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Abstract

This paper presents a robust and generic approach of object tracking in video
sequences. Here, the object to track is described by considering two well-
known image primitives: first, its content is described withPoints of interest.
Such points are automatically extracted and then characterized according to
a selective spatial appearance-based model. Second, the object envelope is
described with aSnake. The originality of the SAP approach consists in a
complementary use of these two primitives: the snake allows to reduce the
points tracking to a limited area in each frame, and the spatial point descrip-
tion is exploited during the snake tracking, making the process robust to wide
occlusions. Since no model of trajectory is considered, the approach is robust
to wide motions of object and camera. The relevance of this approach has
been evaluated on several video streams. Results obtained with the most rep-
resentative of them are presented in this paper. The algorithms involved have
been implemented with the aim of achieving near real-time performance.

1 Introduction

In a variety of applications of image technology, such as medical image analysis, video
surveillance or scene monitoring, it is desirable to track objects in video sequences. Con-
siderable work has been done during the past few years in object tracking. There is no
theory for the segmentation of moving objects in videos, the methods depend upon the
target application. When a model of the moving object does not exist, the encountered
approaches usually focus either on image spatial structures, or on temporal tracking with
trajectory estimation, or on both. Different kinds of approaches exist, they are usually
based on region segmentation [20, 13], blobs [16], color histograms [21], optical flow [4],
point [25] or snakes [5] tracking.

The paper is organized as follows: section 2 describes the approach of object content
description we investigate, which is based on points of interest. In section 3, we remind
of snakes principles and we present a novel approach of object segmentation and tracking
combining snakes and points of interest. Experiments on video streams are presented in
section 4 to highlight the contributions of our method, before concluding in section 5.

2 Object tracking with points of interest

Points of interest are involved in many applications, like stereovision, image retrieval or
scene monitoring. For all of these applications, the extracted points usually represent sites
where the information is considered as perceptually relevant. Ideally, the point detector
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should be able to repeat the extracted points from an image to another whatever the pho-
tometric/geometric transformations involved. Many point extractors have been proposed,
see for example the comparison study [24]. The most popular one is probably the Harris
and Stephens detector [11] with its adaptations [23, 19, 17, 15].

Temporal approaches of feature point tracking exist forpoint trajectory estimation.
Classically, the encountered techniques involve a function cost defined for three consec-
utive frames. Different linking strategies are applied to find the correspondences and
optimize the trajectories. The first solution is the one developed by Sethi and Jain in
1987 [25] and called Greedy Exchange algorithm (GE). This algorithm is based on a cost
function which penalizes the changes of direction and the magnitude of the speed vector.
Salari and Sethi [22] solve the missing and spurious measurements problem of the GE
approach by introducing phantom points. In [26], a modified version of the GE algorithm
is proposed for point trajectory estimation in sequences of facial images. In [6], the algo-
rithm ”IPAN tracker” described is based on the idea of competing trajectories. The paper
also presents a performance evaluation of feature points tracking approaches.

Most of the approaches listed above estimate a trajectory according to a local model
of trajectory. They do not exploit the visual appearance of the points to track. Since they
involve a model of trajectory, their main drawback is to be not robust to wide deformation
of non-rigid object and to wide occlusions. In this paper, we focus on spatial appearance-
based tracking approaches. Such techniques do not impose any constraint on the trajectory
of the point to track and may allow wide occlusions, as it will be demonstrated.

Traditional approaches involving aspatial description of points of interestcome from
stereovision or more recently from image retrieval applications. From the works of Koen-
derink [14] and Florack [7] on the properties of local derivatives, a lot of work has been
done on differential descriptors [23, 1, 17, 9]. The point signature is based on a combi-
nation of differential quantities, computed on grey value or color images. They can be
adapted to obtain invariance under translation, rotation, changes of scale, affine or illu-
mination transformations according to the case. Usually employed in the context of tex-
ture classification, frequency approaches have been developed by considering the Gabor
transform that allows to take spatial relations between points into account [27]. A recent
performance evaluation of local descriptors [18] has shown that the local descriptor SIFT
proposed by Lowe [15]for object recognition performs best.

2.1 Our approach of point of interest tracking

We did not make the choice of employing the SIFT descriptor in our prototype, first
because it involves a high dimensional features set (128 items for each keypoint [15]),
making it not applicable for real-time video tracking purposes. Second, this descriptor is
invariant to several image transformations, making it efficient for object recognition but
not optimal for video streams where consecutive frames differ by small transformations
(this idea will be developed in section 2.2). Therefore, the characterization employed here
is the local jet of the signal which approximates the point neighborhood by a set of image
derivatives and which is invariant to image translation. Up to ordern, it can be expressed
for the point(x,y) as follows:

J(x,y,σ) = {Ii1...ik(x,y,σ)/k = 0, ..n} (1)

whereIi1...ik(x,y,σ) represents thekth image derivative relative to thei1...ik variables
(x and y) andσ the size of the Gaussian smoothing applied during the derivatives compu-
tation. Under the gaussian assumption, the similarity measure traditionally combined with



this characterization is the Mahalanobis distanceδ 2(v1,v2) = (v1− v2)TΛ−1(v1− v2).
vi ∈ V with V ⊂ Rd is the feature space associated to the chosen characterization. The
involved covariance matrixΛ takes the different magnitudes, possible correlations and
variability of the feature components into account. In the rest of the paper, such a point
characterization space will be noted(Vd,δ 2).

Point matching algorithm. A specific model of trajectory is not exploited here. We only
suppose that the pointp j

i characterizing the objectOi of frameFi has its corresponding
point in frameFi+1 inside an area which is simply modelled by a circular windowWt of
sizet centered onp j

i . The matching algorithm consists in finding in(Vd,δ 2) the nearest
neighborpk

i+1 of p j
i , with pk

i+1 in Wt(p j
i ). A match having a distanceδ 2 higher than a

given threshold is eliminated. Under some hypothesis, the threshold can be automatically
chosen from theχ2 table. Then a classical cross-matching algorithm is applied in(Vd,δ 2)
in order to build a set of matches{(p j

i , pk
i+1)} with points involved in each match at

best one time. Semi-local geometric constraints that consider spatial relations between
neighbor points can be added to enrich the point matching algorithm [23, 9].

Our algorithm privileges the visual similarity of points of interest. Thet parameter can
be viewed as a function of the velocity of the point to track. It can be estimated from the
couple(pl

i−1, p j
i ) of matched points, as in the approaches of point trajectory estimation.

In that case, the matches involve points which are visually similar and constrained by a
particular velocity from framesFi−1 to Fi+1.

2.2 A study on models of noise

Point descriptors are subject to different kinds of noises: by definition, they are at best
only quasi-invariant [2] to any point of view and in practice, they are sensitive to image
acquisition (sensors and sampling errors may be important for images coming from video
sequences), to numerical errors, to points of interest delocalization, etc.

These considerations show the importance of the similarity measure which must be
carefully chosen for the considered descriptor to achieve best performances. An optimal
similarity measure is directly related to the shape of their variability. When considering
the Mahalanobis distance, this noise can be integrated in the similarity measure via the
covariance matrixΛ. When a model of noise of the components cannot be specified, the
way to estimateΛ comes down to different empiric solutions:

• EstimatingΛ from all the available data. This simple solution generates weights
that are not discriminant, since representing a rough model of noise. Even so, this is
the most common solution encountered to compare features with the Mahalanobis
distance. In the rest of the article, the similarity measure obtained from such an
estimation will be notedδ 2

rough;

• EstimatingΛ from points of interest whose local neighborhood is submitted to syn-
thetic photometric and geometric transformations and perturbations that usually
apply to images;

• EstimatingΛ from training sequences of real images. Several points on differ-
ent images with representative perturbations are tracked and a combination of the
covariance matrices obtained can be used as the model of noise of point characteri-
zation. This solution has been adopted in [23] for image retrieval. The Mahalanobis
distance obtained from such an estimation will be notedδ 2

trained.



The point characterization approach used for our first experiment is the local jet up to
order 2, implying the feature space(V6,δ 2). We evaluated the two models of variability
δ 2

rough andδ 2
trained through our point tracking algorithm. Several training video sequences

involving various contents and image transformations were considered to estimate the
covariance matrices. TheΛrough one was computed from the extracted points in all the
sequences. TheΛtrained one was estimated from points tracked in several frames. The
training sequences were calibrated in order to automatically determine the sequences of
extracted points and to evaluate the efficiency of our tracking algorithm: the camera was
static and the models of object motion to track were known.

If we consider a video containingN framesFi ∀i∈[1..N] with ni points of interest ex-
tracted on the object to trackOi in frameFi , we compute two kinds of scores:

Scorrect =
1

N−1

N−1

∑
i=1

|{CM(Oi ,Oi+1)}|
min(ni ,ni+1)

Sf alse=
1

N−1

N−1

∑
i=1

|{FM(Oi ,Oi+1)}|
min(ni ,ni+1)

(2)

Scorrect involves the number of correct matches{CM(Oi ,Oi+1)} obtained betweenOi

andOi+1, whereasSf alse is related to the false ones{FM(Oi ,Oi+1)}. These quantities
are normalized according to the numberMi, j of effective matches existing betweenOi

andOi+1. For simplicity,Mi, j is replaced by its upper boundarymin(ni ,ni+1). A match
is considered as correct if the involved points respect the motion of the object (which is
known for the evaluation), and false if not.

Figure 1 presents the point matching scores and histograms of distances obtained
according to three models of variability. For the moment, we only focus on theΛrough

andΛtrained ones.

δ 2
rough distance δ 2

trained distance δ 2
constraineddistance

Figure 1: Matching scores and histograms of distances obtained withΛrough, Λtrained and
Λconstrained models. The third score presented is the ratio of correct matches according to the
whole set of matches found. The associatedχ2 threshold is represented by a vertical line on the
histograms (χ2 = 12.6 for d = 6).

As expected, the scores obtained clearly confirm that a model of noise is necessary
to exhibit the relevance of the point characterization employed. TheΛrough model does
not represent an efficient model of the variability for the point characterization. Many
measuresδ 2

rough produced are smaller than the associatedχ2 threshold, leading to high



rates of false matches. TheΛtrained model provides a more selective measureδ 2
trained.

Note that the peak of the corresponding histogram is moved behind the threshold. The
number of correct matches is better while the number of false matches is reduced, making
6%better the ratio of correct matches compared to the matches found.

On the choice of the point characterization.The scores presented in figure 2 remind
the importance of the choice of the point characterization. Here, two characterizations are
tested: the local jet of equation 1 which is invariant to translation and the Hilbert’s differ-
ential invariants1 which combine local jet items to achieve invariance to image rotation.
The model of variability employed here is theΛtrained one. The covariance matrix has
been trained on sequences involving objects moving according to an image rotation. The
sequence used for computing the scores contains the same motion but does not belong to
the training sequences.

Figure 2:Matching scores obtained according to theΛtrained model, with two point characteriza-
tions: the local jet and the Hilbert’s differential invariants (up to order 2 and up to order 3).

The best matching results are obtained with the local jet, despite the fact that this
descriptor is not invariant to rotation, as the Hilbert’s one. This observation leads to the
following conclusion we generalize to other usual image transformations: when images
differ by small transformations (it is typical in video sequences), the way to develop the
most robust descriptor is to keep it the less invariant possible and to learn the variability
generated by the small transformations involved through the similarity measure. De-
veloping features invariant to several transformations naturally leads to a less selective
description.

Another observation concerns the sensitivity of high order derivatives. Here, adding
order 3 does not improve the scores significantly. These precise features do not resist to
the poor quality of video images, as demonstrated in [10] for image retrieval.

Constraining invariance. Estimating the features variability on training sequences also
allows to specify more precisely the range where there are allowed to vary, without to
enforce complete invariance as it is usually performed. For instance, it is possible to
constrain invariance only in a range of rotation angles. Indeed, in video sequences, it is
rare that two consecutive frames (or parts of frames) differ by large rotation angles. To
confirm this idea, theΛtrained model was re-estimated on training sequences differing from
small transformations; the model obtained isΛconstrained. We considered image rotations
with angles smaller than22 ˚. Matching results involving such a model are also presented
in figure 1. The best results are obtained with this model: the numbers of false and correct

1For grey value images, the local jet involves 6 features up to order 2 and 10 features up to order 3, while the
Hilbert’s differential invariants involve 5 features up to order 2 and 9 features up to order 3.



matches slightly decrease, but the ratio of correct matches gains2%. As illustrated with
the corresponding histogram, the similarity measureδ 2

constrainedis even more selective.

3 Object segmentation and tracking with snakes

The Snakes theory was born in 1987 with the work of Kass et al. [12]. A complete state of
art about snakes can be found in [3]. Snakes are widely used for segmentation, shape mod-
elling and motion tracking. A snake can be represented as a parametric curveC : v(s) =
(x(s),y(s)),∀s∈ [0..1]. From a given starting position, the snake deforms itself in order
to stick to the nearest salient contour. The snake behavior and its evolution are governed
by a weighted combination of internals and externals forces and is computed as an energy
function E to minimize, withE =

∫ 1
0 (α(s)|v′(s)|2 + β (s)|v′′(s)|2)ds− ∫ 1

0 |∇I(v(s))|2ds.
Minimizing E is not easy. A numerical solution consists in considering a discrete repre-
sentation ofC and in developing an algorithm which proceeds iteratively.

Regularization of the curve. The discrete snake is a vector of node(1..i) linked by
segments. Three forces are usually applied on each node of the snake. The first one is a
stretchingforce which can be written asEstretching= |

√
(xi −xi−1)2 +(yi −yi−1)2|n−Dre f

whereDre f represents the initial distance between two consecutive nodes. The second
force is thebendingforce which can be written asEbending= (xi−1−2xi +xi+1)2+(yi−1−
2yi + yi+1)2. This curvature is an approximation which is faster to compute. The third
force is theexternalforce which comes from the image itself:Eexternal = −|∇I(x,y)|2.
Some temporal forces can be added to help during the tracking [5].

Minimizing the energy. In order to reduce computation time, a determinist algorithm
which reduces the total energy of the snake by reducing the energy of each node separately
was chosen. This process is iteratively repeated as the snake energy decreases. During
the optimization, the candidate neighbors of each node stay on a segment orthogonal to
the tangent of the node. For each candidate, the energy is computed as described above.

3.1 Exploiting points of interest to enhance snake tracking

At present, we are able to characterize the viewOi of an object in a frameFi with a
set of interest points notedPi and with a discrete snake notedSi . The complete object
characterization obtained is the couple(Pi ,Si). In this section, we propose a method
consisting in exploiting thePi features to make the snake tracking more robust.

Let consider two sets of pointsPi andPj characterizing two viewsOi andO j of the
same object in two framesFi and Fj . Matching these two sets (or subsets) allows to
estimate the image transformationTi, j existing betweenOi andO j . Here, the objective is
not to estimate the motion of the object betweenFi andFj , but only the object evolution
in the frames. Consequently,Ti, j can be used to enhance the snake tracking between two
consecutive framesFi and Fi+1: the snakeSi+1 can be initialized withTi, j(Si), before
optimizing it for the viewOi+1.

Robustness against wide occlusions.According to the object characterization we have
adopted, we consider that an object becomes occulted in a frameFi when few pointsPi

can be matched withPi−1. In such a case, points are extracted in the whole framesFj, j>i

as long as the object is occulted. The corresponding sets obtained are calledPj,global.



Now, let suppose that we have at our disposal the description noted(Pire f ,Sire f ) of
one of the viewsOire f before the object occlusion, and the setPj,global extracted from the
frameFj when it reappears.Pire f andPj,global can be compared according to the approach
detailed in section 2.1. It is reasonable to suppose that the points ofPj,global which are
involved in the matches obtained give a characterizationPj of the viewO j . Then esti-
matingTire f , j from some of the points(Pire f ,Pj) in correspondence allows to initialize in
Fj a snake withTire f , j(Sire f ). This technique supposes that a viewOire f which is quite
similar toO j exists and that(Pire f ,Sire f ) is available. To do that, our approach consists in
storing during the tracking sub-samples(Pi ,Si)i=k1,..,kD of the object characterization in a
FIFO list calledHD. Under this hypothesis,(Pire f ,Sire f ) can be chosen withinHD as the
description which fits better a subset ofPj,global. The algorithm is illustrated in figure 3.

? ?

History Fj Fj

Matching of pointsPj,global with pointsPi1, Pi2 andPi3

HD(Fi1) HD(Fi2) HD(Fi3) (a) (b)

Figure 3:Tracking of a face after a full occlusion. On the left, 3 items of the history list. On the
right, (a) shows the pointsPj,global extracted on a whole frameFj after the occlusion.• points refers
to thePj which better match with points ofHD (here withPi2) and+ points are unmatched points.
The dotted snake drawn isTi2, j (Si2) = Sj,init . (b) shows thePj points plus the optimized snakeSj
obtained fromSj,init .

3.2 The complete algorithm of tracking with snakes and points

The SAP algorithm proceeds as described in Algorithm 1. Points are extracted using the
Precise Harris detector and characterized with the local jet associated to(V6,δ 2

trained). Two
points sets are matched according to the matching approach presented in section 2.1.

In this algorithm, the windowWSi−1 considered for the points of interest extraction
in frameFi is based on the snake computed in frameFi−1. The area associated toSi−1

only gives inFi a first approximation of the area where to extract the points that will
characterize the object. Since the points to track may have moved between the two frames,
it is necessary to consider an enlarged surface. We consider a simple dilatation of the
surface associated toSi−1, notedA (Si−1). The size of the dilatation can be viewed as a
function of the points velocity, as for the parametert of the windowWt used during the
point matching process between two frames (see section 2.1).

4 Results of object tracking

In this section, we evaluate the robustness of the SAP prototype against a full occlusion.
The actual video resolution is QCIF (352×288) and image is acquired in YUV12 format
(4:2:0). Only the Y part, containing the grey level information is exploited.



Algorithm 1: Object tracking with snakes and points of interest.

// Structures initialization
- Manual surrounding of the object to track inF1. It givesS1,init ;
- Optimization ofS1,init for the objectO1. A refined snakeS1 is obtained;
- Extraction of a set of pointsP1 in F1 inside the area defined byS1;
For each frameFj, j>1 of the sequencedo

If (Pj−1,Sj−1) 6= (∅,∅) then
// The object was globally visible in frame Fj−1

- Extraction of a set of pointsPj in Fj inside an areaA (Sj−1);
- Point matching of thePj−1 set with thePj one in(Vd,δ 2);
- Pire f ← Pj−1;

else
// The object was widely occulted in frame Fj−1

- Extraction of a set of pointsPj,global in the whole frameFj ;
- Search inHD of thePi set associated with the best score
SCRH(Pi ,Pj,global). It involves a subsetPj ⊂ Pj,global;
- Pire f ← Pi ;

end if
If enoughPire f points are matched with thePj onesthen

// The object is globally visible in frame Fj

- Estimation ofTire f , j from the matches betweenPire f andPj ;
- Sj,init ← Tire f , j(Sire f );
- Optimization ofSj,init for O j . A refined snakeSj is obtained;
- HD ← HD +(Pj ,Sj);

else
// The object is widely occulted in frame Fj

Pj ←∅; Sj ←∅;
end if
j ← j +1;

end for

Here, the object (a clock) completely disappears behind an obstacle. When disap-
peared, its trajectory does not follow the same one as before the occlusion, making a
model of trajectory unusable. Figure 4 presents particular frames before, during and after
the occlusion. The object characterizations associated are superimposed on the frames.

About computation time. For such an application, computation time depends on many
factors as the video input format and resolution, the frame rate, the number of feature
points extracted in each frame, the number of frames inHD, the area of the targeted
object, etc. All the algorithms developed have been chosen to be real-time compatible.
At present, the optimization phase have not yet been made but we think that real-time is
achievable. The following estimations give an idea of the actual performances, based on
an Intel Centrino 1.6 Ghz CPU computer:

• Snake used alone (as object tracker): 25 ms/frame (40 frames/sec);

• Snake used in cooperation with feature points tracker: 80 ms/frame (12 frames/sec);



F79 with S79,init F79 with (P79,S79) F378 with (P378,S378)

F606 with (P606,S606) F693 with P693,global F761 with (P761,S761)

Figure 4:Evolution of the object characterization(Pi ,Si) during the tracking, in the presence of a
full occlusion. In frameF79, the object is manually surrounded in order to defineS79,init . Frames
F606, F693 andF761 have been respectively taken before, during and just after the occlusion.

• Time to retrieve the best candidate inH256: 200 ms, depending on the number of
points inserted in each history item.

5 Conclusions and future work

In this paper, we have presented a novel approach for object tracking in video sequences,
named SAP. The object to track is described by considering two generic image primitives:
points of interest and snakes. No model of object nor trajectory is used to achieve the
tracking. We focused our work on two particular aspects: first, we tried to develop an
appearance-based point characterization the most robust possible to the variability that an
image coming from a video may contain. Second, we exploited such a characterization
to make the snake tracking more robust. The experiments realized on wide occlusions
clearly show the relevance of the spatial description of the points we propose, when a
temporal one would be lacking.

The SAP prototype represents the foundations of our object tracking approach. Im-
provements of this work are various. At present, we are studying a model of variability
for the point characterization which is learnt during the object tracking. We also plan to
enrich the SAP characterization by adding more temporal information, with the aim of
developing a complete model in agreement with studies on human vision, like [8].
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