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Abstract

This paper reports on work which fuses three different appeze models to
enable robust tracking of multiple objects on the basis tduwo Short-term
variation in object colour is modelled non-parametricakyng adaptive bin-
ning histograms. Appearance changes at intermediate talessare rep-
resented by semi-parametric (Gaussian mixture) modeleahparametric
subspace method (Robust PCA) is employed to model long texiohesap-
pearance. Fusion of the three models is achieved througitlpdiltering
and the Democratic integration method. It is shown how rbbasmation
and adaptation of the models both individually and in coratam results in
improved visual tracking accuracy.

1 Introduction and Related Work

Appearance models play a vital role in visual tracking ofealt§. They must remain
robust to confounding factors such as noise, occlusiagigtitig changes, and background
variation while adapting to appearance changes caused bgma@nd deformations of
the tracked entity. This paper shows how robust adaptatidrfasion of models based
onglobal statistics, Gaussian mixtures, andview-based subspace models enables a multi-
object tracking framework to exploit the advantages of gaethod.

Global statistics techniques such as colour histograms heen frequently used for
object tracking due to their simplicity and versatilityese.g. [6]. McKenna et al. [5]
used Gaussian mixture models (GMM) to model the colour idigion of an object in
order to perform tasks such as real-time tracking and segtien. GMMs were shown
to adapt over time to changes in appearance due to factdrasistowly-varying lighting
conditions. Furthermore, many computer vision tasks cgmased as problems of learn-
ing low dimensional linear or multi-linear models. Pringicomponent Analysis (PCA)
in particular is a popular view-based technique for paranishg shape, appearance, and
motion [1].

To overcome the drawbacks of particular methods, appreashéch fuse multiple
cues by means such as CONDENSATION [11, 6, 7] and Bayesiavoniet [9, 12] have
been gaining prominence. Concurrent probabilistic irdégn of multiple complemen-
tary and redundant cues can greatly increase the robusthessti-hypothesis tracking.
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2 Object Appearance Modelling
2.1 Background M odelling and Foreground Detection

In order to detect candidate objects (blobs) whose appeaican be modelled and com-
pared to previously tracked objects, we implemented a sysi@sed on adaptive back-
ground modelling and motion-based foreground detectiohe ffacking system main-
tains a background model and foreground motion historyajabt by frame differenc-
ing) which are adapted over time using an exponential ratdechy to determine the
decreasing influence of previous framas_; in the history. The motion historly; is
used to identify a background imagam of pixels undergoing sufficiently slow change
which can then be used to reliably update the background hisy@ad estimate its vari-
ance. Pixels are deemed to be part of the dynamic foregrdtimeli exceed a difference
threshold which is a multiple of the background variameand if they are not deemed
to be part of a shadow as determined by the DNM1 algorithmridestin [8].

Foreground pixels are clustered using connected compsaeatysis to identify mov-
ing regions (“blobs”). Blob positions are tracked using drian or particle filter with
a second order motion model. Tracked objects are matchedteztéd blobs using a
weighted dissimilarity metric which takes into accounfteliénces in predicted object lo-
cation vs blob location and changes in object appearanceodgltad by the methods
below. Object arrivals, departures and occlusions areriedeusing a Bayesian network
following the approach of [12].

2.2 Adaptive Binning Colour Histogram

Non-parametric density estimation techniques such asdrsins assume no functional
form for the underlying distribution and are robust to chesin orientation, relative po-
sition and occlusion of objects. Their simplicity and veitgg make them suitable for
modelling appearance over short time scales and duringitiisation phases of GMM
and subspace estimation. The number of histogram bins &lyspecified manually and
remains fixed. If it is too small then the estimated densityeis/ spiky whereas if it is
too large then some of the true structure in the density isosineal out. In this work, the
optimal value for the bin width is determined adaptivelyldaling the method of Leow
et al [4] who show that the mean error obtained by adaptiveibgis about half that of
fixed binning.

The optimal number and width of histogram bins is determimgctheans of k-means
clustering with colour differences computed in the CIELARase using the CIE94 dis-
tancedp. This procedure is repeatedimes or until no pixels are left unclustered.

Matching of tracked objects with candidate blobs is peridmsing weighted cor-
relation. The similarity between two histogram bins is aédted by using a weighted
product of the bin countsi[i] andH{[j], where the weightv;; is determined from the
volume of intersectiois between the two bins ardlis the cluster separation:
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Dissimilarity of histogram#i, andHq with n andn’ bins respectively is then given by:
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In order to incorporate some longer term appearance vamiamd smooth over fluc-
tuations, the histograms are adapted using exponentieaging. Given a colour his-
togramH; calculated for a blob at framteand a smoothed object colour histogr&m;
from frame t-1, the new smoothed object colour histogi&nfior framet is given by
S=aH+(1—a)S_1wherea =1— exp(—%) determines the rate of adaptation. This
is set to increase with increasing object speed in order ép lack of rapidly moving
objects.

2.3 Gaussian Mixture M oddl

Gaussian mixture models (GMM) are a type of semi-paramednisity estimation. Their
use in colour modelling combines advantages of both par&eetd non-parametric ap-
proaches. Most notably they are not restricted to certaictfanal forms (as for para-
metric approaches) and the model only grows with the conitylekthe problem and not
the size of the data set (as for non-parametric approachhs)conditional density for a
pixel ¢ belonging to an objedD is represented by a mixture bf Gaussians:

M
p(wlO) =5 P(wli)P(j); Y P())=1 0<P(j)<1 ®3)
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We perform mixture modelling is in Hue-Saturation (HS) sp#&e gain a degree of
illumination invariance. Model estimation is performedi@ab pixels using subsampling
for efficiency and discarding samples whose intensity vedwery low or close to satura-
tion. Components are estimated using k-means with priargpcoed from the proportion
of samples in each cluster. The parameters of the Gaussi@®(and covariance) are
calculated from the clusters. Model order selection isgrened using cross validation on
a training and validation set randomly selected from thel@amples. The training set is
used to train a number of models of different order, iteedyiapplying the EM algorithm
and splitting the componeitwith the lowest responsibility for the validation set asegiv

by
S p(jle) = 5 —PEPG)
1P S pePD “

Component splitting involves creating two new componermifan existing component,
and then discarding the existing component. The processrtates once a maximum in
the likelihood function is found or the maximum number ofdtions has been exceeded.

Adaptation of the GMM over time is performed using the applosuggested in [5].
Given previous recursive estimatgsg (1, 2;—1, 7—1), the estimates derived for the new
data @V, =, 7)), and estimates based on old dg& (-1, (t-L-D #lt-L-D) the
new mixture parameters for mixture model componjesute derived thus:
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In the above equatior3; = 3% _, | r("). The adaptivity of the model is controlled by the
parametet..

Matching of blobs to objects is performed by calculating bfeh's normalised data
log-likelihood.# with respect to the object's GMM:

1
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The log-likelihood threshold for accepting a match is adapted over time to take into
account current and previous log-likelihoods. Given aayofn most recent data log-
likelihoods calculated for the previousframes, it is set t@ = v — ko wherev is the
median ana is the standard deviation of the previaudata log-likelihood values.

24 Robust Principal Components Analysis

In order to acquire a stable model of object appearance owngel timescales, an ex-
tension of the Robust Principal Components Analysis (RP@&jhod proposed in [2]

is applied. RPCA enhances standard PCA by means of a piXeropitocess using M-

estimators: Givem training images represented by column vectyrsvith d elements

and with scale parametess= (010> ... 03], this essentially entails minimizing the fol-
lowing robust energy function to obtain RPCA robust meaase®, and coefficients

C:
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wherep is the Geman-McClure error functigm(x, gp) = ﬁ andop is a scale pa-
P

rameter that controls convexity and hence determines wiigidual errors are treated as
outliers. To robustly compute the mean and the subspaceegday the firsk princi-
pal components, we minimise equation 9 using gradient déeseh a local quadratic
approximation.

To ensure adequate performance for tracking, we have exteR&CA using a ro-
bust incremental subspace learning technique to effigieatcompute the Eigenspace.
In addition, rather than computing RPCA over image intgnalbne, two approaches
were implemented to retain colour information. The simplgproach maintains separate
RPCA subspaces for the hue, saturation and luminance chamtg@erforms matching
through weighted summation of the Eigenspace Euclideaardiss (see below). Best re-
sults were achieved by weighting distance in hue space withs@turation with (8, and
luminance with @, again reflecting the desirability of discounting abselbtightness
values to achieve illumination invariance.

Secondly, we applied RPCA to one-dimensional colour stedi®iistograms derived
from the HSV colour distribution of each object. Followingikbury [3], a saturation-
weighted hue histogram is calculated by using the HSV situraalues as a weight



differentiating between chromatic and achromatic colours
WG = Zx S<59Hx (10)

wheref denotes a bin of the histogram over all pixel sampledth 6 € [0°,1°,...,360].

S« is the saturation of, Hy the hue, andy; is the Kronecker delta function. Alternatively,
we implemented RPCA for a saturation-weighted hue meandriainHg, or saturation-
weighted mean length histograRy,. Both of these histograms are calculated at each
sample luminance level. Giveti+ 1 quantised luminance valuéss {0,1,2,...,N}, the
following circular statistics descriptors are calculatedeach value of:

2 2

) B A5 +B
Ag = 2,SccosHyd,¢; By = ZxScsinHy L, ¢; Hy = arctan (A—Se) ; R = y=_ s
S/

RPCA based on the saturation-weighted hue mean histograenbgst results and is the
method used in the experiments.

The arity of the pixel sample sets for Eigenspace computatias normalised by
sub-sampling (and if necessary re-sampling) object pixeisrough normalisation of the
colour statistics histograms. Re-estimation of the RPCAlehoan be performed in batch
mode by maintaining a moving window of previous samples &ligd.0 or more). This
approach was found to be cumbersome and consequently a farfficient incremental
algorithm was devised by adapting the method proposed in¢li@-estimate the RPCA
coefficients. Incremental learning of the subspace paensatso has the advantage of
increased robustness in the context of an online estimatioblem such as that of ap-
pearance modelling for tracking. Given the current RPCAusblmearu ), bases8(),
coefficients<C®) and data sampbe then at each frantehe algorithm proceeds as follows:

1. Project the data sampleinto the current Eigenspace defined by a mattH¥ =
[u1,...un] of Eigenvectorsi; and form the reconstructignof the data set:

C:U<t)T(X—H(t)), y:U(t)C+u(t) (12)

2. Compute the residuum vector= x —y, which is orthogonal tB®), and form
matricesBe andCe:

lav "] ~_[CY ¢
Be‘[B M' Ce‘[ 0 rl (13)

3. Compute Robust PCA o8, and obtain the updated robust mganand robust
basedss. Discard the least significant Eigenvector of the new bBsis Bs(:,1 : k)
and project the coefficients, to the new basi8s to obtain the coefficient matrix
for framet + 1:

Ct =Bl (Ce— pslantsa) (14)

whereln«, denotes a matrix of dimensionx n where all the elements are 1.

4. Calculate the new bases mati%*Y) and new meap % for framet + 1:

B(t+l) _ BeBs; u(t+l) — I‘l(t) + Beﬂs (15)



In order to compute the match distance between a candid#igdpresented by sam-
ple column vectoe, and an object represented by RPCA basis ve@pvee compute the
coefficientsc; which minimize:

E(c) =Zj—1p ((& — (Zi_1CiBij)) , 0) (16)

wherep is the Geman-McClure error function. The distance is thdimdd as the min-
imum of the Euclidean distances between the blob sampldiceets and each of the
object Eigenspace coefficients.

3 Adaptive Integration

3.1 Motivation and Overview

Tracking algorithms that fuse multiple complementary dugge been shown to be much
more robust than those that utilise only a single cue [11, 9267].

Adaptive colour histograms can be completely re-estima@sily from frame to
frame, and they are robust to the sort of short term noise &dthat would confuse
the RPCA model. However this may cause them to de-generateodabject motion
or deformation. GMMs can be adapted selectively and theybaoenaspects of both
parametric and non-parametric estimation. Their explicibabilistic interpretation via
model likelihoods lends itself to incorporation in a wideiety of tracking and modelling
frameworks. However they still suffer from some of the disattages of a global statis-
tic. RPCA has stability due to the statistical outlier preebut is unable to cope well with
short term changes in the object’s appearance since thesappaar as outliers. RPCA
creates robust long term appearance models which can béousedcquire objects which
have been temporarily lost due to occlusions or deformation

Combining all three allows one to model intrinsic long terppaarance (RPCA) as
well as short term incidental changes (adaptive histogi@MM) and expected vari-
ation of appearance due to object movement and gradualrdafions. Much of the
utility derives not from the models themselves but from thethnods for matching and
re-estimation (or adaptation). The important point abaibhg appearance models for
tracking is to model not only current appearance but alssvalble (and hence expected)
appearance variation.

3.2 Integration through CONDENSATION

Particle filtering algorithms such as CONDENSATION [7] palse problem of tracking
as estimation of state¢ from observationZ using the recursion:

P(X0120) OZ(Z[X0) | POXXe-2) P(Xe-11Z2 )X an

where the dynamical modp[X;|X;_1) describes state evolution and the observation like-
lihood modelZ (Z;|Xt) gives the likelihood of any state in light of current obséiwmas.
The posterior probability distribution 17 is then repraserby a weighted set of ‘parti-
cles”

pXi|ze) ={s", A" n=1...N} (18)



wheres" is the nth sample anti" is the corresponding weight such ttE&gr™ = 1.

At each step of the CONDENSATION algorithm the evolution lo¢ tweighted sample
set is calculated by applying the dynamical model to the Bleé observation likelihood
function is then used to correct the prediction by calcatathe weightg of each element

inthe seti.erg 0.2 (Z; |Xt(”>). N samples are then drawn with replacement, by choosing

a particular sample with probabilitg™ = p(Z|X = st(m). The mean state vector of an
object in frame is then modelled as the expectatifg = =\_, rWsm.

Here, we model the observation density by a function thatains Gaussian peaks
where the observation density is assumed to be high, thahisre an object could have
generated set of blobs with high probability. Each Gauspieak corresponds to the
position of a blob, and the peak is scaled by the object-bistaxce. The likelihood?
for a particle is computed as :

ZL(Z4|Xy) O exp(—k x digt?) (19)

wheredist is a distance under one of the appearance models of the loagki patch at a
given particle and the object under consideration, kaisch constant.

Likelihoods are calculated for each particle for each otlinee appearance modelling
schemes above and combined as follows:

L(Zt|Xt) O [L pea(Zt| X)) ™ [Loist (Zt] Xt )] ®2 [Lgmm(Zt [ X1)]* (20)

where 0< o, a2, a3 < 1 are the reliability weights for each appearance modey (tieed
not sum to 1), initialised tg.

3.3 Adaptation of cue weights

Adaptation of the weights in equation 20 is performed dymafh during tracking by
extending the idea of Democratic integration [11] to the CIAMNSATION framework.
Four separate observation likelihoods are computed: arnthégoint appearance model,
and three for each of the RPCA, adaptive histogram and GMMa@mce cues. CON-
DENSATION is performed separately for each of the obseowvdfiinctions, resulting in
four hypothesesRtysed: Rrpca, Renis: @andRgmm, Which are regions where the object is
thought to be in the current frame. Each region centroid isiobd by computing the
expectation of the respective particle sets for each cue.

The Euclidean distanc& between the centroid & ysq and the centroids d® pca,
Renist» Rgmm are then calculated. Since the joint observation func@ssumed to exhibit
the best performance, colour cues which resultin relatilebe values oEy are consid-
ered less reliable in the current frame and their religbilieight is lowered accordingly.
A scorey,; is computed for each colour ches follows:

tanh(—aEx; +b) +1
Ykt = >
where a, b are constants (set to 2 and 5 respectively). Givethe weightsy; for each
cuek are then adapted using first order exponential averaging:

Qi1 = Bkt + (1—B)ake (22)

wheref3 controls the rate of adaptation. Performing CONDENSATI@Nrftimes during
each frame was found not to be a bottleneck since most of thpetation time is required
for the particle distances (which need only be computed pecérame).

(21)



Figure 1:Indoor tracking results. Top: tracking using only blob features and dis-
tances. Bottom: tracking using the robust fusion of adaptive appearance models
as described above. Note how this allows identity of tracked entities (indicated by
bounding box colour) to be maintained during and across occlusions.

4 Results

To evaluate the adaptive appearance models and the fusicimamiem discussed above,
testing was carried out on a number of indoor surveillangaisaces. The tracking con-
ditions are especially demanding due to the presence omittent bright lighting, fleshy
coloured walls, motion blur and occlusions as the peoplkraat. Figure 1 shows how
the fusion framework makes tracking robust with respectddusions and movements
of people. In figure 2 it is shown how the appearance modeilimgroves accuracy in
light of erroneous blob hypotheses generated by the baakgrdifferencing and blob
detection framework.

In addition, video sequences and ground truth from the CA¥i#oject were used
for quantitative performance evaluation. Each sequensdéan annotated with the spa-
tial location, angle of rotation and extent of bounding masound individuals and groups
of people. Each such box is assigned a numerical label tdifgénin subsequent frames.
From this we derive a performance metg which computes a weighted sum of relative
centre-of-gravity distance, bounding box mass differeaoel bounding box overlap for
each of the tracked object compared to the manual annasathatric values are in the
range O (all objects tracked perfectly) to 1.0 (none of theats tracked).

Figure 3 shows results from the visual tracking for one fravh¢he CAVIAR se-
guences, while figure 4 shows results of adaptive fusiorkimngoover several frames of
a sequence. For the sequence shown, we achieved an oveaalMneof 0.874 using
fusion of all three adaptive appearance models comparecbres of 0.723, 0.798 and
0.639 using only the histogram, GMM or RPCA model respettive

5 Summary and Conclusions

Recent research has shown the benefits of employing rolatistisal and machine learn-
ing techniques to improve the performance of visual objemd@tling and tracking. This
paper shows how such methods can be employed to addressatengimg problem

of adaptive appearance modelling. While robust methodsadaptive parametric, non-
parametric and semi-parametric colour modelling are shiowmeld good results in iso-

1EC Funded CAVIAR project/IST 2001 37540, see http://hongesanf.ed.ac.uk/rbf/ CAVIAR/
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Figure 2: Left: graph plotting the reliabilities of the appearance model colour cues
for the woman shown in a test sequence. Thereisan initial risein the reliability of
all models due to the clear visibility of the woman. The large fall in reliability at
frame 1320 onwards is due to occlusion by the man entering the scene. After the
occlusion the appearance models successfully recover and their reliability increases
very rapidly. Note the lag of the RPCA (and in some cases the Gaussian mixture)
model behind the colour histogram model due to their slower adaptation. Right:
Examples of RPCA and GMM appearance models during the sequence.

Figure 3: Sample results for object detection and tracking on the CAVIAR data.
From left toright: Original frame; background variances; background subtraction;
detected blobs; resulting tracked objects (outlined in green) with ground truth data
in yellow.

lation, additional improvements in performance and rabess$ result from their adaptive
probabilistic integration. The approach effectively leages the strengths of the different
cues while discounting their weaknesses.
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