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Abstract

The paper deals with autonomous environment mapping, localisation and
navigation using exclusively monocular vision and multiple 2D pattern track-
ing. The environment map is a mosaic of 2D patterns detected on the ceiling
plane and used as natural landmarks. The robot is able to reproduce learned
trajectories defined by key images representing the visual memory. The pat-
tern tracker is based on particle filetring. It uses both image contours and gray
scale level variations to track efficiently 2D patterns on cluttered background.
An original observation model used for filter state updating is presented.

1 Introduction

For an indoor mobile robot system, the ability to autonomously map its environment and
localize itself relatively to this map is a highly desired property. Using natural rather
than artificial landmarks is another important requirement. Several works using monoc-
ular vision for mapping and self localization exist. The most important difficulty is to
achieve the generation of a sufficient number of landmarks which can be robustly recog-
nized during navigation session with a near real time rate. Interest points [13], straight
lines [14] and rectangular patterns [5] where used. The first approaches focused on pro-
ducing efficient algorithms to match a set of observed patterns with a subset of the map
primitives [14]. Generally, fusion of multiple sensor data (odometry) was used to achieve
real time computing and ambiguity eliminating. More recently, the success of real-time
tracking algorithms simplified the matching process and allowed to use structure from
motion technics to compute the 3D coordinates of the observed features [13].

Among the large variety of existing tracking methods, model-based approaches provide
robust results. These methods can use 3D models or 2D templates such as appearance
models [7, 3] or Geometric primitives as contour curves and CAD description [11, 10, 12].
For a realistic robotics application there is a need for algorithms enabling not only pattern
tracking but also automatic generation and recognition. Object recognition algorithms
based on segmented contours (straight lines, ellipses, corners,...) have reached today a
high level of robustness and efficiency. Thus, it seems judicious to investigates track-
ers which use contour based pattern models. Note that tracking in cluttered background
and with partial occlusions is challenging because representing patterns with only con-
tour information may produce ambigeous measures. Extensive studies of either active or
rigid contour tracking have been presented in litterature [6, 15, 4, 2, 8]. The used meth-
ods are usually defined in the Bayesian filtering framework assuming that the evolution
of the contour curve state follows a Markov process (evolution model) and that a noisy
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observation (measurement model) is available. The contour state is tracked using a prob-
abilistic recursive prediction and update strategy [1]. More recently, Particle filtering was
introduced in contour tracking to handle non Gaussianity of noise and non linearity of
evolution models [6].

In this paper, we describe a method for autonomous environment mapping, localisation
and navigation for an indoor mobile robot using monocular vision and multiple 2D pattern
tracking. The environment map is a mosaic of 2D patterns detected on the ceiling plane
and used as natural landmarks. The presented algorithm enables the mobile robot to re-
produce learned trajectories defined by key images representing the visual memory. The
pattern tracker is a contour model-based one and takes into account the image gray scale
level variations. It uses the condensation algorithm [6] to track efficiently 2D patterns on
cluttered background. An original observation model is used to update the particle filter
state. The paper is organized as follows: in section 2 the autonomous localisation and
navigation using key images is presented. The pattern tracker is then defined in section 3.
An experimental evaluation is finally presented in section 4.

2 Navigating using visual memory

2.1 Problem Formalization

The mobile robot system is composed of three frames as shown in Figure 1: the world
frame %, the robot frame % and the camera frame .#. To localize the robot in its
environnement one have to estimate the transformation WTp between the world frame
and the robot frame. Assuming that the transformation Ty, between the camera frame
and the robot frame is known thanks to a camera-robot calibrating method, the image is
corrected so that it corresponds to what would be observed if the camera frame fits the
robot frame i.e. CTR = I. As the visual landmarks are on the ceilling plane, the correction
to apply on the observed data is a homographyCHR. Knowing CTR, CHR can be expressed
as follows:

CHr=K(R—tn"/d)K™* 1)

Where K is the camera intrinsic parameters matrix, R and t are respectively the rota-
tion matrix and the translation vector in CTR, n is the vector normal to the ceilling plane
and d is the distance from the robot frame to this plane. After applying the computed
correction to image data, one can assume for the clarity of the presentation and without
loss of generality that T is set to the identity matrix.

2.2 On-linerobot pose computing

Let us denote %, the 2D frame defined by the x and y-axis of %, and related to the
ceiling plane. We assume that a set of 2D landmarks m; detected on this plane are mod-
eled and grouped in a mosaic represented by a set .# = {(m;MT,),i=1,...,n} where

the planar transformation matrix MT, between .%,, and a frame % related to m, de-
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fines the pose of m; in the mosaic (Figure 2). We have MT, = 0 1
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Figure 1: The camera-robot system Figure 2: Robot pose computing using
visual data of a 2D model
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sition. Localizing the robot at an instant k consists in computing MT(C") which defines

the homogenous transformation between the projection .Z K of the camera frame Ze

on the mosaic plane as shown in Figure 2. At the instant?(, the robot grabs an image

|, of the ceiling. Let %! be a 2D frame lied to the image plane. The pose of the

projection of an observed model m; on the image plane is defined by the transformation
Ie(k) 1K)

'L = [ r(i) pi ] between F (4 and a frame F (! lied to the projection of m; where
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sition in the image. Considering the inverse of the perspective projection, we obtain the

transformation between the projections Fc(k) and F; of the camera frame and the model

frame respectively on the mosaic plane (Figure 1):

CT() — °R °P, - Iri(k) %Ipi(k)
' 0o 1 0 1

where Z is the distance from the origin of the camera frame to the ceiling and f the focal
length. We can thus express the robot pose relatively to .# with respect to the parameters
of a seen model m; by
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Note that the robot position is computed up to a scale factor % The absolute position
can be retrieved if the camera is calibrated. Otherwise, the computed pose is sufficient to
achieve navigation using visual servoing as we will see in section 2.



Figure 3: Computing the pose Figure 4: An example of key images
of a new model in the mosaic forming a trajectory

2.3 Environment mapping

We will now explain the process of building the mosaic of 2D landmarks. At time k = 0,
the robot grabs an image I, generates a first 2D model m, and associates to it a frame .7,.
In fact, this first model will serve as a reference to the mosaic. Thus, we have %, = %,

and '\"T(k = | (I is the identity matrix). In the image I, a tracker 1, is initialized with

a state L(O) As the robot moves, the state of 1, evoluates with respect to k. The sys-
tem generates other models. At each generatlon of a new model m, at the instant k, a

new tracker T, is initialized with a state Li("). Due to the mosaic rlgldlty, the transfor-
mation between the two model frames is time independent and equal to °L; =% L{}'L.®

0. Op.
(Figure3). Noting OLi = [ fi f' ] and projecting this transformation onto the mosaic

0
plane we obtain the pose of the new model m; in ./
Op. Z0p
MTi — [ Ol flpl :| (3)

Of course, as the robot moves, m, may eventually disappear at an instant k when
creating a new model m;. In fact, it is sufficient that at least one model m; , already defined
in the mosaic, is seen at the instant k. To compute the pose MT;, we first calculate JL and
project it to obtain ) T,. The model m; is then added to .# with the pose M T, =° T}Ti.

2.4 Path learning and visual navigation

The idea is to enable the robot to learn and reproduce some pathes relating important
places in the environment. Let us consider a trajectory executed during the learning phase
and relating a point A to a point B. A set of so called key images is chosen among
the sequence of video images acquired during navigation following the trajectory. A
key image I, is defined by a set of mosaic models and their poses in the image (Fig-



ure 4): 11A8) = {(mi,' Li(k)) = 1,2,...}. A trajectory relating A and B is then noticed
Ppg= {IéAB), k=1,2, } Key images are chosen so that the combination of the elemen-

tary trajectories between each couple of successive key images 1(*®) and I&ﬁ’ forms a
global trajectory which approximatively fits the learned trajectory. Some conditions have
to be satisfied when creating ®,g: i) two successive key images must contain at least one
common model of the mosaic, ii) the variation of the orientation of a model between two
successive key images is smaller than a defined threshold. The first condition is neces-
sary to visual servoing. The second is motivated by the fact that several different pathes
relating two poses exist. It is thus necessary to insert additional key images to reduce the
variation of orientation between two successive images (Figure 4).Visual servoing is used
to carry the robot from a key image to another.

3 Pattern tracking

3.1 Thegeneral tracking problem formulation

The tracking problem can be expressed as the estimation of the state of a dynamical sys-
tem basing on noisy measurements done at discret times. Let us consider that, at time
k, the state of a system is defined by a vector X, and the measurements by a vector Z,..
Based on a Bayesian approach, the tracking consists in iteratively predicting and updating
the pdf of the system state using respectively the dynamical and the observation models.
The posterior pdf p (X,|Z,.,) is thus estimated as the vector Z,., = (Z;,i =1,...,k) con-
taining the latest measurements becames available online.

Particle filtering is an elegant solution in case of non-linearity of the evolution and the
measurement functions and non-Gaussianity of noise. The key idea is to use a Monte
Carlo method to represent the pdf of X, by a set of samples (particles) S(ki). A weight

W(ki) is associated to each particle. It corresponds to the probability of realisation of the

particle. The set of particles {S(k‘),i =1,.., Np} (where Np, is the number of particles) is

resampled at each iteration according to the weights. The most probable samples are re-
tained. If the number of particles is sufficiently high, the state estimated from the paticles
converges toward the real value. This method necessitates drawing samples from the pdf

p (SS)|Zl:k). This is not straightforward for any density function. It is then convenient

to use a so called proposal density n(SI((i)|Zl:k) similar to p (SI((” |Zl:k) and from which
samples can be generated.
In this paper we use the Condensation algorithm which is a particle filter version where

the proposal density is equal to the prior one n(SI((i) |Zl:k) =p (SSHS&L) [6].

3.2 Pattern modelling

The pattern model must enable not only near real time tracking but also automatic gen-
eration and recognition. It must be complex enough to discard ambiguities due to the
presence of objects in the background similar to parts of the model and simple enough to
reduce the computational cost of tracking. The structure of a pattern is built in two levels:



Figure 5: Pattern model: sampled points ~ Figure 6: Deriving the probabilty measure
on segmented contours and corresponding from the inter-correlation measure
gray scale vectors in the gradient direction

the first level is composed of a set of contours polygonally approximated by straight line
segments and arcs, the second level is composed of a list of vectors whose elements repre-
sent the evolution of the image gray scale value around points sampled along the contours
and following normal directions at these points (Figure 5). The contour representation
is used to automatic generation and recognition and thus to the tracking initialization.
During the tracking, only the gray scale sample vectors are used to estimate the state
of the pattern. Let us consider a window of interest in the image with a center (xc,Yc)
and dimensions Ay and Ay. Each segmented contour is sampled in a set of image points

{m(J) = (u(j),v(j)) ,i=1, ...,Nm} where Ny, is the number of points. At each point, we

) , L _ T
built a vector V() = (g(ll),g(zl),...,gl(”,...) composed of Ns gray scale value samples

from the image following the gradient direction at the pixel m{}) and with a fixed step
size 3. g is a bilinear approximation of the gray scale values of the nearest four pixels.
A pattern model can thus be expressed as follows:

M — {(U(J)’V(J),W(j)) N :1,,,,,Nm} (4)

with Ut = [x(l),y(l),fp(l)] , where x() = ”(')A—:XC and y() = %;VC are the normal-
ized co-ordinates of m{i) inside the interest window and ¢(}) the gradient orientation at

_ . L T
m{). The vector W) = (a(l),b(l), ) is composed of a set of parameters defining a
function C(Glé which is an approximation of the one-dimensional discrete normalized auto-
correlation function CU). of GU) where GU) (1) = g1 for 1 = 1,...,Ns, and G (1) = 0
elsewhere. We have CU) (A) = (1/ | v ||2) Z|N=S—NSG(D (G (1—A). The simplest
expression of CU) is a straight line equation (Figure6). W) is then one-dimensional and
equal to the slope. The interest of saving the auto-correlation function parameters and the
way this measure is used in tracking will be discussed in the next subsection.

3.3 Observation model

State vector definition and dynamical model The state vector X, defines the pose of
the pattern at time k in the image I, :



X = (X Vi 9k7sk)T (5)

X Yo 6 are respectively the position of the pattern center and its orientation in
the image frame and s, is the scale factor. The evolution of X, is modelled by a noise
vector v from a gaussian distribution of zero mean value and standard deviation o, =

(0x, 0y, 0, 05) " . Thus, the dynamical model function is simply X, = X,_, +V.

_ o NT
Observation model Let us consider a set {SI((') = (xf('),yf('),ek('),sl((')) Ji=1,..,Np
of predicted state vector particles. A key point in the particle filter design is to define
how to compute an observation measurement Z, and to estimate p (Zk|S(ki)). For each

particle, the model is fitted to the image I, according to SS). Around each image point

. . . . T
coinciding with a model point m;, an observed vector V{/) = (g(ll),g(zl),...,gl(l),...) of
gray scale values is built following a direction which is the transformation of the gradient
orientation {}) saved in the model and with a step size equal to 3s{). For each observed

v v
=K ___pe-
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tween the stored vector and the observed vector components. The question is now how to
use the inter-correlation measure to estimate p (Zk|S(ki)) ? We first compute the probabil-

vector we compute the normalized inter-correlation measure Cgé

ity p (ZI((j)|S(ki)) that each model point m{) is placed according to the state vector particle

SS) on the corresponding point in the observed pattern. The maximum of probability is

expected at m‘}). The inter-correlation measure C(Gjé(k) can yeld an estimate of the devi-

ation A()) = (fgé‘l (Cgé ) between the observed and the predicted gray scale vectors,
k

C)-1 being the inverse of the auto-correlation function. Assuming that the probability
that the observed gray scale vector fits the predicted one follows a Gaussian distribution

with respect to A ) (Figure 6) we can reasonably approximate p (Z(kj)|8(ki)) by Qg (A)
the one dimensional Gaussian function with standard deviation . Assuming that the
probabilities p (ZI((j)|S(ki)) are mutually independent, it results that

. Np L
p(zds) = er(2§”|8§”) (6)
J=
The characterization of the auto-correlation function by the parameter vector V; for

each model point improve the precision of the estimate of p (Zk|SS)). Indeed, The inter-

correlation may decrease faster for a highly textured contour point than for a point on
a contour defined by two large and homogeneous regions (Figure 7). In addition, this
allows to define a criterium to select or reject some contour points during the pattern
model building phase. Moreover, note that this measure is robust to illumination changes
thanks to normalization.
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Figure 7: Gray scale sample vectors obtained with two different contours

Handling occlusion and scale changing effects When a gray scale value vector Vl((j)

is observed with a deviation A (1) from the expected pose, the inter-correlation measure
decreases slowly from its maximum value Cog, =1 Contrarily, when some of the vectors

V) are occluded, a brutal variation of the inter-correlation measure appears. To handle
this effect, the algorithm tolerates a fraction of vectors with bad inter-correlation measure
(A1) greater than a defined threshold). These vectors are not included in the probability
calculation. Changing scale may cause apparition or disappearing of some details in the
image. Consequently, the gray scale value vectors Vl((j) may be completly different from
the original one even without occlusion. It was shown in [9] that the Gaussian function
is an efficient scale space Kernel. Before computing the observed vector V|(<j) according

to a prediction S{", the image region containing m(!) is convolved with a 2D Gaussian
function Q ,, where s() is the predicted scale, if s > 1.

4 Experimental evaluation

4.1 Patterntracker evaluation

The evaluation of the tracker was done by superimposing an image patch (pattern) with
known state vector trajectory on a cluttered background image sequence. The goal was
to analyse the accuracy of the tracker with respect to the pattern displacement magnitude.
The number of particles was set to 200 and the standard deviations of the evolution model
parameters were gy = 5 pixels, oy = 5 pixels, 0,=3 degrees, os = 0.1. Figure 8 shows
displacements and scale variations estimated by the tracker with respect to the ground
truth values. It can be noticed that the tracker remains accurate inside [—-30,+30].

4.2 Environment mapping and localization

The presented approach was tested on a Pekee robot mounted with a low cost camera.
Figure 9 shows an example of mosaic construction. The set of images represents the
detected 2D models. The last image is a representation of the constructed mosaic and the



robot locations (gray triangles) computed using model tracker.
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Figure 8: State vector variation estimates (dX and dY in pixels and dtheta in degrees) with
respect to real variation values (The straight line represents the ideal curve)

Figure 9: An example of mosaic: a set of key-images with detected 2D patterns (on left),
The mosaic and robot locations (on the right)

5 Conclusion and future works

A efficient particle filter tracker with specific observation pobability densities was de-
signed to track planar modelled patterns on cluttered background. Scale changing and
partial occlusions were taken into account. The obtained algorithm runs in near real time
rate and is accurate and robust in realistic conditions according to experimental validation.
The tracker was used for autonomous indoor environment mapping and image-based nav-
igation. Experimental results confirm the validity of the approach. Future works will deal
with the adaptation of the tracker to 3D movement tracking using homographies in order
to enable autonomous mapping of 3D indoor environment using planar patterns detected
on the walls.
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