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Abstract

We describe an algebraic constraint on corresponding image points in a per-
spective image and a circular panorama and provide a method to estimate
it from noisy image measurements. Studying this combination of cameras
is a step forward in localization and recognition since a database of circu-
lar panoramas captures completely the appearance of objects and scenes, and
perspective images are the simplest query images. The constraint gives a way
to use a RANSAC-like algorithm for image matching. We introduce a gen-
eral method to establish constraints between (non-central) images in the form
of a bilinear function of the lifted coordinates of corresponding image points.
We apply the method to obtain an algebraic constraint for a perspective image
and a circular panorama. The algebraic constraints are interpreted geometri-
cally and the constraints estimated from image data are used to auto-calibrate
cameras and to compute a metric reconstruction of the scene observed. A
synthetic experiment demonstrates that the proposed reconstruction method
behaves favorably in presence of image noise. As a proof of concept, the
constraints are estimated from real images of indoor scenes and used to re-
construct positions of cameras and to compute a metric reconstruction of the
scene.

1 Introduction

A single panorama image contains more complete description of the object or place it
represents than a perspective image thanks to its wide field of view and its ability to
unfold objects. Therefore, a database of circular panoramas would be more representative
with less data. It is also showed to produce less reconstruction error because its rays have
a more favorable set of vergencies [14].

The ability to establish constraints between panoramas and perspective images is im-
portant when it comes to fetching a database of places or objects. Algebraic constraints are
needed for automatic image search in a RANSAC-based matching algorithms [8, 7, 10].

∗On the leave from Telecom Paris.
†This research was supported by BeNoGo IST-2001-39184, CONEX GZ 45.535, GACR 102/03/0440 and

MSM 212300013 grants.

BMVC 2004 doi:10.5244/C.18.45



Figure 1: Constraints on corresponding points in a perspective image and a circular
panorama can be formulated and used to establish correspondences, auto-calibrate the
cameras, and compute a metric reconstruction of the scene.

This paper is the first step towards such an algorithm for other than perspective images.
We show that constraints exist between perspective images and (non-perspective) circular
panoramas and how they can be estimated from image data.

Circular panoramas have been used in image based rendering for their large field of
view [12, 15]. The stereo geometry of a pair of circular panoramas has been studied [9,
5, 17] and geometric constraints between them were established [5, 4]. Reconstruction
with a pair of un-calibrated central panoramas has been done from sparse [6,1] as well as
from dense correspondences [16]. All that previous work considered (often very special)
combinations of circular panoramas.

In this work, circular panoramas are combined with perspective images. Combining
different kinds of cameras was studied in a very general framework by [13]. Perspective
images were previously combined by [18] with central catadioptric images. This works
extends that to non-central panoramas. Our approach is in technicalities somewhat similar
to the one used in [20, 2] for the X-Slits images.

2 Perspective Camera

The notations and the model for the perspective camera PX = αx,α ∈ R\0, where P is
a projection matrix, X is a scene point and x is its projection [3, page 139] follow the
nomenclature used in [3]. We will use the decomposition of P in the form P =

(

M
∣

∣−
MC

)

, where M is a 3×3 invertible matrix, and C is the affine center of the camera.
Given line coordinates l in the image, P>l are world coordinates of the plane π pro-

jecting to l. Since all rays of the camera pass through C, we have C ∈ π [3, page 186].
For a point x̄ in the image, [x̄]× [3, page 554] is a rank two system of three lines passing
through point x̄. We thus have the rank two system [x̄]×P of three planes passing through
image point x̄, and center of projection C. At least two of the planes of [x̄]×P are lin-
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Figure 2: 2(a) With a circular camera, point M is captured by a ray secant to the cir-
cular path C , and tangent to the cylinder Λ. 2(b) Points outside Λ have two images and
points inside Λ have no image. 2(c) Rays intersecting a point in space are coplanar. The
constraint on corresponding image points x̄>Q x = 0 can be interpreted geometrically.

early independent, and their intersection is the ray r̄ forming image point x̄. We need to
intersect two linearly independent planes to obtain dual Plücker coordinates of r̄, so we
form the rank 1 system of matrices Li j = LiL

>
j −L jL

>
i where Li is a line of [x̄]×P and

(i, j) ∈ {1,2,3}2, i 6= j, and look for its span. We get a skew-symmetric matrix L̄ which
is the dual Plücker coordinates of r̄.

3 Circular panoramas

Consider a sequence of images acquired by a perspective camera rotating along a circular
path C around the center O and contained in a plane π . A circular panorama is the
mosaic obtained by stitching side by side the same column taken from all images of the
sequence (figure 2(b)) [1, 16]. The two parameters of the setup are the radius R of circle
C and the angle of view γ corresponding to the column which is sampled.

We will be considering the case when the perspective camera can capture a complete
pencil of rays in the plane defined by its angle γ . In practice, this is obtained by using a
panoramic fisheye lens and shooting the sequence twice with the camera facing opposite
directions or by sampling the 180◦ circle [17]. The rays of the circular panorama do not
all intersect in a single point but they all intersect C .

3.1 Properties of a circular panorama

The rays of a circular panorama are indexed by angle θ , indicating the position of their
intersection with circle C , (figure 2(b)) and angle ϕ indicating their elevation from the
plane π (figure 2(a)). The image has the topology of a torus around C .

Consider a ray r (figure 2(a)). Denote the intersection of r with C by Z, and the
projection of r to the plane π by rπ . By construction, rπ contains angle γ with line OZ. If
we build the cylinder Λ, centered in O and tangent to rπ , the radius of Λ is Rsinγ (figure
2(b)). The radius does not depend on the ray r, only on the parameters of the camera. All
the rays are tangent to Λ. Since it is possible to draw two different tangents to Λ from a
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point X outside Λ, the point X has two images. It is not possible to draw a tangent to Λ
from a point X inside Λ. Thus, such point X has no image.

3.2 Coordinates of a ray for a circular camera

Let us now work in a Cartesian coordinate system centered in the center of the circle C

and with the z axis perpendicular to plane π . Coordinates of the intersection point Z of
the ray r with the circle C and coordinates of the intersection point Z∞ of r with the plane
at infinity can be written, using image coordinates θ and ϕ , as Z = (Rcosθ ,Rsinθ ,0,1)>

and Z∞ = (cos(θ + γ)cosϕ ,sin(θ + γ)cosϕ ,sinϕ ,0)> respectively. Since the path of the
circular camera is in affine space, it can be assumed that point C will never be at infinity.
Plücker coordinates of r are obtained as L = ZZ∞

>−Z∞Z>.
The simplicity of the circular panorama is the consequence of the fact that the coor-

dinates of the ray can be obtained easily from and the image coordinates (θ ,ϕ) and only
two calibration parameters.

4 Constraints on two views

We derive a constraint in the form x̄>Q x = 0 where x̄ are the coordinates of a point in
the perspective image, and x are the lifted coordinates of the corresponding point in the
circular panorama. While such a constraint can always be found in two-views geometry if
the rays intersect, the situation presented here is unique, because the circular camera has
only two calibration parameters. Matrix Q can be decomposed to separate perspective
and circular camera calibration. It is therefore easy to project Q̃, estimated from noisy
data, into the space of admissible matrices Q.

4.1 Deriving the fundamental matrix Q

Let r and r̄ be projection rays of a pair of corresponding points in the circular panorama
and in the perspective image respectively. Let L̄ ∗(r̄) = (l̄∗12, l̄

∗
34, l̄

∗
13, l̄

∗
42, l̄

∗
14, l̄

∗
23)

> denote
the dual Plücker coordinates of r̄. Similarly, let L (r) = (l12, l34, l13, l42, l14, l23)

> denote
Plücker coordinates of r. Rays r and r̄ intersect in a point and therefore are coplanar. Lines
L̄ and L are coplanar iff the six-vector dot product of L̄

∗ and L vanishes [3, page 54]

L
>
L̄

∗ = l12 l̄∗12 + l34l̄∗34 + l13l̄∗13 + l42l̄∗42 + l14l̄∗14 + l23l̄∗23 = 0. (1)

We shall represent a perspective, resp. a circular, image point as x̄ = (x, y, w)>, resp. x =

(cos(ϕ), cos(ϕ)cos(θ ), cos(ϕ)sin(θ ), sin(ϕ), sin(ϕ)cos(θ ), sin(ϕ)sin(θ ))>, where x̄
are homogeneous coordinates of a point in a projective plane and lifted coordinates x are

G=







−m31 m21 m31yc −m21zc −m11 m31xc −m11zc m21xc −m11yc
−m32 m22 m32yc −m22zc −m12 m32xc −m12zc m22xc −m12yc
−m33 m23 m33yc −m23zc −m13 m33xc −m13zc m23xc −m13yc






T=















R sinγ 0 0 0 0 0
0 0 0 0 R 0
0 −cosγ 0 sinγ 0 0
0 0 0 0 0 R
0 sinγ 0 cosγ 0 0
0 0 −1 0 0 0















(mi j) = (M)−1, and C = (xc,yc ,zc)
> are the parameters of the perspective camera.
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a function of circular panorama coordinates (θ ,ϕ). Plücker coordinates of the corre-
sponding rays can be written as L̄ ∗(r̄) = G>x̄ and L (r) = Tx. G and T are given on the
bottom of page 4.

Let us consider a circular panorama. An image point (θ ,ϕ) is mapped to a ray r.
Lifted coordinates x of r are related to the interpretation of Plücker coordinates of r as
a reordering of the coordinates of a direction vector of r and a vector orthogonal to r.
The product of x with matrix T transforms the two orthogonal vectors, which depend on
image coordinates (θ ,ϕ), to the Plücker coordinates of r. Parameter γ rotates the direction
vector around the z axis (and rotates and scales the other vector to stay orthogonal), and
parameter R changes the distance of the intersection of r with plane π to the origin by
scaling the other vector.

Matrices G and T are constant for a given setup of two cameras. Matrix G depends
only on parameters of the perspective camera and matrix T depends only on parameters of
the circular camera. The expected algebraic constraint on the coordinates of correspond-
ing image points is obtained by substituting the above to (1) as

x̄>Q x = 0, with Q = G T. (2)

Note that in the special case when R = 0, the circular camera is equivalent to a central
spherical camera, and matrix Q becomes a 3×3 matrix.

4.2 Search curves

The relation (2) implies a constraint on corresponding image points. The locus of points
verifying equation (2) can be found by solving equation x̄>Q x = 0 for a given point x0
(resp. x̄0) and unknown x̄ (resp. x). We get equations of a search curve

x̄>Q x0 = 0, resp. x̄>0 Q x = 0, (3)

in the perspective, resp. circular, image. Using the notation x̄>0 Q = (a0,b0,c0,d0,e0, f0),
we get the equation of the search curve in the circular panorama

a0 cos(ϕ)+b0 cos(ϕ)cos(θ )+ c0 cos(ϕ)sin(θ )

+d0 sin(ϕ)+ e0 sin(ϕ)cos(θ )+ f0 sin(ϕ)sin(θ ) = 0

and finally

tan(ϕ) = −
(d0 + e0 cos(θ )+ f0 sin(θ ))

(a0 +b0 cos(θ )+ c0 sin(θ ))
. (4)

Equation (4) has two solutions for every value of ϕ . Thus, for one perspective image point
x̄, we get two curves in the circular panorama.

The search curve can be interpreted geometrically. The image x (resp. x̄) of a point X
is mapped to a ray r (resp. r̄) (figure 2(c)). The locus of the corresponding points x̄ (resp
x) in the other image is the image of r (resp r̄). Since writing the fundamental relation
x̄>Q x = 0 induces loss of orientation information [21], the search curve (4) obtained
from Q is a superset of the image of a line. The curve (4) is not a correspondence curve,
since some of its points are not possible correspondences [11].
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4.3 Decomposing Q into parameters

Matrix Q depends only on six parameters γ ,R,det(M),xc,yc and zc. Given an admissible
Q, the parameters can be computed by writing down the system of equations involving
the 18 non-zero subdeterminants out of the total number of 20 3× 3 subdeterminants of
Q

−det(M) R x2
c sinγ = detQ456

−det(M) R zc sinγ (−yc cosγ + xc sinγ) = detQ356
...

...
...

−det(M) R2 (xc cosγ + yc sinγ) = detQ124
0 = detQ123,

(5)

where subscript i jk of Qi jk denotes the columns that are left out from Q to form a 3× 3
minor. R can be fixed as the scale parameter of the problem, e.g. to one, and the modified
system can be solved for γ ,det(M),xc,yc and zc.

There are more equations in (5) than unknowns, and thus there are more ways how to
compute unknowns. A choice of a five-tuple of equations out from (5) gives a particular
solution. If Q is admissible, all choices that give a solution, give the same solution. If Q
is not admissible, the solutions are in general different for different choices. By choosing
one of them (or any function of them), a particular projection of inadmissible Q to the
space of the admissible ones is done.

It seems to be the property of common circular panorama-perspective camera systems
that any choice gives a reasonable initial estimate of the admissible Q. This is not true in
general and allowed us to proceed farther here than with two X-Slits cameras in [2].

5 Calibrating the system

Q can be estimated from point correspondences using an adapted version of the classical
Singular Value Decomposition algorithm:

1. For each pair of corresponding points xi ↔ x̄i, x̄>i Q̃ xi = 0 is re-written as the
product of vectors Ai q = 0, where q contains values of Q̃ and elements of Ai are
products of coordinates.

2. Matrix A = [A1;A2; · · · ] is filled with vectors Ai for each correspondence

A =







u0 cosϕ0 u0 cosϕ0 cosθ0 . . .
u1 cosϕ1 u1 cosϕ1 cosθ1 . . .

...
. . .







3. According to the method described in [3, page 265], the rows of matrix A are all
scaled to have norm one.

4. SVD is used to find kerA, which is equivalent to solving for q in A q = 0.

5. Use method described in 4.3 to extract an initial guess of the calibration parameters:
γ , the center of the perspective camera (xc,yc,zc).

6. Use γ and R = 1 to compute T. Then compute T−1 and G̃ = Q̃ T−1
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7. Read values of M−1 directly from G̃ and compose P. Recompose Q.

Since only linear methods were used, the estimated Q̃ at step 4 does not satisfy the
constraints to fit in the form (2). The estimate is almost never accurate enough to be used
for reconstruction. Therefore, Q̃ is to be projected to the space of matrices Q’s satisfying
(2) by using the reprojection described in section 4.3.

A bundle adjustment allows to refine the estimation of the parameters used to com-
pute Q by minimizing non-linearly the reprojection error. Assuming that the noise in
correspondences has an identical independent normal distribution, the likelihood of Q is
maximized. We use the Matlab function

�����������	��
��
, which implements the Levenberg-

Marquardt algorithm, to minimize

ε(R,γ ,P) =
n

∑
i=1

d2(xn, ln)+d2(x̄n, l̄n),

where d(xn, ln) is the Euclidean distance of an image point from its associated search
curve.

6 Experiments

Several tests were run on simulated data in order to evaluate the performance of the al-
gorithm. Let us first describe the protocol. We drew 100 3D points from a Gaussian
distribution because this is the number of points we manually selected for the real data
experiments. The perspective camera was chosen so that image data would be typically
in range of [−0.5,0.5]. The circular panorama data is chosen with γ = π/12 – note that
this parameter does not seem to have an influence on the algorithm – and the distribution
of image data falls in two intervals of length 1 (see figure 3). The algorithms presented in
this paper were then used to calibrate the system and a metric reconstruction was obtained
with the method described in [3, page 297].

For figure 3, a gaussian noise of variance 10−3 was added to both images. That is
equivalent to error 0.1% of image size, i.e. 0.5 pixel in a 500×500 image. We present the
reconstruction (figure 3(a)), the circular panorama with some of the search curves (figure
3(b)), and the perspective image with the corresponding search curve in the same colour
(figure 3(c) and figure 3(d)), with the image of the circular camera in blue. Note that
on figure 3(a) only one pair of cameras is visible because the reconstructed cameras are
indistinguishable from the real ones

The curves of figure 3 show the variance of the distance of reconstructed points to
their real positions for different levels of added noise to the image data. The noise levels
considered range from 0 to 10−2, and logarithmic scales were used for both axis. Different
curves have been used to represent a different level of noise on the circular panorama,
while the abscissa have been used to represent the level of noise on the perspective image.
Angle γ is estimated with 1.51◦ error.

The observation from this experiment is that the noise in one image is completely
masked by the noise in the other until some level. For a given noise level in the circular
panorama, the reconstruction error is constant while the noise on the perspective image is
below some value. It is thus possible to predict the reconstruction error based on the input
noise.
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Figure 3: Simulated data experimental setup. 3(a) reconstructed points and cameras.
3(b) circular panorama with some search curves 3(c) Perspective image with the image of
the reconstructed camera, and some search curves 3(d) Detail of the perspective image.
The search curves and the corresponding points are drawn in the same colour. Variance
of the distance of reconstructed points to their true position for different levels of added
noise. The different curves are for different values of added noise to the circular panorama
data, ranging from 0 to 10−2. Variance of noise added to the perspective image is on the
horizontal axis. Notice that for equivalent noise on both images this variance is a linear
function of the added noise.

Figure 4: The non-centrality of the circular panorama is very strong in these images since
the desk was very close to the circular camera.
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Figure 5: These two images show how the calibration process can reconstruct the circular
camera. The perspective image was taken during the acquisition of the circular panorama.
Notice the tripod and the black line segment that corresponds to the projection of the
circular path of the camera into the perspective image.

6.1 Real data

In figure 1, the circular panorama was built from a sequence taken with a fisheye camera,
so it has a field of view of 360◦×180◦ it has a full resolution of 2200×1100 pixels; the
perspective image was taken by a regular 4M pixel camera. 100 correspondences were
established manually, and were used to calibrate the system. After bundle adjustment, the
calibration parameters were used to reconstruct a scene model. For visualization purposes,
textures have been mapped to the model from the perspective image. Metric reconstruc-
tion is possible because the image used is already calibrated and we have access to angles
directly from the data.

Figure 4 and figure 5 show calibration of two 4M pixel views of an office against a
circular 360◦× 360◦ circular panorama of resolution 5300× 5300 pixels. The circular
panorama was built by sampling the 180◦ circle of a a sequence of fisheye images. The
angle γ used to build it was 180◦.

In figure 4, the circular camera was very close to the desk, the circular panorama is
thus very distorted. The non-central model accounts for this distortion. The reconstruction
(figure 4) shows some objects of the scene and the circular camera, and on the calibrated
image, the search curves all intersect twice in a point where the perspective image was
taken. The angle γ was estimated with a 1.51◦ error.

In figure 5, we can verify that the circular camera is reconstructed correctly, since the
tripod used for acquisition of the circular panorama is present in the scene. This calibra-
tion is also good because the search curves cross in the doorway, where the perspective
image was taken. This scene contains objects on all sides of the circular camera, and the
positions of the search curves on the perspective image show the position of the circular
camera acquiring this point. The angle γ was estimated with a 0.21◦ error.
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