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Abstract

A novel variational algorithm is developed for video inpainting. Within a
Bayesian framework, using standard maximum a posteriori to variational for-
mulation rationale, we derive a minimum energy formulation for the estima-
tion of a reconstructed sequence as well as motion recovery. From the Euler-
Lagrange Equations, we propose a full multiresolution algorithm in order to
compute a good local minimizer for our energy and discuss its numerical im-
plementation. Experimental results for synthetic as well as real sequences
are presented.

1 Introduction

Since the birth, more than a century ago, of the cinema, and the apparition of video in
the 50’s, a huge amount of recorded material has been accumulated. Many of these suffer
from degradation, because of recording problems, bad manipulation, or simply the “patina
of time”. Among these degradations, blotches – i.e, following Kokaram ([7] “regions of
high contrast that appear at random position in the frame (...)”. In these regions, the
original data is usually entirely lost.

With the increasing computational power of modern computers, more and more so-
phisticated algorithms are developed for inpainting of still frames as well as video se-
quences. They can be roughly divided into stochastic and deterministic methods

In this article we are interested in deterministic algorithms for video sequence in-
painting. To our knowledge, not so many deterministic algorithms exist for this problem.
Chanas, in its Ph.D. dissertation ([5]) introduced an energy based method using explic-
itly motion. Our work is based upon his, providing a Bayesian interpretation to it. The
“dictionary” between Bayesian and variational framework ([8]) allows to define a generic
class of energy methods for image inpainting and motion recovery. Based upon a very re-
cent development in motion recovery, we instanciate this generic class into a novel energy
and present a a fully multiscale minimization algorithm for it.

The paper is organized as follow: in the next section we introduce a Bayesian frame-
work for joint inpainting and apparent motion recovery. Using standard rationale we
deduce a continuous energy minimization formulation for the posterior probability. We
show how naturally the work of Chanas fits in this setting. Then, in section 3, we in-
troduce a novel variational formulation for simultaneous motion recovery and motion
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compensated inpainting, built upon a very recent work of Brox et al. for optical flow
computation. From the Calculus of Variations, we deduce a coupled system of PDEs for
optical flow recovery and motion compensated inpainting. Section 4 presents the opti-
mization strategy we have used. Section 5 is devoted to some of the numerical aspects.
In section 6 we show some results obtained by our algorithm, both in situations where
ground truth is known and more realistic situations. We conclude in section 7.

2 A Bayesian Framework for Image Inpainting and
Motion Recovery

We introduce first some notations used in the sequel. The spatial digital domain of a
sequence will be denoted Ds, Ds

� �
0 ��������� M ��� �

0 �������	� N � , the temporal domain will be
denoted Dt

� �
0 ��������� T � and we will also use D 
t � �

0 ��������� T � 1 � . A sequence u is a
function D : � Ds � Dt �� . A motion field �v is a 2D vector valued function Ds � D 
t �
 2 , �v � x � y � t � describing the motion of a pixel at location � x � y � between time t and time
t � 1. The degraded sequence will be denoted u0, and Ω � D will denote the missing
data locus. We will also keep the same notations, with obvious modifications, for the
continuous spatio-temporal domain formulation, with this time the assumption that D and
Ω are open subsets of  2 �  .

Given the degraded sequence u0, we assume that the missing data locus Ω is known.
Our goal is to reconstruct a sequence u on D and to compute a motion field �v for that
sequence. We introduce therefore the conditional p � u ���v � u0 � Ω � . Using Bayes’ Theorem,
we can write

p � u ���v � u0 � Ω � ∝ p � u0 � u ���v � Ω � p � u ���v �Ω ��� (1)

We assume the independence of u0 and �v so that the likelihood p � u0 � u ���v � Ω � � p � u0 � u � Ω � .
We also clearly assume the independence of � u ���v � and Ω and the prior is therefore

p � u ���v �Ω � � p � u ���v � � p � u � �v � p ���v ���
We will now decompose this prior. For that, let’s imagine the following common situation
of a person watching a video on a TV set. He/she pushes the “pause” button of the VCR’s
remote control. There could be motion blur due to large motion and finite aperture times at
image acquisition, but she/he expects to see a meaningful still image displayed on the TV
screen. When the “play” button is pushed again, the animation resumes, and our person
expects to see an animation which is coherent with the content of the still, at least for a
sufficiently small amount of time, this coherence corresponding of course to the apparent
motion of the sequence. This leads us to assume that p � u � �v � has the form p � us � ut � �v � where
us and ut denote local spatial (still frame) and temporal (animation) distributions for u,
and we factor it as

p � us � ut � �v � � p � ut � us ���v � p � us � �v ��� (2)

As we see, the first term of this factorization is a direct translation of this expected tem-
poral coherence. For sake of simplicity, we assume the independence of us and �v. This is
not necessarily true, as motion edges and image edges have a tendency to be correlated,
a fact exploited by several motion recovery algorithms, starting with the work of Nagel
and Enkelmann (see for instance [9, 1]). In the other hand, many optical flow algorithms



do not use this potential dependency and provide nevertheless very accurate motion es-
timations. Putting all these elements together, we finally obtain the following posterior
distribution

p � u ���v � u0 � Ω � ∝ p � u0 � u � Ω �� ��� �
P1

p � us �� ��� �
P2

p � ut � us ���v �� ��� �
P3

p � �v ��������
P4

(3)

where (P1) is the likelihood of u, (P2) is the spatial prior for the sequence, � P4 � is the
motion prior, and (P3) is a coupling term that acts both as a temporal prior for the sequence
and a likelihood for the motion – as is the gray level constancy assumption along apparent
motion trajectories seen from either image or motion point of view. In the sequel, we
choose the simple likelihood

P � u0 � u � �
�

1 if u � u0 on D 	 Ω
0 otherwise.

(4)

Then we seek for the MAP (Maximum A Posteriori) of expression (3). In term of energy,
taking Ei

� � log � Pi � , i � 2 � 3 � 4, we simply seek for a � u � �v � satisfying
� � � u � �v � � Argmin
u � �v � E � u ���v � � E2 � us � � E3 � us � ut ���v � � E4 � �v �

u � u0 on D 	 Ω �
(5)

From now, using the rationale [8], limiting expressions for the probability distribution
involved give rise to a continuous energy formulation. The “game” is therefore to choose
meaningful expressions for each of the Ei. If we replace the likelihood (4) by the as-
sumption that outside Ω, u0 is of the form u � η for some Gaussian white noise η, so that
E1

� � log � P1 � is well defined, the reader can check that the following energy, proposed
by Chanas et al. ([5], [6]), falls clearly in our framework:

E � u ���v � ���
D

χ � u � u0 � 2dµ� ��� �
E1

� λ1
�

D
ϕ1 � �∇u � 2 � dµ� ��� �

E2

� λ2
�

D
ϕ2 ��� �v � ∇u � ut � 2 � dµ� ��� �

E3

� λ3
�

D � ϕ3 ���∇v1 � 2 � � ϕ3 � �∇v2 � 2 ��� dµ� ��� �
E4

(6)

where µ is the Lebesgue measure on D, χ is the characteristic function of the set D 	 Ω,
where the data is assumed to be known, ∇ is the spatial gradient operator, v1 and v2 are
the x and y components of the motion vector field, ϕi � x2 � � x2 or ϕi � x2 � ��� x2 � ε2 and
the λi � 0 are some constant. The sequence term u of a minimizer for this energy will
therefore be an inpainted version of u0 inside Ω and a denoised version of u0 outside.

3 The Proposed Energy

Brox, Brühn, Papenberg and Weickert have recently introduced a new variational algo-
rithm for recovering optical flow in a sequence in [2]. Denoting by �V the vector field



� �v � 1 � T , p � � x � y � t � a spatio-temporal location and f �V the shifted argument function
p �� f � p � �V � , the energy they seek to minimize is the following

E � �v � ���
D

ϕ
�
� u �V � u � 2 � γ �∇u

�V � ∇u � 2 � dµ � α �
D

ϕ
�
�D �V � 2 � dµ (7)

where ϕ � s2 � � � s2 � 0 � 0012 and D �V is the spatio-temporal differential of �V . Here not
only the gray level constancy assumption is enforced, but also the spatial gradient con-
stancy. Multiresolution settings and a careful minimization of (7) provides one of the most
accurate optical flow algorithms. For motion compensated inpainting, and especially for
fine details reconstruction, the accuracy of the flow is extremely important. It seems there-
fore appealing to use this term to build our energy. Before doing so, we note that terms
of the form f �V � f can be interpreted as forward differences semi-discretizations of ∂ f

∂ �V .
Using this remark we replace (7) by

E � �v � � �
D

ϕ ��� ∂u

∂ �V � 2

� γ ���� ∂∇u

∂ �V ���� 2 � dµ � α �
D

ϕ
�
�D �V � 2 � dµ � (8)

We then propose a variational formulation, performing inpainting and optical flow recov-
ery which is of the form (5). In this formulation, the likelihood term is the one given
by (4), the spatial term is the one from (6) and we use the above mentioned optical flow
energy. The problem is thus to find � u � �v � minimizing the inpainting energy EI
				� 				� EI � u ���v � � λ1

2
�

D
ϕ ���∇u � 2 � dµ� ��� �

E2

� λ2

2
�

D
ϕ ��� ∂u

∂ �V � 2

� γ ���� ∂∇u

∂ �V ���� 2 � dµ� ��� �
E3

� λ2

2
α �

D
ϕ � �D �v � 2 � dµ� ��� �

E4

u � u0 on D 	 Ω
(9)

where ϕ is the function used by Brox et al. Using the Calculus of Variations, such a
minimizer should satisfy the following partial differential equation in Ω

∂EI

∂u
� u � �v � � 0 (10)

and the following equation in D
∂EI

∂ �v � u � �v � � 0 (11)

We will not detail the derivative in (11) since it has been done in [2]. Using the calculus
of variations, we obtain

∂EI � u ���v �
∂u

� � λ1 div � A∇u � � λ2 div � B
∂u

∂ �V
�V � � λ2γ div 
�� div � B ∂ux

∂ �V �V �

div � B ∂uy

∂ �V �V ����� � (12)

where A � ϕ � � �∇u � 2 � and B � ϕ � � � ∂u
∂ �V � 2 � γ ��� ∂∇u

∂ �V ��� 2 � . Although the resulting equation is

apparently complex, some simple comments on its right hand terms may help provide a
better understanding of it.



� The first term of the right-hand-side of (12) corresponds to a non-linear purely spa-
tial Total Variation (TV) diffusion, which attempts to reconstruct spatially coherent
structures.

� The second term can be rewritten, omitting λ2, as

� div � B
∂u

∂ �V
�V � � � ∂

∂ �V � B
∂u

∂ �V � � B
∂u

∂ �V div ���v ���

The first part of the right-hand side is essentially what we expect for a non-linear
diffusion along the flow lines. The second part accounts for the flow divergence
(intensity creation or disparition).

� The last term is the image dual of the gradient constancy constraint along flow
lines in (7). This term attempts to enforce this constraint on the inpainted image,
enhancing local structures, so that they match along the flow lines, and in that sense,
it “diffuses” spatial gradients temporally, allowing better reconstruction of small
details. It can be rewritten, omitting λ2γ, as

div 
�� div � B ∂ux
∂ �V �V �

div � B ∂uy

∂ �V �V � ��� � div � ∂
∂ �V � B

∂∇u

∂ �V � � � div � B
∂∇u

∂ �V div � �v � � �

making more apparent the diffusion of the gradient along the flow line. Here also a
correction factor accounting for the flow divergence appears.

4 Resolution Algorithm

We present here an algorithm that aims at converging to a reasonable minimizer by solv-
ing iteratively for the image and the flow, in a spatial multiresolution setting. A main
difference with the algorithm proposed by Chanas et al. in [5, 6] is that not only the op-
tical flow is computed using multiresolution, but also the inpainting. We implicitly build
pyramids for the image sequence and the flow. In the sequel we assume that we have
N � 1 resolution levels, level N being the coarsest, level 0 being the finest, original one.
We do not require a 1

2 spatial scaling factor between consecutive levels.
At coarsest resolution we inpaint the sequence by computing a minimizer of (6) with

assumed zero-motion, i.e. that the flow lines are orthogonal to the spatial domain: uN is
computed as the solution of the following PDE

� div � ϕ � � �∇u � 2 � � � λ∂t � ϕ � � u2
t � ut � � 0 � u �

DN � ΩN
� uN

0 � (13)

where DN (resp. ΩN , resp. uN
0 ) is the sequence spatio-temporal domain (resp. degrada-

tion locus, resp. original data) at resolution level N. The spatial divergence term of this
equation is the Total Variation (TV) inpainting of Chan and Shen ([3]), while the term
∂t � ϕ � � u2

t � ut � provides a simple form of motion adaptivity. If ut is small, then our assump-
tion of zero-motion is fulfilled, and we can diffuse pixel values along the time direction.
If it is large, temporal diffusion is slowed down, and more weight is given to the spatial
inpainting part.



Once we have a coarsest resolution inpainted sequence, we can start our multiresolu-
tion process. What we do is to modify the optical flow algorithm by running the inpainter
after the interpolation of the lower resolution flow, and before updating the flow at that
resolution level. Figure 1 illustrates a typical iteration and table 1 describes the sketchy
resolution algorithm. At level k, the flow �vk is computed as a minimizer of (7), with only
one resolution level, as an update of the intermediary flow field �vk

i . Since the inpainted
image was reconstructed using �vk

i , this flow must close enough of a “good” minimizer
of (7) at that resolution. At that level the inpainted sequence uk is obtained by gradient
descent of the corresponding Euler-Lagrange equation

∂τuk � � ∂EI

∂u
� uk ���vk

i ��� uk �	� ��� � τ � �
Dk � Ωk

� uk
0 � (14)

uk

uk+1 k+1v

kvi

3) Inpainting

2) Flow interpolation

1) Flow computation

Figure 1: Multiresolution inpainting. From a sequence uk
�

1 at resolution level k � 1,
1) the optical flow is computed, 2) it is interpolated at resolution level k and 3) used to
inpaint the sequence at level k. This process is then iterated at lower pyramid levels.

1. Compute uN by spatial TV + temporal motion adaptive diffusion.

2. For k � N � 1 down to 1

� Compute �vk
�

1 from uk
�

1

� Compute intermediary flow �vk
i by interpolation of �vk

�
1

� Inpaint uk using the �vk
i

3. Compute �v0 from u0

4. Output � u0 ���v0 � .

Table 1: Inpainting algorithm



5 Numerics

In this section we briefly describe the numerics used for our inpainting PDE. The dis-
cretization of the optical flow equation has been discussed in details in [2] and we use
the scheme proposed by Chan and Shen [4] for the discretization of the spatial term of
equation (12). At coarsest resolution we use equation (13), which is solved directly, using
a fixed point strategy to cope with nonlinearities. Its spatial term is discretized using the
scheme mentioned above, the temporal part being also of that form, but simpler, since it
is only one-dimensional.

We discuss now in greater details the schemes used for operators involving the optical
flow field.

1. The first term to discretize is

div � B
∂u

∂ �V
�V � � ∂

∂ �V � B
∂u

∂ �V � � B
∂u

∂ �V div � �v ���

The left hand-side of this equation is not easily handled due to the apparition of cross-
derivatives. We have therefore chosen to discretize the right-hand side. We describe first

a scheme for terms of the form ∂
∂ �V �

B ∂ f
∂ �V � . Given a spatio-temporal location p � � x � y � t � ,

p
�

will denote the point following p along the flow line at p, i.e. p
� � p � �V � p � , while p 


will denote the point preceding p along the flow line at p, i.e. p � p 
 � �V � p 
 � , and notice
that we have � p � � 
 � � p 
 � � � p. Then we introduce two finite difference operators

D
� �V f � p � � f � p � � � f � p ��� D 
 �V f � p � � f � p � � f � p 
 �

(when p
�

is not on the image natural grid, the quantity f � p � � is computed by spatial
bilinear interpolation – its temporal coordinate is always on the temporal grid). Recalling
that B is defined as

B � ϕ � ��� ∂u

∂ �V � 2

� γ ���� ∂∇u

∂ �V ���� 2 � � ϕ � � � u � p � � � u � p � � 2� γ ��∇u � p � � � ∇u � p � �� 2 � � B � p � p � �

(observe that we are back to the formulation (7) used by Brox et. al.) the proposed

discretization of ∂
∂ �V �

B ∂ f
∂ �V � is

D 
 �V � B � p � p � � D � �V f � p ��� � D
� �V � B � p 
 � p � D 
 �V f � p ��� �

B � p � p � � f � p � � � � B � p � p � � � B � p 
 � p ��� f � p � � B � p 
 � p � f � p 
 ��� (15)

2. The location p
�

is directly available from the output of the flow algorithm, but the
location p 
 is not. This information is difficult to obtain, if possible at all (at occlu-
sion/desocclusion, and other types of singularities of the flow field). In order to over-
come this problem, we compute also the backward in time optical flow �v 
 from u �	� � t �
to u �	� � t � 1 � and we estimate p 
 as p � �v 
 � p � . From now we adopt the notation �v �

for the forward-in-time flow and �v 
 for the backward-in-time flow. The corresponding B
functions will be denoted B � and B 
 respectively. We obtain therefore

∂
∂ �V � B

∂ f

∂ �V � � p � � B � � p � f � p � � � � B � � p � � B 
 � p ��� f � p � � B 
 � p � f � p 
 ��� (16)



3. The term B ∂u
∂ �V div � �v � must be handled carefully. A naive discretization of the form

1
2

B � � u � p � � � u � p ��� div � �v � � � 1
2

B 
 � u � p � � u � p 
 ��� div � �v 
 �

where div ���v � � is discretized by standard central differences, turned to be unstable (the
“-” sign in the second term of the above formula comes from the fact that �v 
 is backward
in time). This is not totally unexpected since it is a sort of “transport” term. We favor the
best available information, i.e. the one for which the difference between the information
at p and its two flow lines neighbors is minimal. This information is quantified by the
function B. Indeed, B � provides an explicit measure of the match between the information
at location p and p

�

, not only gray level variation, but also gradient variation, a low value
of B � corresponding to a poor match, while a large value correspond to a good one1. We
use either p

�

or p 
 according to the value of B � :

B
∂u

∂ �V div � �v ��� p � �

�
B � D

� �V u � p � div � �v � ��� if B � � B 

� B 
 D 
 �V u � p � div � �v 
 ��� otherwise.

(17)

4. Discretization of the higher order terms. The first one we treat is

div � ∂
∂ �V � B

∂∇u

∂ �V � � � ∂x
∂

∂ �V � B
∂ux

∂ �V � � ∂y
∂

∂ �V � B
∂uy

∂ �V � �

Standard central differences are used for the spatial derivatives, while the resulting flow
line terms are discretized according to (16). Using an half-grid point scheme, as it is often
the case for divergence operators, involves a large amount of interpolations and produces
experimentally less accurate results. Central differences are also used for the third order
term spatial divergence, using this time (17) for the terms B ∂uz

∂ �V div � �v � , z � x � y.

6 Experimental Evaluation

We present here results on three sequences. The first one is the well known Yosemite
sequence, very often used for optical flow evaluation. The sequence is artificial and the
ground truth is known for the flow. It was degraded by removing large polygonal patches,
three of them overlapping consecutively in time, on 6 of the 15 frames. The entire se-
quence has been treated in one run. Figure 2 shows frame 3 of the original sequence, the
corresponding degraded frame and the reconstructed one. The second and third examples
we present are taken from the companion CD ROM of Kokaram’s book [7]. This second
sequence, called mobcal, is a real one with 25 frames and with complex motion patterns.
It is then artificially degraded to simulate blotches. (approximatively 1.22% of the image
is degraded with blocthes of multiple size, which do not overlap in time). We show in
figure 3 one frame from the original sequence, the corresponding degraded frame as well
as the inpainted one. Then in figure 4 we look at two particular blotches and their recon-
struction, the first one is almost perfect, while the second one is of a bit lesser quality.
The problem for that one seems to come from an incorrect motion recovery.

1It can be used for occlusion detection, and probably for blotch detection. But as is, it lacks robustness for
that purpose, as we constated it experimentally.



Figure 2: Yosemite sequence. (a) Left: Original frame 3. (b) Middle: corresponding
degraded frame. (c) Right: restored frame: at its center, the restoration is slightly unsharp,
but 3 consecutive blotches overlap here in the degraded sequence.

Figure 3: Mobcal sequence. (a) Left: Original frame 9. (b) Middle: frame with artificial
blotches. (c) Right: inpainted frame.

The third sequence, called Frankenstein, is a real degraded one, with 64 frames,
for which no ground truth is known. In our experimentations we used only a subsequence
of 5 frames, with frame 3 presenting a blotch on Frankenstein’s hair. In figure 5 we show
this frame and its reconstruction. In figure 6 we show a close-up of the damaged hair
of the character with the detected blotch and the reconstruction. Blotches were detected
using the so called rank order detector, as described in [7], modified for the optcal flow
algorithm. Fine texture details were very plausibly recreated.

7 Conclusion and Future Work

In this work we have introduced a new variational algorithm for blotch removal. Based on
a Bayesian framework for joint image reconstruction and motion interpolation, and using
a recent algorithm for optical flow recovery, we have proposed a novel energy formulation
and derived a fully multi-scale algorithm for our energy minimization. We have described
the discretization and showed the capabilities of our algorithm on some examples. We are
currently working on an inpainting-denoising formulation as well as extensions for color
and more generally vector valued image sequences. A longer term goal is to incorporate
an automatic detection of the corrupted areas.



Figure 4: mobcal sequence, details of frame 9: (a) Top left: close-up at a digit inside the
calendar. (b) Top center: blotch on that digit. (c) Top right: almost perfect reconstruction.
(d) Bottom left: close-up at a white patch on the ball. (e) Bottom center: blotch. (f)
Bottom right: partially failed reconstruction.

Figure 5: Frankenstein sequence. (a) Left: original damaged frame – observe the
blotch on the hair and at the left of the head. (b) Right. Reconstructed frame by our
algorithm.



Figure 6: Frankenstein sequence, Hair close-up. Left: the detected blotch, which
is larger that the actual degradation. Right: reconstruction, the hair texture is nicely
recreated.
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