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Abstract 
 

In this paper we test a range of three-dimensional face recognition systems, 
based on the fishersurface method developed in previous work.  We show the 
effect of using a variety of facial surface representations and suggest a 
method of identifying and extracting useful qualities offered by each system.  
Combing these components into a unified surface subspace, we create a three-
dimensional face recognition system producing significantly lower error rates 
than individual systems tested on the same data.  We evaluate systems by 
performing up to 1,079,715 verification operations on a large test set of 3D 
face models.  Results are presented in the form of false acceptance and false 
rejection rates, generated by varying a decision threshold applied to a 
distance metric in combined surface space. 

 

1  Introduction 
 

Despite significant advances in face recognition technology, it has yet to achieve levels 
of accuracy required for many commercial and industrial applications.  The high error 
rates stem from well-known sub-problems.  Variation in lighting, facial expression and 
orientation all significantly increase error rates.  In an attempt to address these issues, 
research has begun to focus on the use of three-dimensional face models, motivated by 
three main factors.  Firstly, relying on geometric shape, rather than colour and texture 
information, systems become invariant to lighting conditions.  Secondly, the ability to 
rotate a facial structure in three-dimensional space, allowing for compensation of 
variations in pose, aids those methods requiring alignment prior to recognition. Thirdly, 
the additional depth information in the facial surface structure, not available from two-
dimensional images, provides supplementary cues for recognition. 

In this paper we expand on previous research [1] involving the use of facial surface 
data, derived from 3D face models (generated using a stereo vision 3D camera), as a 
substitute for the more familiar two-dimensional images.  A number of investigations 
have shown that three-dimensional structure can be used to aid recognition.  Zhao and 
Chellappa [2] use a generic 3D face model to normalise facial orientation and lighting 
direction in two-dimensional images, increasing recognition accuracy from 
approximately 81% (correct match within rank of 25) to 100%.  Similar results are 
witnessed in the Face Recognition Vendor Test [3], showing that pose correction using 
Romdhani et al’s technique [4] reduces error rates when applied to the FERET database.  
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Blanz et al [5] take a comparable approach, using a morphable face model to aid in 
identification of 2D images.  Beginning with an initial estimate of lighting direction and 
face shape, Romdhani et al iteratively alters shape and texture parameters of the 
morphable face model, minimising difference to the two-dimensional image.  These 
parameters are then taken as features for identification, resulting in 82.6% correct 
identifications on a test set of 68 people. 

Although these methods show that knowledge of three-dimensional face shape can 
aid normalisation for two-dimensional face recognition systems, none of the methods 
mentioned so far use actual three-dimensional geometric structure to perform 
recognition.  Whereas Beumier and Acheroy [6, 7] make direct use of such information, 
testing various methods of matching 3D face models, although few were successful.  
Curvature analysis proved ineffective, and feature extraction was not robust enough to 
provide accurate recognition.  However, Beumier and Acheroy were able to achieve 
reasonable error rates using curvature values of vertical surface profiles.  Verification 
tests carried out on a database of 30 people produced equal error rates (EER) between 
7.25% and 9.0%.  Hesher et al [8] test a different method, using PCA (principal 
component analysis) of depth maps and euclidean distance to perform identification with 
94% accuracy on 37 face models (when trained on the gallery set).  Further investigation 
into this approach is carried out by Heseltine et al [9], showing how different surface 
representations and distance measures affect recognition, reducing the EER from 19.1% 
to 12.7% when applied to a difficult test set of 290 face models.  However, the focus of 
this research has been on identifying optimum surface representations, with little regard 
for the advantages offered by each individual representation.  We suggest that different 
surface representations may be specifically suited to different capture conditions or 
certain facial characteristics, despite a general weakness for overall recognition.  For 
example, curvature representations may aid recognition by making the system more 
robust to inaccuracies in 3D orientation yet also be highly sensitive to noise.  Another 
representation may enhance nose shape, but lose information regarding jaw structure. 

In this paper we analyse and evaluate a variety of three-dimensional fishersurface [1] 
face recognition systems, each incorporating a different surface representation of facial 
structure.  We propose a means of identifying and extracting components from the 
surface subspace produced by each system, such that they may be combined into a single 
unified subspace.  Pentland et al [10] have previously examined the benefit of using 
multiple eigenspaces, in which specialist subspaces were constructed for various facial 
orientations, from which cumulative match scores were able to reduce error rates.  Our 
approach differs in that we extract and combine individual dimensions, creating a single 
unified surface space, as applied to two-dimensional images in previous investigations 
[11]. 

 

3  The Fishersurface Method 
 

In this section we provide details of the fishersurface method of face recognition.  We 
apply PCA and LDA (linear discriminant analysis) to surface representations of 3D face 
models, producing a subspace projection matrix, as with Belhumier et al’s fisherface 
approach [12], taking advantage of ‘within-class’ information, minimising variation 
between multiple face models of the same person, yet maximising class separation.  To 
accomplish this we use a training set containing several examples of each subject, 
describing facial structure variance (due to influences such as facial expression), from 



one model to another.  From the training set we compute three scatter matrices, 
representing the within-class (SW), between-class (SB) and total (ST) distribution from the 
average surface � and classes averages �n, as shown in equation 1. 

 

(1) 

The training set is partitioned into c classes, such that all surface vectors Γni in a 
single class Xn are of the same person and no person is present in multiple classes.  
Calculating eigenvectors of the matrix ST, and taking the top 250 (number of surfaces 
minus number of classes) principal components, we produce a projection matrix Upca.  
This is then used to reduce dimensionality of the within-class and between-class scatter 
matrices (ensuring they are non-singular) before computing the top c-1 eigenvectors of 
the reduced scatter matrix ratio, Ufld, as shown in equation 2. 

 

(2) 

Finally, the matrix Uff is calculated, such that it projects a face surface vector into a 
reduced space of c-1 dimensions, in which between-class scatter is maximised for all c 
classes, while within-class scatter is minimised for each class Xn.  Like the fisherface 
system [12], components of the projection matrix Uff can be viewed as images, as shown 
in Figure 1 for the depth map surface space. 

 

    

Figure 1: The average surface (left) and first five fishersurfaces (right) 

Once surface space has been defined, we project a facial surface into reduced surface 
space by a simple matrix multiplication, as shown in equation 3. 

ff
T U)( Ψ−Γ=Ω  . (3) 

The vector �T���1��2����c-1] is taken as a ‘face-key’ representing the facial structure 
in reduced dimensionality space.  Face-keys are compared using either euclidean or 
cosine distance measures as shown in equation 4. 

 

(4) 

An acceptance (facial surfaces match) or rejection (surfaces do not match) is 
determined by applying a threshold to the distance calculated.  Any comparison 
producing a distance value below the threshold is considered an acceptance. 



3  The Test Database 
 
Until recently, little three-dimensional face data has been publicly available for research 
and nothing towards the magnitude required for development and testing of three-
dimensional face recognition systems.  In these investigations we use a new database of 
3D face models, recently made available by the University of York, as part of an 
ongoing project to provide a publicly available 3D Face Database [13].  Face models are 
generated in sub-second processing time from a single shot with a 3D camera, using a 
stereo vision technique enhanced by light projection. 

For the purpose of these experiments we select a sample of 1770 face models (280 
people) captured under the conditions in Figure 2.  During data acquisition no effort was 
made to control lighting conditions.  In order to generate face models at various head 
orientations, subjects were asked to face reference points positioned roughly 45° above 
and below the camera, but no effort was made to enforce precise orientation. 

 

 

 Figure 2: Example face models taken from the University of York 3D Face Database 

3D models are aligned to face directly forwards before conversion into 60 by 90 
pixel depth map representation.  We then take a training set of 300 depth maps (50 
people), used to compute the scatter matrices described in section 3.  The remaining 
1470 depth maps (230 people) are then separated into two disjoint sets of equal size (test 
set A and test set B).  We use test set A to analyse the face-key variance throughout 
surface space, calculate discriminant weightings (see section 4) and compute the 
optimum surface space combinations.  This leaves set B as an unseen test set to evaluate 
the final combined system.  Both training and test sets contain subjects of various race, 
age and gender and nobody is present in both the training and test sets. 

 

4  Surface Space Analysis 
 
In this section we analyse the surface spaces produced when various facial surface 
representations are used with the fishersurface method.  We begin by testing the variety 
of fishersurface systems introduced by Heseltine et al [1] on test set A, showing the 
range of error rates produced when using various surface representations (Figure 3).  
Continuing this line of research we persist with the same surface representations, 
referring the reader to previous work [1, 9] for implementation details, while in this 
paper we focus on the effect and methodologies of combining multiple systems, rather 
than the surface representations themselves. 



Figure 3 clearly shows the choice of surface representation has a significant impact 
on the effectiveness of the fishersurface approach, with horizontal gradient 
representations providing the lowest EER (point at which false acceptance rate equals 
false rejection rate). 

 

 

Figure 3: Equal error rates of fishersurface systems applied to test set A 

However, the superiority of the horizontal gradient representations does not suggest 
that the vertical gradient and curvature representations are no use whatsoever.  Although 
discriminatory information provided by these representations may not be as robust and 
distinguishing, they may contain a degree of information not available in horizontal 
gradients and could therefore still make a positive contribution to a combined surface 
space.  We measure the discriminating ability of surface space dimensions by applying 
Fisher’s Linear Discriminant (FLD) (as used by Gordon [14]) to individual components 
(single dimensions) of each surface space.  We calculate the discriminant dn, describing 
the discriminating power of a given dimension n, between c people in test set A. 

 (3) 

Where �i is the set of all class i face-key vector elements in dimension n, and m and 
mi the mean and class mean of nth dimension elements in test set A.  Applying equation 
3 to the assortment of surface space systems listed in Figure 3, we see a wide range of 
discriminant values across the individual surface space dimensions (Figure 4).  

 

Figure 4: Top ten discriminant values of all fishersurface dimensions 



It is clear that although some surface representations do not perform well in the face 
recognition tests, producing high EERs, some face-key components do contain highly 
discriminatory information.  For example, we see that the min and max curvature 
representations contain one dimension with a higher discriminant than any horizontal 
gradient and curve type dimension, yet the EERs are significantly higher.  We 
hypothesise that the reason for these highly discriminating anomalies, in an otherwise 
ineffective subspace, is that a certain surface representation may be particularly suited to 
a single discriminating factor, such as nose shape or jaw structure, but is not effective 
when used as a more general classifier.  Therefore, if we were able to isolate these few 
useful qualities from the more specialised subspaces, they could be used to make a 
positive contribution to a generally more effective surface space, reducing error rates 
further. 

 

5  Combining Systems 
 

In this section we describe how the analysis methods discussed in section 4 are used to 
combine multiple face recognition systems.  Firstly, we need to address the problem of 
prioritising surface space dimensions.  Because the average magnitude and deviation of 
face-key vectors from a range of systems are likely to differ by some orders of 
magnitude, certain dimensions will have a greater influence than others will, even if the 
discriminating abilities are evenly matched.  To compensate for this effect, we normalise 
moments by dividing each face-key element by its within-class standard deviation 
(calculated from test set A face-keys).  However, in normalising these dimensions we 
have also removed any prioritisation, such that all surface space components are 
considered equal.  Although not a problem when applied to a single surface space, when 
combining multiple dimensions we would ideally wish to give greater precedence to the 
more reliable components.  Otherwise the situation is likely to arise when a large 
number of less discriminating dimensions begin to outweigh the fewer more 
discriminating dimensions, diminishing their influence on the verification operation and 
hence increasing error rates.  In section 4 we showed how FLD could be used to 
measure the discriminating ability of a single dimension from any given face space.  We 
now apply this discriminant value dn as weighting for each surface space dimension n, 
prioritising those dimensions with the highest discriminating ability. 

With this weighting scheme applied to all face-keys, we now require some criterion 
to decide which dimensions to combine.  It is not enough to rely purely on the 
discriminant value itself, as this only provides an indication of the discriminating ability 
of that dimension alone, without any indication of whether the inclusion of this 
dimension would benefit the existing set of dimensions.  If an existing surface space 
already provides a certain amount of feature specific discrimination, it would be of little 
benefit (or could even be detrimental) if we were to introduce an additional dimension 
describing a feature already present within the existing set.   

Previous investigations [11] have used FLD, applied to a combined subspace in 
order to predict effectiveness when used for recognition.  Additional dimensions are 
introduced if they result in an increase in discriminant value.  This method has been 
shown to produce face space combinations achieving significantly lower error rates than 
individual two-dimensional systems, although Heseltine et al do note that an EER-based 
criterion is likely to produce a better combination, at the expense of greatly increased 
training time.  However, with a more efficient program and greater computational 



resources, we now take that approach: the criterion required for introduction of a new 
dimension to an existing surface space is a resultant decrease in EER (computed using 
test set A). 

 
Combined surface space = first dimension of current optimum system 
Compute EER of combined surface space 
For each surface representation system: 

For each dimension of surface space: 
Concatenate dimension onto combined surface space 
Compute EER of combined surface space 
If EER has not decreased: 

Remove dimension from combined surface space 
Save combined surface space ready for evaluation 

Figure 5: Fishersurface combination algorithm 

6  The Test Procedure 
 

In order to evaluate the effectiveness of a surface space, we project and compare each 
facial surface with every other surface in the test set, no surface is compared with itself 
and each pair is compared only once.  The false acceptance rate (FAR) and false 
rejection rate (FRR) are then calculated as the percentage of incorrect acceptances and 
incorrect rejections after applying a threshold.  By varying the threshold, we produce a 
series of FAR FRR pairs, which plotted on a graph produce an error curve as seen in 
Figure 8.  The equal error rate (EER, the point at which FAR equals FRR) can then be 
taken as a single comparative value. 
 

 
Figure 6: Flow chart of system evaluation procedure 



7  Results 
 

In this section we present the dimensions selected to form the combined fishersurface 
systems (Figure 7) and the error rates obtained from a range of tests sets, making a 
comparison to optimum individual systems in Figure 8. 
 

 

Figure 7: Face space dimensions included (x) in the combined fishersurface systems 

We see that systems with lower EERs generally make the most contribution to the 
combined system, as would be expected.  However, it is also interesting to note that 
even systems with particularly high EERs do contain some dimensions that make a 
positive contribution, although this is much more prominent for the cosine distance, 
showing that this metric is more suited to combing multiple surface spaces. 

Having selected and combined the range of dimensions shown in Figure 7, we now 
apply these combined systems to test sets A and B using both the cosine and euclidean 
distance metric.  We also perform an evaluation on the union of test sets A and B: an 
experiment analogous to training on a database (or gallery set) of known people, which 
are then compared with newly acquired (unseen) images. 

Figure 8 shows the error curves obtained when optimum individual fishersurface 
systems and combined systems are applied to test set A (used to construct the 
combination), test set B (the unseen test set) and the full test set (all surfaces from sets A 
and B), using the cosine and Euclidean distance metrics.  We see that the combined 
systems produce lower error rates than the optimum individual systems for all six 
experiments.  As would be expected, the lowest error rates are achieved when tested on 
the surfaces used to construct the combination (7.2% and 12.8% EER respectively).  
However an improvement is also seen when applied to the unseen test set B, from 11.5% 
and 17.3% using the best single systems to 9.3% and 16.3% EER for the combined 
systems.  Performing the evaluation on the larger set, providing 1,079,715 verification 
operations (completed in 14 minutes 23 seconds on a Pentium III 1.2GHz processor, 
providing a verification rate of 1251 per second), the error drops slightly to 8.2% and 



14.4% EER, showing that a small improvement is introduced if some test data is 
available for training, as well as suggesting that the method scales well, considering the 
large increase in verification operations. 

 

 

Figure 8: Error curves comparing combined (dashed lines) and individual (solid lines) 
systems using the Euclidean (left) and cosine (right) distance measures. 

 

8  Conclusion 
 

We have shown how a well-known method of two-dimensional face recognition can be 
applied to three-dimensional face models achieving reasonably low error rates, 
depending on the surface representation used.  Drawing on previous work combing face 
recognition eigenspaces [11], we have applied the same principle to multiple three-
dimensional face recognition systems, showing that the combination method is 
applicable to both two-dimensional and three-dimensional data.  Using FLD as an 
analysis tool, we have confirmed the hypothesis that although some surface 
representations may not perform well when used for recognition, they may harbour 
highly discriminatory components that could complement other surface spaces. 

Iteratively improving error rates on a small test set, we have built up a combination 
of dimensions extracted from a variety of surface spaces, each utilising a different 
surface representation.  This method of combination has been shown to be most 
effective when used with the cosine distance metric, in which a selection of 184 
dimensions were combined from 16 of the 17 surface spaces, reducing the EER from 
11.6% to 8.2%.  Applying the same combined surface space to an unseen test set of data 
presenting typical difficulties when performing recognition, we have demonstrated a 
similar reduction in error from 11.5% to 9.3% EER. 

Evaluating the combined system at its fundamental level, using 1,079,715 
verification operations between three-dimensional facial surfaces, demonstrates that 
combining multiple surface space dimensions improves effectiveness of the core 
recognition algorithm.  Error rates have been significantly reduced to state-of-the-art 
levels, when evaluated on a difficult test set including variations in expression and 
orientation.  However, we have not applied any additional heuristics, typically 



incorporated into fully functional commercial and industrial systems.  For example, we 
have not experimented with multiple facial alignments, optimising crop regions or 
storing multiple gallery images.  All of which are known to improve error rates and can 
easily be applied to the combined systems presented in this paper.  With these additional 
measures in place, it is likely that the improvements made to the core algorithm will 
propagate through to producing a highly effective face recognition system.  Given the 
fast 3D capture method, small face-keys of 184 vector elements (allowing extremely fast 
comparisons), invariance to lighting conditions and facial orientation, this system is 
particularly suited to security and surveillance applications. 
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