computed
with SA using 10 IM after 20000 sec. Row 5c shows the result computed with 10 IM
using ICM labelling and then by grouping in 3 classes the IM according to the estimated
interaction processes,l . The intra–model graph corresponds to the illustrated in Fig. 4a.
Row 5d shows the result directly computed using the multiway cut labelling (with 10 IM
and with parameter as in Fig. 5d). The computational time for 5c and 5d were similar (5
sec. approximately). In general, that multiway cut labelling produces better results than
ICM labelling because it is not easy trapped by a “bad” local minima and the parameter
k2 controls effectively the size (and number) of the regions. This is an important feature
for merging based segmentation because it efficiency depends on the number of regions.

4 Practical Algorithm for Restoration and Segmentation
Now, we present a practical implementation for segmenting complex scenes, i.e. images
with regions with large intensity gradients and gaps in edges. The keystone of this iterative
procedure is to assume that:
I) The label mapc is given. This means that an initial over–segmentation of the image is
available. It can be computed very efficiently with the parametric restoration method pre-
sented in section 2 (for instance, with the multiway cut implementation for the labelling
step).
II) The image intensity is modelled with dense membranes (i.e.fr = θcr ,r ). In such
case, the parameters, of the layerq, that need be updated and stored in memory are the
ones such thatcr = q. Therefore, the whole set of useful parameters can be stored in a
single image with the same dimension of the data,g. We define such useful parameters as

θr
de f
= θcr ,r .
Then, we propose the cost function:

Û(θ , l ;c,g) = ∑r∈L ρ1 (θr ,gr)+λ ∑〈r,s〉
[
ρ2 (θr ,θs) l2

cr cs
+ µ (1− lcr cs)

2], (9)

wherec is a given over–segmentation. The algorithm is following described: in a first
step the alternated minimization of (9) w.r.t.θ , and l is performed and then in a sec-
ond step the two subregions (labels) with largest affinity are merged. We continue the
minimization-merging iterations while the highest affinity is larger than a given threshold,
τ. This threshold can be estimated as:τ = minqq lqq. Differently to the region competition
algorithm[26], the merging process is controlled by the affinity measurel .

Figure 6 illustrates the segmentation process of real images with regions within large
gradient in the gray level. Column 6-(a) shows the initial over–segmentation. The final



Number of Regions
Row c ĉ

1 17 10
2 50 30
3 352 320

Figure 6:Segmentation of real images, rows: 1) obelisk, 2) Snow White, and 3) cameraman

segmentations and restorations are shown in columns 6-(b) and 6-(c), respectively. The
results correspond to stop by hand a systematic merging of regions, i.e. at each iteration
the pair of IM with largest affinity are merged. The experiment details are resumed in the
left side of figure 6. The parameters were fixed in the set of experiments:K = 10,λ =
10,k1 = 0.2,k2 = 1,µ = 0.1.

5 Conclusions
We presented a new general Bayesian formulation for simultaneously restoring and seg-
menting images. We derived a set of methods suitable for tasks in image processing and
low-level computer vision. The presented methods are associated with the MAP estima-
tion criterion, where prior information is introduced in form of a two-level MRF. The low–
level MRF models the information required to recover piecewise smooth restorations. The
label map computed with the low-level MRF corresponds to an over–segmentation of the
image. The high–level MRF models affinity or interaction between simple intensity mod-
els or labels (represented by regions or layers). In this way, the correct segmentation is
obtained by taking into account the estimated information on inter-models affinity. This
can be understood as a merging process of subregions into classes. We proposed efficient
minimization algorithms in terms of computational time and memory requirement that
guarantee convergence, at least, to a local minima.

M. Rivera was partially supported by CONACYT, Mexico (grant P40722-Y).
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