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Abstract

This paper reports on work which fuses three different appearance models to
enable robust tracking of multiple objects on the basis of colour. Short-term
variation in object colour is modelled non-parametricallyusing adaptive bin-
ning histograms. Appearance changes at intermediate time scales are rep-
resented by semi-parametric (Gaussian mixture) models while a parametric
subspace method (Robust PCA) is employed to model long term stable ap-
pearance. Fusion of the three models is achieved through particle filtering
and the Democratic integration method. It is shown how robust estimation
and adaptation of the models both individually and in combination results in
improved visual tracking accuracy.

1 Introduction and Related Work

Appearance models play a vital role in visual tracking of objects. They must remain
robust to confounding factors such as noise, occlusions, lighting changes, and background
variation while adapting to appearance changes caused by motions and deformations of
the tracked entity. This paper shows how robust adaptation and fusion of models based
onglobal statistics, Gaussian mixtures, andview-based subspace models enables a multi-
object tracking framework to exploit the advantages of eachmethod.

Global statistics techniques such as colour histograms have been frequently used for
object tracking due to their simplicity and versatility, see e.g. [6]. McKenna et al. [5]
used Gaussian mixture models (GMM) to model the colour distribution of an object in
order to perform tasks such as real-time tracking and segmentation. GMMs were shown
to adapt over time to changes in appearance due to factors such as slowly-varying lighting
conditions. Furthermore, many computer vision tasks can beposed as problems of learn-
ing low dimensional linear or multi-linear models. Principal Component Analysis (PCA)
in particular is a popular view-based technique for parameterising shape, appearance, and
motion [1].

To overcome the drawbacks of particular methods, approaches which fuse multiple
cues by means such as CONDENSATION [11, 6, 7] and Bayesian networks [9, 12] have
been gaining prominence. Concurrent probabilistic integration of multiple complemen-
tary and redundant cues can greatly increase the robustnessof multi-hypothesis tracking.
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2 Object Appearance Modelling

2.1 Background Modelling and Foreground Detection

In order to detect candidate objects (blobs) whose appearance can be modelled and com-
pared to previously tracked objects, we implemented a system based on adaptive back-
ground modelling and motion-based foreground detection. The tracking system main-
tains a background model and foreground motion history (obtained by frame differenc-
ing) which are adapted over time using an exponential rate ofdecay to determine the
decreasing influence of previous framesimi−1 in the history. The motion historyMi is
used to identify a background imagebimi of pixels undergoing sufficiently slow change
which can then be used to reliably update the background model Bi and estimate its vari-
ance. Pixels are deemed to be part of the dynamic foreground if they exceed a difference
threshold which is a multiple of the background varianceσB

i and if they are not deemed
to be part of a shadow as determined by the DNM1 algorithm described in [8].

Foreground pixels are clustered using connected components analysis to identify mov-
ing regions (“blobs”). Blob positions are tracked using a Kalman or particle filter with
a second order motion model. Tracked objects are matched to detected blobs using a
weighted dissimilarity metric which takes into account differences in predicted object lo-
cation vs blob location and changes in object appearance as modelled by the methods
below. Object arrivals, departures and occlusions are inferred using a Bayesian network
following the approach of [12].

2.2 Adaptive Binning Colour Histogram

Non-parametric density estimation techniques such as histograms assume no functional
form for the underlying distribution and are robust to changes in orientation, relative po-
sition and occlusion of objects. Their simplicity and versatility make them suitable for
modelling appearance over short time scales and during the initialisation phases of GMM
and subspace estimation. The number of histogram bins is usually specified manually and
remains fixed. If it is too small then the estimated density isvery spiky whereas if it is
too large then some of the true structure in the density is smoothed out. In this work, the
optimal value for the bin width is determined adaptively following the method of Leow
et al [4] who show that the mean error obtained by adaptive binning is about half that of
fixed binning.

The optimal number and width of histogram bins is determinedby means of k-means
clustering with colour differences computed in the CIELAB space using the CIE94 dis-
tancedkp. This procedure is repeatedn times or until no pixels are left unclustered.

Matching of tracked objects with candidate blobs is performed using weighted cor-
relation. The similarity between two histogram bins is calculated by using a weighted
product of the bin countsH[i] andH[ j], where the weightwi j is determined from the
volume of intersectionVs between the two bins andd is the cluster separation:

wi j =
Vs
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Dissimilarity of histogramsHp andHq with n andn′ bins respectively is then given by:

Dpq = 1−
n

∑
i=1

n′

∑
j=1

wi jHp[i]Hq[ j]; where
n

∑
i=1

n

∑
j=1
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n′
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j=1

wi jHq[i]Hq[ j] = 1

(2)
In order to incorporate some longer term appearance variation and smooth over fluc-

tuations, the histograms are adapted using exponential averaging. Given a colour his-
togramHt calculated for a blob at framet and a smoothed object colour histogramSt−1

from frame t-1, the new smoothed object colour histogramSt for frame t is given by
St = αHt +(1−α)St−1 whereα = 1− exp(− 1

λ ) determines the rate of adaptation. This
is set to increase with increasing object speed in order to keep track of rapidly moving
objects.

2.3 Gaussian Mixture Model

Gaussian mixture models (GMM) are a type of semi-parametricdensity estimation. Their
use in colour modelling combines advantages of both parametric and non-parametric ap-
proaches. Most notably they are not restricted to certain functional forms (as for para-
metric approaches) and the model only grows with the complexity of the problem and not
the size of the data set (as for non-parametric approaches).The conditional density for a
pixel ψ belonging to an objectO is represented by a mixture ofM Gaussians:

p(ψ |O) =
M

∑
j=1

P(ψ | j)P( j);
M

∑
j=1

P( j) = 1; 0≤ P( j) ≤ 1 (3)

We perform mixture modelling is in Hue-Saturation (HS) space to gain a degree of
illumination invariance. Model estimation is performed onblob pixels using subsampling
for efficiency and discarding samples whose intensity valueis very low or close to satura-
tion. Components are estimated using k-means with priors computed from the proportion
of samples in each cluster. The parameters of the Gaussians (mean and covariance) are
calculated from the clusters. Model order selection is performed using cross validation on
a training and validation set randomly selected from the pixel samples. The training set is
used to train a number of models of different order, iteratively applying the EM algorithm
and splitting the componentj with the lowest responsibility for the validation set as given
by

r j = ∑
ξ

p( j|ξ ) = ∑
ξ

p(ξ | j)P( j)

∑M
i=1 p(ξ |i)P(i)

(4)

Component splitting involves creating two new components from an existing component,
and then discarding the existing component. The process terminates once a maximum in
the likelihood function is found or the maximum number of iterations has been exceeded.

Adaptation of the GMM over time is performed using the approach suggested in [5].
Given previous recursive estimates (µt−1, Σt−1, πt−1), the estimates derived for the new
data (µ (t), Σ(t), π (t)), and estimates based on old data (µ (t−L−1), Σ(t−L−1), π (t−L−1)), the
new mixture parameters for mixture model componentj are derived thus:

µ t = µt−1 +
rt

Dt
(µ t − µt−1)−

r(t−L−1)

Dt
(µ (t−L−1) − µt−1) (5)



ΣΣΣt = ΣΣΣt−1 +
r(t)

Dt
(ΣΣΣ(t) −ΣΣΣt−1)−

r(t−L−1)

Dt
(ΣΣΣ(t−L−1) −ΣΣΣt−1) (6)

πt = πt−1 +
N(t)

Σt
τ=t−LN(τ)

(π (t)−πt−1)−
N(t−L−1)

Σt
τ=t−LN(τ)

(π (t−L−1)−πt−1) (7)

In the above equationsDt = Σt
τ=t−Lr(τ). The adaptivity of the model is controlled by the

parameterL.
Matching of blobs to objects is performed by calculating theblob’s normalised data

log-likelihoodL with respect to the object’s GMM:

L =
1

N(t)
Σξ∈X(t) logp(ξ |O) (8)

The log-likelihood thresholdg for accepting a match is adapted over time to take into
account current and previous log-likelihoods. Given an array of n most recent data log-
likelihoods calculated for the previousn frames, it is set tog = υ − kσ whereυ is the
median andσ is the standard deviation of the previousn data log-likelihood values.

2.4 Robust Principal Components Analysis

In order to acquire a stable model of object appearance over longer timescales, an ex-
tension of the Robust Principal Components Analysis (RPCA)method proposed in [2]
is applied. RPCA enhances standard PCA by means of a pixel outlier process using M-
estimators: Givenn training images represented by column vectorsdi with d elements
and with scale parametersσ = [σ1σ2 . . .σd ]

T , this essentially entails minimizing the fol-
lowing robust energy function to obtain RPCA robust meanµ , basesB, and coefficients
C:

Erpca(B,C,µ ,σ ) = Σn
i=1erpca (di − µ −Bci,σ)

= Σn
i=1Σd

p=1ρ
(

dpi − µp −Σk
j=1bp jc ji,σp

)

(9)

whereρ is the Geman-McClure error functionρ(x,σp) = x2

x2+σ2
p

andσp is a scale pa-

rameter that controls convexity and hence determines whichresidual errors are treated as
outliers. To robustly compute the mean and the subspace spanned by the firstk princi-
pal components, we minimise equation 9 using gradient descent with a local quadratic
approximation.

To ensure adequate performance for tracking, we have extended RPCA using a ro-
bust incremental subspace learning technique to efficiently re-compute the Eigenspace.
In addition, rather than computing RPCA over image intensity alone, two approaches
were implemented to retain colour information. The simplerapproach maintains separate
RPCA subspaces for the hue, saturation and luminance channel and performs matching
through weighted summation of the Eigenspace Euclidean distances (see below). Best re-
sults were achieved by weighting distance in hue space with 0.5, saturation with 0.3, and
luminance with 0.2, again reflecting the desirability of discounting absolute brightness
values to achieve illumination invariance.

Secondly, we applied RPCA to one-dimensional colour statistics histograms derived
from the HSV colour distribution of each object. Following Hanbury [3], a saturation-
weighted hue histogram is calculated by using the HSV saturation values as a weight



differentiating between chromatic and achromatic colours:

Wθ = Σx SxδθHx (10)

whereθ denotes a bin of the histogram over all pixel samplesx with θ ∈ [0◦,1◦, . . . ,360◦].
Sx is the saturation ofx, Hx the hue, andδi j is the Kronecker delta function. Alternatively,
we implemented RPCA for a saturation-weighted hue mean histogramHSℓ or saturation-
weighted mean length histogramRnℓ. Both of these histograms are calculated at each
sample luminance level. GivenN +1 quantised luminance values,ℓ∈ {0,1,2, . . . ,N}, the
following circular statistics descriptors are calculatedfor each value ofℓ:

ASℓ = ΣxSx cosHxδLxℓ; BSℓ = ΣxSx sinHxδLxℓ; HSℓ = arctan

(

BSℓ

ASℓ

)

; Rnℓ =

√

A2
Sℓ + B2

Sℓ

ΣxδLxℓ

(11)
RPCA based on the saturation-weighted hue mean histogram gave best results and is the
method used in the experiments.

The arity of the pixel sample sets for Eigenspace computation was normalised by
sub-sampling (and if necessary re-sampling) object pixelsor through normalisation of the
colour statistics histograms. Re-estimation of the RPCA model can be performed in batch
mode by maintaining a moving window of previous samples (usually 10 or more). This
approach was found to be cumbersome and consequently a far more efficient incremental
algorithm was devised by adapting the method proposed in [10] to re-estimate the RPCA
coefficients. Incremental learning of the subspace parameters also has the advantage of
increased robustness in the context of an online estimationproblem such as that of ap-
pearance modelling for tracking. Given the current RPCA robust meanµ (t), basesB(t),
coefficientsC(t) and data samplex, then at each framet the algorithm proceeds as follows:

1. Project the data samplex into the current Eigenspace defined by a matrixU(t) =
[u1, ...un] of Eigenvectorsui and form the reconstructiony of the data set:

c = U(t)T (x− µ(t)); y = U(t)c + µ (t) (12)

2. Compute the residuum vectorr = x− y, which is orthogonal toB(t), and form
matricesBe andCe:

Be =

[

B(t) r
||r||

]

; Ce =

[

C(t) c
0 ||r||

]

(13)

3. Compute Robust PCA onCe, and obtain the updated robust meanµs and robust
basesBs. Discard the least significant Eigenvector of the new basisBs = Bs(:,1 : k)
and project the coefficientsCe to the new basisBs to obtain the coefficient matrix
for framet +1:

C(t+1) = BT
s (Ce − µs11×t+1) (14)

where1m×n denotes a matrix of dimensionm×n where all the elements are 1.

4. Calculate the new bases matrixB(t+1) and new meanµ (t+1) for framet +1:

B(t+1) = BeBs; µ (t+1) = µ (t) + Beµs (15)



In order to compute the match distance between a candidate blob represented by sam-
ple column vectore, and an object represented by RPCA basis vectorsB, we compute the
coefficientsci which minimize:

E(c) = Σ j=1ρ
((

e j −
(

Σt
i=1ciBi j

))

,σ
)

(16)

whereρ is the Geman-McClure error function. The distance is then defined as the min-
imum of the Euclidean distances between the blob sample coefficients and each of the
object Eigenspace coefficients.

3 Adaptive Integration

3.1 Motivation and Overview

Tracking algorithms that fuse multiple complementary cueshave been shown to be much
more robust than those that utilise only a single cue [11, 9, 6, 12, 7].

Adaptive colour histograms can be completely re-estimatedeasily from frame to
frame, and they are robust to the sort of short term noise and blur that would confuse
the RPCA model. However this may cause them to de-generate due to object motion
or deformation. GMMs can be adapted selectively and they combine aspects of both
parametric and non-parametric estimation. Their explicitprobabilistic interpretation via
model likelihoods lends itself to incorporation in a wide variety of tracking and modelling
frameworks. However they still suffer from some of the disadvantages of a global statis-
tic. RPCA has stability due to the statistical outlier process but is unable to cope well with
short term changes in the object’s appearance since these may appear as outliers. RPCA
creates robust long term appearance models which can be usedto re-acquire objects which
have been temporarily lost due to occlusions or deformations.

Combining all three allows one to model intrinsic long term appearance (RPCA) as
well as short term incidental changes (adaptive histogram,GMM) and expected vari-
ation of appearance due to object movement and gradual deformations. Much of the
utility derives not from the models themselves but from the methods for matching and
re-estimation (or adaptation). The important point about using appearance models for
tracking is to model not only current appearance but also allowable (and hence expected)
appearance variation.

3.2 Integration through CONDENSATION

Particle filtering algorithms such as CONDENSATION [7] posethe problem of tracking
as estimation of statesX from observationsZ using the recursion:

p(Xt |Zt) ∝ L (Zt |Xt)
∫

p(Xt |Xt−1)p(Xt−1|Zt−1)dXt−1 (17)

where the dynamical modelp(Xt |Xt−1) describes state evolution and the observation like-
lihood modelL (Zt |Xt) gives the likelihood of any state in light of current observations.
The posterior probability distribution 17 is then represented by a weighted set of ‘parti-
cles’:

p(Xt |Zt) = {s(n)
t ,π (n)

t |n = 1. . .N} (18)



wheres(n)
t is the nth sample andπ (n)

t is the corresponding weight such thatΣnπ (n) = 1.
At each step of the CONDENSATION algorithm the evolution of the weighted sample
set is calculated by applying the dynamical model to the set.The observation likelihood
function is then used to correct the prediction by calculating the weightπt of each element

in the set i.e.πt ∝ L (Zt |X
(n)
t ). N samples are then drawn with replacement, by choosing

a particular sample with probabilityπ (n) = p(Zt |Xt = s(n)
t ). The mean state vector of an

object in framet is then modelled as the expectationE[S] = ΣN
n=1π (n)s(n).

Here, we model the observation density by a function that contains Gaussian peaks
where the observation density is assumed to be high, that is,where an object could have
generated set of blobs with high probability. Each Gaussianpeak corresponds to the
position of a blob, and the peak is scaled by the object-blob distance. The likelihoodL
for a particle is computed as :

L (Zt |Xt) ∝ exp(−k×dist2) (19)

wheredist is a distance under one of the appearance models of the local image patch at a
given particle and the object under consideration, andk is a constant.

Likelihoods are calculated for each particle for each of thethree appearance modelling
schemes above and combined as follows:

L (Zt |Xt) ∝ [Lrpca(Zt |Xt)]
α1 [Lchist(Zt |Xt)]

α2 [Lgmm(Zt |Xt)]
α3 (20)

where 0≤ α1,α2,α3 ≤ 1 are the reliability weights for each appearance model (they need
not sum to 1), initialised to13.

3.3 Adaptation of cue weights

Adaptation of the weights in equation 20 is performed dynamically during tracking by
extending the idea of Democratic integration [11] to the CONDENSATION framework.
Four separate observation likelihoods are computed: one for the joint appearance model,
and three for each of the RPCA, adaptive histogram and GMM appearance cues. CON-
DENSATION is performed separately for each of the observation functions, resulting in
four hypotheses,R f used , Rrpca, Rchist , andRgmm, which are regions where the object is
thought to be in the current frame. Each region centroid is obtained by computing the
expectation of the respective particle sets for each cue.

The Euclidean distancesEk,t between the centroid ofR f used and the centroids ofRrpca,
Rchist , Rgmm are then calculated. Since the joint observation function is assumed to exhibit
the best performance, colour cues which result in relatively large values ofEk,t are consid-
ered less reliable in the current frame and their reliability weight is lowered accordingly.
A scoreγk,t is computed for each colour cuek as follows:

γk,t =
tanh(−aEk,t + b)+1

2
(21)

where a, b are constants (set to 2 and 5 respectively). Givenγk,t , the weightsαk,t for each
cuek are then adapted using first order exponential averaging:

αk,t+1 = β γk,t +(1−β )αk,t (22)

whereβ controls the rate of adaptation. Performing CONDENSATION four times during
each frame was found not to be a bottleneck since most of the computation time is required
for the particle distances (which need only be computed onceper frame).



Figure 1: Indoor tracking results. Top: tracking using only blob features and dis-
tances. Bottom: tracking using the robust fusion of adaptive appearance models
as described above. Note how this allows identity of tracked entities (indicated by
bounding box colour) to be maintained during and across occlusions.

4 Results

To evaluate the adaptive appearance models and the fusion mechanism discussed above,
testing was carried out on a number of indoor surveillance sequences. The tracking con-
ditions are especially demanding due to the presence of intermittent bright lighting, fleshy
coloured walls, motion blur and occlusions as the people interact. Figure 1 shows how
the fusion framework makes tracking robust with respect to occlusions and movements
of people. In figure 2 it is shown how the appearance modellingimproves accuracy in
light of erroneous blob hypotheses generated by the background differencing and blob
detection framework.

In addition, video sequences and ground truth from the CAVIAR project1 were used
for quantitative performance evaluation. Each sequence has been annotated with the spa-
tial location, angle of rotation and extent of bounding boxes around individuals and groups
of people. Each such box is assigned a numerical label to identify it in subsequent frames.
From this we derive a performance metricMT which computes a weighted sum of relative
centre-of-gravity distance, bounding box mass difference, and bounding box overlap for
each of the tracked object compared to the manual annotations. Metric values are in the
range 0 (all objects tracked perfectly) to 1.0 (none of the objects tracked).

Figure 3 shows results from the visual tracking for one frameof the CAVIAR se-
quences, while figure 4 shows results of adaptive fusion tracking over several frames of
a sequence. For the sequence shown, we achieved an overall mean MT of 0.874 using
fusion of all three adaptive appearance models compared to scores of 0.723, 0.798 and
0.639 using only the histogram, GMM or RPCA model respectively.

5 Summary and Conclusions

Recent research has shown the benefits of employing robust statistical and machine learn-
ing techniques to improve the performance of visual object modelling and tracking. This
paper shows how such methods can be employed to address the challenging problem
of adaptive appearance modelling. While robust methods foradaptive parametric, non-
parametric and semi-parametric colour modelling are shownto yield good results in iso-

1EC Funded CAVIAR project/IST 2001 37540, see http://homepages.inf.ed.ac.uk/rbf/CAVIAR/



Figure 2: Left: graph plotting the reliabilities of the appearance model colour cues
for the woman shown in a test sequence. There is an initial rise in the reliability of
all models due to the clear visibility of the woman. The large fall in reliability at
frame 1320 onwards is due to occlusion by the man entering the scene. After the
occlusion the appearance models successfully recover and their reliability increases
very rapidly. Note the lag of the RPCA (and in some cases the Gaussian mixture)
model behind the colour histogram model due to their slower adaptation. Right:
Examples of RPCA and GMM appearance models during the sequence.

Figure 3: Sample results for object detection and tracking on the CAVIAR data.
From left to right: Original frame; background variances; background subtraction;
detected blobs; resulting tracked objects (outlined in green) with ground truth data
in yellow.

lation, additional improvements in performance and robustness result from their adaptive
probabilistic integration. The approach effectively leverages the strengths of the different
cues while discounting their weaknesses.
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