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Abstract

The approach proposed in this paper takes into account the uncertainty in
colour modelling by employing variational Bayesian estimation. Mixtures
of Gaussians are considered for modelling colour images. Distributions of
parameters characterising colour regions are inferred from data statistics.
The Variational Expectation-Maximization (VEM) algorithm is used for esti-
mating the hyperparameters corresponding to distributions of parameters. A
maximum a posteriori approach employing a dual expectation-maximization
(EM) algorithm is considered for the hyperparameter initialisation of the
VEM algorithm. In the first stage, the EM algorithm is applied on the given
colour image, while the second EM algorithm is used on distributions of pa-
rameters resulted from several runs of the first stage EM. The VEM algorithm
is used for segmenting several colour images.

1 Introduction
Most algorithms used to solve various computer vision and image processing problems do
not provide an exact solution. Three main statistical approaches have been used in com-
puter vision: maximum likelihood, maximum a posteriori (MAP) and Bayesian inference.
One of the algorithms that provide a good approximation for the maximum likelihood is
the expectation-maximization (EM) algorithm [5, 6]. EM algorithm has been recently
used for colour [7, 16] and multidimensional [11] image segmentation.

In a Bayesian approach each parameter is modelled by a probability density function
and the solution is provided by integrating over the distributions of parameters. Bayesian
approaches do not suffer from overfitting and have very good generalisation capabilities
[8, 10]. Prior knowledge can be easily incorporated and uncertainty is manipulated in a
consistent manner. However, computations in the Bayesian framework can seldom be per-
formed exactly due to the need to integrate over distributions of models. The most known
Bayesian approaches are Markov Chains Monte Carlo (MCMC), Laplace approximations
and variational inference. In variational training the complex inferring problem is split in
a set of simpler calculations, characterised by decoupling the degrees of freedom in the
original problem. Variational Bayes (VB) algorithm has been proposed for estimating the
set of hyperparameters that characterises distributions of parameters for various graphical
models, as shown in [1, 2, 9, 10, 12, 15].

The graphical model used in this study consists of a mixture of Gaussians [1, 6, 15,
16]. We employ a maximum log-likelihood estimation procedure for the hyperparameter
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initialisation. A dual EM algorithm is considered for approximating the maximum log-
likelihood estimates. Parameters estimated from successive runs of a first stage EM are
used as inputs for the second stage EM. After this proper initialisation, the proposed
variational expectation-maximization (VEM) algorithm is expected to converge fast.

Image segmentation is the first processing stage in many computer vision systems.
In colour images the uncertainty is caused by noise, reflectivity properties, textures, and
other influences [13]. A survey of various methods used for colour image segmentation
is provided in [3]. For segmenting colour images, Comaniciu used a kernel based algo-
rithm in the context of mean-shift data analysis [4]. A variant of the EM algorithm has
been used for 3D segmentation of Magnetic Resonance Images (MRI) of the brain [11].
The EM algorithm was used for colour image segmentation in association with Markov
Random Fields in [7], and by employing a split-and-merge approach in [16]. In this paper
we use a deterministic Bayesian approach such as the VEM algorithm. The number of
mixture components is decided by using the Bayesian Information Criterion (BIC), which
corresponds to the Minimum Description Length (MDL) [14].

The paper is organised as follows. Section 2 introduces the variational Bayesian
methodology, Section 3 outlines the maximum log-likelihood estimation algorithm for
initialising the VEM algorithm, while Section 4 describes the Variational Bayes algo-
rithm. Section 5 presents experimental results when applying the proposed algorithm for
colour image segmentation, and Section 6 provides the conclusions of the present study.

2 Variational Bayes Methodology
Mixtures of Gaussians have been used in many applications due to their excellent approx-
imation properties. In the case of colour images, after the conversion to an appropriate
colour space, we can model the probability of each pixel by :

p(x) =
N

∑
i=1

αi
√

(2π)d|Σi|
exp[D(x; µi,Σi)] (1)

where d is the dimension, θi = {αi,Σi,µi} represents a set of parameters, N represents the
number of components, while :

D(x; µi,Σi) = −
1
2
(x−µi)

T Σ−1
i (x−µi). (2)

Furthermore, we consider that the sum of mixture probabilities is normalised, ∑N
i=1 αi = 1.

The parameters modelling a probability density function have their probabilities mod-
elled as the conjugate priors [2, 9]. In the case of a mixture of Gaussians (1) we have the
following parameters: means, covariances and mixing probabilities. The conjugate prior
for means is a Gaussian distribution N (µ |m,βS), where β is a scaling factor :

N (µ |m,βS) ∼
1

√

(2π)d|βS|
exp[D(µ ;m,βS)] (3)

A Wishart distribution W (Σ|ν ,S) is the conjugate prior for the inverse covariance matrix,
where ν are the degrees of freedom :

W (Σ|ν ,S) ∼
|S|−ν/2|Σ|(ν−d−1)/2

2νd/2πd(d−1)/4Πd
k=1Γ

( ν+1−k
2

) exp

[

−
Tr(S−1Σ)

2

]

(4)



where Tr(·) denotes the trace of the resulting matrix (the sum of the diagonal elements)
and Γ(·) represents the Gamma function :

Γ(x) =
∫ ∞

0
τx−1 exp(−τ)dτ . (5)

For the mixture probabilities we consider a Dirichlet distribution D(α |λ1, . . . ,λN):

D(α |λ1, . . . ,λN) =
Γ(∑N

j=1 λ j)

∏N
j=1 Γ(λ j)

N

∏
i=1

αλi−1
i . (6)

The variational learning is expected to provide better data modelling and generalisation
by taking into account the uncertainty in the parameter estimation.

3 Hyperparameter initialisation
For certain datasets, EM algorithm may not converge due to an unsuitable initialisation.
If we increase the number of parameters used for data modelling, as in a Bayesian infer-
ence approach, we are facing an even more challenging problem in choosing their initial
values. In this study we adopt a hierarchical approach to the hyperparameter estimation.
In the first stage we employ a dual EM algorithm by using a set of random initialisations.
After several runs of the EM algorithm on the same data set, we form distributions of
its resulting parameters. Afterwards, a maximum log-likelihood criterion is employed by
considering a second EM algorithm applied onto the given distributions of parameters.

In the E-step of the first EM algorithm, the a posteriori probabilities P̂I
EM(i|x j) are es-

timated. In the M-step we update the parameters α̂i, µ̂i, Σ̂i of the Gaussian mixture model.
The two steps E and M are computed alternatively. We run the EM algorithm L times con-
sidering various random initialisations. All the parameters estimated in each of the runs
are stored individually, forming sample distributions. We assume that these distributions
can be characterised parametrically by a set of hyperparameters. The parametric descrip-
tion of these probabilities is given by (3) for means µ , by (4) for covariance matrices Σ,
and by (6) for mixing probabilities α .

The next step consists in estimating the hyperparameters characterising the distribu-
tions formed in the previous step. This estimation would correspond to a second level of
embedding, characterising the initial estimation of the hyperparameters. The distributions
of the means resulting from the EM algorithm can be modelled as a mixture of Gaussians.
We apply a second EM algorithm onto the distributions of parameters provided by suc-
cessive runs of the first EM. The equations of the second EM processing are :

P̂II
EM(i|µ j) =

âi|Ŝi|
−1/2 exp[D(µ j;m̂i, Ŝi)]

∑N
k=1 âk|Ŝk|−1/2 exp[D(µ j;m̂k, Ŝk)]

(7)

where D(µ j;m̂i, Ŝi) is provided by (2). In the M-step of the dual EM we update the
parameters of the Gaussian mixture model:

âi =
∑LN

j=1 P̂II
EM(i|µ j)

LN
(8)

m̂i,EM =
∑LN

j=1 µ jP̂II
EM(i|µ j)

∑LN
j=1 P̂II

EM(i|µ j)
(9)



Ŝi =
∑LN

j=1 P̂II
EM(i|µ j)(µ j − m̂i,EM)(µ j − m̂i,EM)T

∑LN
j=1 P̂II

EM(i|µ j)
(10)

In the second stage of the dual EM algorithm we consider randomly picked data sam-
ples x j, j = 1, . . . ,M as the initial values for the hypermeans. The hypermeans m̂(0) are
calculated as the averaging of the resulting means. The corresponding covariance matrices
for the Gaussian distribution of means S, are stored as well. The parameter β is calculated
as a scaling factor of the covariance matrices corresponding to the initial distributions Σ̂,
obtained by the first EM, to those of the mean distributions S obtained from (10), respec-
tively. This parameter is initialised as the average of the eigenvalues of the matrix Σ̂S−1,
which can be calculated as the value of the trace divided by the space dimension:

βi(0) =
∑L

k=1 Tr(Σ̂ikS−1
ik )

dL
(11)

where L is the number of runs for the first EM algorithm. The number of degrees of
freedom is initialised as equal to the number of dimensions ν = d.

The Wishart distribution W (Σ|ν ,S) characterises the inverse covariance matrix. We
initialise the degrees of freedom νi(0) = d, while for the initialisation of S we consider
the distribution of Σ̂. We apply a Cholesky factorisation onto the matrices Σ̂k, k = 1, . . . ,L
resulted from successive runs of the EM algorithm. The Cholesky factorisation results
into an upper triangular matrix Rk and a lower triangular matrix RT

k such that :

Σ̂−1
ik = RikRT

ik (12)

We generate L subgaussian random vectors N, each of dimension d, whose coordinates
are independent random variables N (0,1). The matrix S will be initialised as [8] :

Si(0) =
∑L

k=1 RikNk(NkRik)
T

L
(13)

For the Dirichlet parameters we use the maximum log-likelihood estimation for (6).
After applying the logarithm on (6) and differentiating the resulting expression with re-
spect to the parameters λi, i = 1, . . . ,N we obtain the following iterative expression :

ψ(λi(t)) = ψ(
N

∑
k=1

λk(t −1))+ logE[α̂i] (14)

where t is the iteration number, logE[α̂i] is the expectation of the mixing probability
α̂i, and where ψ(·) is the digamma function (the logarithmic derivative of the Gamma
function):

ψ(λi) =
Γ′(λi)

Γ(λi)
(15)

where Γ(·) function is provided in (5). We consider the mean of mixing probability dis-
tributions, estimated in the first EM stage, as an appropriate estimate for E[α̂i]. The
hyperparameters λi, are calculated by using Newton’s method as follows :

λi(t) = λi(t −1)−
ψ(λi(t))−ψ(λi(t −1))

ψ ′(λi(t))
(16)

Just a few iterations are usually necessary in order to estimate the Dirichlet hyperparam-
eters λi(0), i = 1, . . . ,N.



4 Variational Expectation-Maximization algorithm
Integrating over the entire parameter space would amount to a very heavy computational
task, involving multidimensional integration. Variational Bayes algorithm has been used
for estimating hyperparameters of mixture models [2, 9]. In our approach we use the
initialisation provided by the maximum log-likelihood as described in previous Section.
The proposed algorithm is called variational expectation-maximization (VEM) algorithm.
The VEM algorithm is iterative and consists of two steps at each iteration: variational
expectation (V-E) and variational maximization (V-M). In the first step we compute the a
posteriori probabilities, given the hidden variable distributions and their hyperparameters.
In the V-M step we find the hyperparameters that maximise the log-likelihood, given the
observed data and their a posteriori probabilities.

In the V-E step we calculate the a posteriori probabilities for each data sample x j,
depending on the hyperparameters :

P̂(i|x j) = exp

[

−
1
2

log |Si|+
1
2

d log2+
1
2

d

∑
k=1

ψ
(

νi +1− k
2

)

+

+ψ(λi)−ψ(
N

∑
k=1

λk)−
νi

2
(x j −mi)

T βiS−1
i (x j −mi)−

d
2βi

]

(17)

where i is the mixture component, d is the number of dimensions, j denotes the data
index, ψ(·) is the digamma function from (15), and D(x j;mi,βiSi) is provided in (2).

In the V-M step we perform an intermediary calculation of the mean parameter as in
the EM algorithm, but considering the a posteriori probabilities from (17):

µ̂i,VEM =
∑M

j=1 x jP̂(i|x j)

∑M
j=1 P̂(i|x j)

(18)

The hyperparameters of the mean distribution are updated as follows :

mi =
βi(0)mi(0)+ ∑M

j=1 P̂(i|x j)x j

βi(0)+ ∑M
j=1 P̂(i|x j)

(19)

Si = Si(0)+
M

∑
j=1

P̂(i|x j)(x j − µ̂i,VEM)(x j − µ̂i,VEM)T

+
βi(0)∑M

j=1 P̂(i|x j)

βi(0)+ ∑M
j=1 P̂(i|x j)

(µ̂i,V EM −mi(0))(µ̂i,VEM −mi(0))T (20)

while the hyperparameters for Wishart and Dirichlet distributions are updated as :

βi = βi(0)+
M

∑
j=1

P̂(i|x j);νi = νi(0)+
M

∑
j=1

P̂(i|x j);λi = λi(0)+
M

∑
j=1

P̂(i|x j) (21)

The effectiveness of the modelling is shown by the increase in the log-likelihood with
each iteration. The convergence is achieved when we obtain a small variation in the log-
likelihood for the given set of a posteriori probabilities. The BIC cost criterion is used to
choose the necessary number of mixture components :

CVEM(N) =
M

∑
i=1

log p(xi)−
N
2

[

3+d +
d(d +1)

2

]

logM (22)



where the first term is the log-likelihood of the data for p(xi), N is the number of com-
ponents and M of data samples. The number of components N is considered as that
corresponding to the largest CVEM(N).

We assume that each component in the given mixture of Gaussians is assigned to a
certain range of colours in the image. Variational segmentation of a colour Vk, k = 1, . . . ,N
is obtained following a hard decision onto the resulting a posteriori probabilities :

Vk = {x j | k = arg
N

max
i=1

P̂(i|x j)} (23)

where P̂(i|x j) are the a posteriori probabilities obtained at the convergence of VEM algo-
rithm. An important issue in colour image segmentation is the selection of an appropriate
colour space and that of a representative set of colours. Image respresentation in the
L*u*v* colour space has been found as appropriate to be modelled by Gaussian mixtures
[4, 16].

5 Experimental results
The proposed algorithm has been applied for segmenting several colour images. We
present the results for three colour images, entitled “Sunset,” “Lighthouse,” and “For-
est” shown in Figure 1. We can observe that “Sunset” image displays a lighting variation
in the background, “Lighthouse” contains a mixture of constant colour areas and textures,
while “Forest” displays natural textures. The first step consists in transforming the colour
coordinate system from RGB to L*u*v* in order to obtain a more adequate colour space
for segmentation [4, 7, 13].

The input space is three-dimensional and we consider only pixels resulted from sub-
sampling the images by two on each axis. We apply the variational expectation-maximiza-
tion (VEM) algorithm as described in Sections 3 and 4. The initialisation is performed by
employing the dual EM algorithm. The first EM is run considering 10 different initiali-
sations and a total amount of 10N samples are generated. The second EM was initialised
with data samples from the given data set. After running the dual EM algorithm on the
colour data and onto the resulting EM parameters, we use the maximum likelihood ini-
tialisation from Section 3 to initialise the hyperparameters for the VEM algorithm. VEM
algorithm provides the set of hyperparameters. We calculate the a posteriori probabilities
(17) for the entire image. Each image is split in regions based on the colour, considering
a Gaussian mixture model for colour images. The hard decision for segmentation is taken
by assigning a pixel to that colour region that corresponds to the maximum a posteriori
probability for that component (23).

Each segmented region Vk, k = 1, . . . ,N is displayed in the colour corresponding to
its hypermean in Figures 2, 3 and 4. Segmented “Sunset” image is shown in Figure 2a
when considering 7 mixture components, in Figure 2b when considering 10 mixture com-
ponents and in Figure 2c when using 8 mixture components. In these images we can
observe a good separation of the palm-tree from the background as well as the smooth
separation of the twilight shadows in the background. Segmented “Lighthouse” image is
displayed in Figure 3a when using 8 components, in Figure 3b when using 10 components
and in Figure 3c when considering 9 components. In these segmented images we can ob-
serve a good separation of the sky from the sea and ground, respectively. In Figure 4a
we represent the segmented “Forest” when using 5 components, Figure 4b when using 6
components and in Figure 4c when considering 9 components. In all these images we can
observe a good texture segmentation based only on the colour information.



(a) “Sunset” (b) “Lighthouse” (c) “Forest”

Figure 1: Original images to be segmented.

(a) Using 7 components. (b) Using 10 components. (c) Using 8 components.

Figure 2: Segmentation of “Sunset” image with VEM algorithm.

(a) Using 8 components. (b) Using 10 components. (c) Using 9 components.

Figure 3: Segmentation of “Lighthouse” image with VEM algorithm.

(a) Using 5 components. (b) Using 6 components. (c) Using 9 components.

Figure 4: Segmentation of “Forest” image with VEM algorithm.



The number of mixture components has been calculated using Bayesian Information
Criterion (BIC) (22). The plots displaying the evaluation of CVEM(N) for a certain set of
components for each image are displayed in Figure 5. From Figure 5a we observe that 7
components are needed to segment the “Sunset” image, from Figure 5b that 9 components
would be more appropriate for the “Lighthouse” image, while from Figure 5c we remark
that five components would be sufficient for the “Forest” image. As we observe from
these plots, according to the BIC criterion, for a small number of components the images
are not properly segmented. We can observe that for a certain number of components we
reach the saturation in the cost function CV EM(N).

We compare the proposed variational colour segmentation algorithm with expectation-
maximization (EM) algorithm [5, 6, 7, 16]. The average likelihood La is given by:

La =
1

MN

N

∑
i=1

M

∑
j=1

P̂(i|x j) (24)

For both algorithms we consider the average of ten different runs, considering random
initialisation for the EM. Peak signal to noise ratio (PSNR) is calculated between the
original image and the segmented image, when assigning the hypermean value to entire
segmented regions. The comparison results, considering the average likelihood and the
PSNR are shown in Table 1, where the standard deviation is calculated for each result.
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(a) “Sunset” image. (b) “Lighthouse” image. (c) “Forest” image.

Figure 5: Estimating the number of mixture of Gaussian components using Bayesian
Information Criterion (BIC).
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Figure 6: Average likelihood variation with the iteration.

From Table 1 we can observe that the average a posteriori probability for “Forest”
image is larger than those for “Sunset” and “Lighthouse” images. In all three colour
images we have obtained better segmentation results when using VEM compared to the
EM. The same convergence criterion has been used for both algorithms, i.e. when the
log-likelihood La from (24) varies with less than 1% from one iteration to another. In



Colour Images
Algorithm Measure “Sunset” “Lighthouse” “Forest”

(N=7) (N=8) (N=5)
La 0.3676 0.5093 0.4435

EM ± 0.0051 ± 0.0228 ± 0.0013
PSNR 14.76 12.08 5.35
(dB) ± 2.07 ± 2.49 ± 0.39
La 0.3759 0.5209 0.5587

VEM ± 0.0063 ± 0.0059 ± 0.0311
PSNR 18.64 15.88 10.96
(dB) ± 0.40 ± 1.08 ± 0.59

Table 1: Comparison between EM and VEM algorithms in colour image segmentation.

Figure 7: Original images showing sunsets.

Figure 6 we display the variation of La with respect to iteration number. Another set of
three colour images are shown in Figure 7, while Figure 8 provides their segmentation
when using VEM algorithm.

Figure 8: Segmented sunset images using VEM algorithm.

6 Conclusions
We propose a new variational algorithm for colour image segmentation, by considering
a mixture of Gaussians model. The variational algorithm is derived from the Bayesian
extension of the expectation-maximization algorithm and it is called variational expecta-
tion maximization (VEM) algorithm. This paper provides a solution for the initialisation
problem in the variational training when representing colour images. The initialisation of
the proposed VEM algorithm has two stages. In the first stage we model distributions of
parameters resulting from repetitive runs of the EM algorithm on the same image. In the
second stage we apply maximum log-likelihood estimation in order to obtain initial hy-
perparameter estimates for the VEM algorithm. We have used appropriate estimators for



the parameter distributions under consideration: Normal for the means, Wishart for the
covariance matrix, and Dirichlet for the mixing probabilities. The segmentation results
provided by the VEM algorithm are good for various colour images.
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